第三章一元函数的积分学及其应用

合集下载

高等数学 第三章 一元函数微积分学及其应用

高等数学 第三章 一元函数微积分学及其应用

x x0
x0
x
xx0
x x0
存在,则称该极限为 y f x 在点 x0 处的导数,记为
dy
df (x)
f x0 , y xx0 , dx xx0 或
dx xx0
10
二、导数的定义
第三章 一元函数微分学及其应用
这时也称函数 y f x 在点 x0 处可导.
如果该极限不存在,称函数 y f x 在点 x0处不可导 .
例1 求函数 y ln x 在点 x e 处的切线斜率.

k lim f (x) f (x0 ) = lim ln x ln e
x x0
x x0
xe x e
ln x = lim e
xe x e
lim
ln 1
xe e
xe
xe
所以
xe lim e 1
xe x e e
第三章 一元函数微分学及其应用
y
此刻切线的斜率即为 k lim y y0 lim f (x) f (x0 )
x x xx0
0
x x0
x x0
y f x
N Δy T
从上面的例子可以看出, 在求切线斜率的过
程中, 需要用到极限
lim f (x) f (x0 )
x x0
x x0
M C
α
Δx
O
x0
xx
7
二、导数的定义
故 y x2
在 x=0处导数为零,即
dy dx
x x0
0.
O
x
图 3-7
12
二、导数的定义
第三章 一元函数微分学及其应用
例3 求函数 y | x |,在点 x 0 处(见图2-8)的导数.

工科数学分析基础

工科数学分析基础

6/27
微元的求法
记Q( x)为分布在区间[a, x] ( x ∈[a,b])的量Q,则
∫ Q( x) =
x
f (t)dt
( x ∈[a,b]),
a
dQ = f ( x)dx
ΔQ = dQ + o(dx)
求微元dQ, 就是寻求与 dx成线性关系的 Adx , 且使
ΔQ − Adx = o(dx).
2010-11-22
16/27
特别 , 当考虑连续曲线段 y = f ( x) (a ≤ x ≤ b)绕 x 轴
轴旋转一周围成 π[ f ( x)]2 dx a
当考虑连续曲线段
yy oo aa x bb xx
x = ϕ( y) (c ≤ y ≤ d )
5
x
dw = π ⋅ 32 ⋅ dx ⋅ 9.8 ⋅ x = 88.2π x ⋅ dx,
w
=
∫ 5 88.2π 0
⋅ x ⋅ dx

3462
(千焦).
定积分的应用
2010-11-22
20/27
例 2 一个横放着的圆柱形水桶,桶内盛有半桶水,设桶的底
半径为 R,水的比重为γ ,计算桶的一端面上所受的压力.
3
定积分的应用
2010-11-22
8/27
实际问题中,如何求得非均匀连续分布量的微分?
(1)针对所给问题,分析非均匀产生的原因,它往往是 由于某一相关量 f 变动所引起的。
(2)确定如何将其局部量均匀化从而可以利用乘法得到 此局部量的线性形式的近似值.
通常是通过对 f 以不变代变来得到。
这样得到的近似值往往就是所需要的微分,而不必也 难以逐一加以验证.

一元函数积分学

一元函数积分学
ห้องสมุดไป่ตู้
2
3.1.1 原函数与不定积分的概念
定义 设f ( x )是区间 I内的函数,若存在函数 F ( x ), 3.1 使得对 ∀x ∈ I , 恒有F ' ( x ) = f ( x )或
dF ( x ) = f ( x )dx,则称 F ( x )是f ( x ) 在区间 I内的一个原函数。

(sin x ) = cos x sin x 是 cos x 的原函数.
15
3.2.1 换元换元法
1、第一类换元法 问题
∫ cos 2 xdx = sin 2 x + C ,
解决方法 利用复合函数,设置中间变量.
1 过程 令 t = 2 x ⇒ dx = dt , 2 1 1 1 ∫ cos 2 xdx = 2 ∫ cos tdt = 2 sin t + C = 2 sin 2 x + C .
16
在一般情况下: 设 F ′( u) = f ( u), 则
∫ f (u)du = F (u) + C .
如果 u = ϕ ( x )(可导)
( F [ϕ ( x)])' = f [ϕ ( x)]ϕ ′( x)

∫ f [ϕ ( x )]ϕ ′( x )dx = F [ϕ ( x )] + C
x
x µ ≠ -1两种情况求。 a x + C (a 0, a ≠ 1); (4) a dx = ln a
x
2
(7)∫
1
1 − x2
dx = arcsin x + C ;
11
(8)∫ sin xdx = − cos x + C ;

一元函数积分学及其应用(课件)

一元函数积分学及其应用(课件)
注意:利用MATLAB的int函数求不定积分时,只是求出被积函数的一个原函数,不 会自动补充常数项 C 。
18
第、。 二节 不定积分的运算

【例 5】求 sin2 x d x 。 2

sin2 x d x 1 cos x d x
2
2
1 d x 1 cos x d x
2
2
1 x 1 sin x C 22
1 3
x3
x2

所以
1 3
x3

x
2
的一个原函数
因此
x2 d x 1 x3 C 。 3
8
第一节 不定积分的概念与性质
【例2】求 1 d x , x (∞,0)∪(0,∞) 。 x
解 当 x > 0 时,由于 (ln x) 1 ,所以 ln x 是 1 在 (0,∞) 内的一个原函数。因此,在 (0,∞)
该性质可推广到被积函数是有限多个函数代数和(差)的情况,即
[ f1(x) f2 (x) fn (x)]d x f1(x) d x f2 (x) d x fn (x) d x 。
法则 2 被积函数中的常数因子可以提到积分号外面,即
kf (x)d x k f (x)d x ( k 是常数, k 0 )。
第、 一节不定积分的概念与性质

三、不定积分的性质 求不定积分和求导数(微分)互为逆运算,即当微分号与积分号放在一起时会“抵 消”掉,显然有以下两条基本性质:
性质 4.1 [ f (x)d x] f (x) 或 d f (x)d x f (x)d x ; 性质 4.2 F(x)d x F(x) C 或 d F(x) F(x) C 。
间 I 内的不定积分,记为 f (x)d x ,即

一元函数积分学(定积分概念性质)

一元函数积分学(定积分概念性质)

无穷区间上的定积分
定义与性质
无穷区间上的定积分定义为在无穷区间上对有界函数的积分,其性质与普通定积分相似,但需要考虑 积分收敛的条件。
应用场景
无穷区间上的定积分在解决实际问题中有着广泛的应用,如物理学中的某些模型、无穷级数求和等。
无界函数的定积分
定义与性质
无界函数的定积分定义为在有界区间上 对无界函数的积分,其性质与普通定积 分有所不同,需要考虑函数无界的条件 。
定积分的几何意义
几何解释
定积分表示曲线与x轴所夹的面积, 即曲线下方的面积。
实例
如计算曲线y=f(x)与直线x=a、x=b以 及x轴所夹的面积。
定积分的物理意义
物理应用
定积分在物理中常用于计算变力做功、引力、压力等。
实例
变力做功的计算,如物体在变力F(x)的作用下,沿直线运动从a到b所做的功W 可以表示为W=∫F(x)dx。
详细描述
如果c是a和b之间的任意值,则 ∫(a,b)f(x)dx = ∫(a,c)f(x)dx + ∫(c,b)f(x)dx。
03 定积分的计算方法
微积分基本定理
总结词
微积分基本定理是计算定积分的核心方法,它建立了积分与微分之间的联系,通过求导数的逆运算来计算积分。
详细描述
微积分基本定理(也称为牛顿-莱布尼茨公式)指出,对于连续函数f(x)在闭区间[a, b]上的定积分,可以表示为 ∫abf(x)dx=F(b)−F(a),其中F(x)是f(x)的一个原函数。这个公式将定积分与不定积分(求原函数的过程)联系起 来,通过求不定积分得到原函数,再利用原函数计算定积分。
分部积分法
总结词
分部积分法是一种通过将两个函数的乘积进行求导来计算定积分的方法。

(整理)第三章一元函数的积分学

(整理)第三章一元函数的积分学

第三章 一元函数的积分学§1 不定积分【考试要求】1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式.2.掌握不定积分的换元积分法和分部积分法.3.会求有理函数、三角函数有理式的积分和简单无理函数的积分.一、基本概念1.原函数与不定积分定义若()()F x f x '=,(,)x a b ∈,则称()F x 是()f x 在(,)a b 内的一个原函数.(一般地,“在区间(,)a b 内”几个字常省略).若()F x 是()f x 的一个原函数,则()F x C +也是()f x 的原函数(其中C 为任意常数),()f x 的全体原函数称为()f x 的不定积分,记作()d f x x ⎰.若()F x 是()f x 的一个原函数,则()d ()f x x F x C =+⎰.2.不定积分与原函数的关系(1)不定积分与原函数是两个不同的概念,前者是个集合,后者是该集合中的一个元素,因此()d ()f x x F x ≠⎰.(2)设()F x ,()G x 是()f x 的任意两个原函数,则()()F x G x C =+((,)x a b ∈).(3)原函数的几何意义:称()y F x C =+为()f x 的积分曲线,其上横坐标为x 处的切线互相平行.3.原函数存在定理设()f x 在(,)a b 内连续,则在(,)a b 内必有原函数.4.不定积分的基本性质(1)()d ()d kf x x k f x x =⎰⎰ (k 为常数);(2)[()()]d ()d ()d f x g x x f x x g x x ±=±⎰⎰⎰;(3)求导与求不定积分互为逆运算① (()d )()f x x f x '=⎰ ,d ()d ()d f x x f x x =⎰;② ()d ()f x x f x C '=+⎰,d ()()f x f x C =+⎰;5.基本积分公式(熟练掌握)(1)d k x kx C =+⎰;(2)11d 1x x x C μμμ+=++⎰; (3)1d ln ||x x C x=+⎰; (4)d ln x x a a x C a=+⎰; (5)e d e x x x C =+⎰;(6)sin d cos x x x C =-+⎰;(7) cos d sin x x x C =+⎰;(8) 2sec d tan x x x C =+⎰;(9)2csc d cot x x x C =-+⎰;;(10)sec tan d sec x x x x C ⋅=+⎰;(11)csc cot d csc x x x x C ⋅=-+⎰;(12)d arcsin xx C =+⎰;(13)2d arc ta n 1x x C x=++⎰; (14)tan d ln |cos |x x x C =-+⎰;(15)cot d ln |sin |x x x C =+⎰;(16)d arcsin xx C a =+⎰; (17)22d 1arctan x x C a x a a=++⎰; (18)sec d ln |sec tan |x x x x C =++⎰;(19)csc d ln |csc cot |x x x x C =-+⎰;(20)22d 1ln 2x a x C a x a a x +=+--⎰;(21)d ln x x C =++⎰; (22)21arcsin 22a x x C a =++⎰. 6.初等函数的原函数初等函数在其定义区间内必有原函数,但它的原函数不一定是初等函数.不能用初等函数来表示(积不出来)的不定积分如下:2e d x x ⎰, 2e d x x -⎰, sin d x x x ⎰, cos d x x x⎰, 2sin d x x ⎰, 2cos d x x ⎰, d ln x x ⎰,e d x x x⎰,e ln d x x x ⎰,ln |sin |d x x ⎰等.二、不定积分的积分法1.公式法 将被积函数变形,直接利用公式.2.换元法 引入新的变量,再积分.第一类换元法(凑微分法)设()f u 的原函数为()F u ,()u x ϕ=有连续的导数,则[()]()d f x x x ϕϕ'⋅⎰ [()]d ()f x x ϕϕ=⎰()u x ϕ=()()d [()][()]u x f u u F u C F x C ϕϕ==+=+⎰凑微分 换元 积分 变量还原常见的凑微分公式(1)1()d ()d()f ax b x f ax b ax b a+=++⎰⎰,0a ≠;(2)11()d ()d()n n n n f x x x f x x n -=⎰⎰; (3)(e )e d (e )d(e )x x x x f x f =⎰⎰;(4)d 1(ln )(ln )d(ln )x f x f x x x n =⎰⎰;(5)21111()d ()d()f x f x x x x=-⎰⎰; (6)12f x f =⎰⎰; (7)(sin )cos d (sin )d(sin )f x x x f x x =⎰⎰;(8)(cos )sin d (cos )d(cos )f x x x f x x =-⎰⎰;(9)2(tan )sec d (tan )d(tan )f x x x f x x =⎰⎰;(10)2(cot )csc d (cot )d(cot )f x x x f x x =-⎰⎰;(11)21(arctan )d (arc tan )d(arc tan )1f x x f x x x ⋅=+⎰⎰; (12)1(arcsin )d (arcsin )d(arcsin )f x x f x x ⋅=⎰⎰; (13)d xf x f ⋅=⎰⎰;(14)()d ()d ln |()|()()f x f x x f x C f x f x '==+⎰⎰. 第二类换元法设()x t ϕ=单调,有连续的导数,且()0t ϕ'≠,如果[()]()d ()f t t t F t C ϕϕ'=+⎰,则()d f x x =⎰ ()x x ϕ=[()]()d f t t t ϕϕ'⎰1()[()]t x F t C ϕ-==+1[()]F x C ϕ-=+.换元 积分 变量还原3.分部积分法 设()u u x =,()v v x =具有连续的导数,则d d uv x uv u v x ''=-⎰⎰ 或 d d u v uv v u=-⎰⎰称为分部积分公式.4.特殊函数类的积分有理函数:先化为多项式与简单分式,再逐项积分.三角函数有理式:令tan 2x u =,化为有理函数的积分.简单无理函数:引入代换去掉根号,化为有理函数的积分.常用的分项公式如下:(1)111(1)1x x x x=-++; (2)111(1)1x x x x=+--; (3)2211(1)1x x x x x=-++; (4)22211111(1)(1)(1)1(1)x x x x x x x x x =-=--+++++; (5)2222111(1)1x x x x=-++. 常用的三角公式如下:(1)21cos 2cos 2x x +=;(2)21cos 2sin 2x x -=;(3)21sin (sin cos )22x x x ±=±三、典型例题题型1 直接积分法 (即将被积函数分解为几个简单函数的代数和再分项积分)例1 求下列不定积分(1) 231d 5x xx x ++⎰; (2)10d (2)x x x +⎰;(3) 42d x x x +⎰; 解 原式2222d 111d arctan (1)1x x x C x x xx x ⎡⎤==-=--+⎢⎥++⎣⎦⎰⎰.(4)2222+sin sec d 1x x x x x ⋅+⎰; 解 原式精品文档()()2222221+sin 11sec d sec d d 11xx x x x x xx x +-=⋅=-++⎰⎰⎰tan arctan x x C =-+.题型2 换元积分法(第一类和第二类)例1 求下列不定积分(1)2sin cos d 1sin x xx x ⋅+⎰; (2)d x⎰解原式ln dln d u x x u ========⎰⎰⎰11d()2arcsin arc 12u u C --==+=⎰ .(3)3xx ⎰;解原式23221122u x x x x x u========⎰⎰⎰32111(1(1)d(1)222u u u u =+-=++-⎰⎰⎰535222212211[(1)(1)](1)(125353u u C x =+-++=+-+ . (4)sin 222esin d exxxx ⋅⎰; 解 原式sin 222sin 22sin11esin d e d(sin 22)e44x xx x x x x x --=⋅=--=-⎰⎰(5)1d (1e )xxx x x ++⎰; (6)ln(tan )d sin cos x x x x ⋅⎰.例2 求x ⎰.解:原式2[ln()3x x =+=+⎰例3 求 342e ed e 2e 1x xx xx +-+⎰. 解:原式2222e (e e )d(e e )1d e (e e )(e e )e ex x x x x x x x x x x x x C -----+-===-+---⎰⎰ 例4 求 241d 1x x x ++⎰.解:原式22221111d()1d arctan 11()2x x x x x C x x x x+--===++-+⎰⎰例5 求下列不定积分(1)xx ⎰;(2)3d x x ⎰; 解 令π323sec ,0,d sec tan d 22x t t x t t t ⎛⎫=<<=⋅ ⎪⎝⎭ ,原式23233tan 34tan 4sec tan d d sin 23sec 33sec 2t t t t t t t t =⋅⋅==⎛⎫ ⎪⎝⎭⎰⎰⎰241231sin 2arccos 324322t t C x x ⎛⎫=-+=- ⎪⎝⎭.(3)d x ⎰.解 令2tan ,d sec d x t x t t ==,原式2222sec d cos d dsin arcta (2tan 1)sec 1sin 1sin t t t t tt t t t ====+++⎰⎰⎰arctanx C =+.注 1ο,令s i n x a t = 或 cos x a t =;2ο,令sec x a t = 或 csc x a t =或 ch x a t =;3ο,令tan x a t = 或 cot x a t =或 sh x a t =;4ο三角代换变量还原时利用辅助三角形. 例6 求下列不定积分(1)d x⎰;解 原式()d31d13xx-==⎰⎰1ln|31|3x C=-++.(2)21d446xx x-+⎰.解原式()()2111212d21arctan221xx C x-=-=⋅+ -+⎰.(注对二次三项式2ax bx c++或其平方根,配方后使用公式).例7求下列不定积分(1)d x⎰(2)21lnd(ln)xxx x--⎰.(注1xt=称为倒代换,当分母的次数高于分子的次数时,可考虑用此代换).例8 求e (1e )d x xx +⎰(注 可考虑指数代换e xu =或e sin xt =).例9 求d x x⎰,(令:t =)解令t =,22tan 1tan d 2tan sec d .t x t x t t t =⇒=+⇒=⋅原式(2222arctan 2sec tan d 2tan d 2sec 1tan t t t t t t t t t t t ⋅=⋅⋅=⋅=⋅+⎰⎰⎰()222sec 1d 2d(tan )2tan tt t t t t t t t =⋅-=-=⋅-⎰⎰⎰22tan 2ln |cos |t t t t C =⋅+-+212ln ||arctan x=⋅+-+22ln ||arctanx =⋅--+.题型3 分部积分法关键:正确地选择u 和v ,选择u ,v 的原则:1οv 好求; 2οd v u ⎰要比d u v ⎰简单.例1 求下列不定积分(1)2(22)e d xx x x +-⎰; (2)2(1)ln d xx x +⎰;(3)e cos d xx x x ⎰; (4)sin ln d x x ⎰ 解 原式1sinln dsinln sinln cosln d x x x x x x x x xx=-=-⋅⋅⎰⎰sinln cosln d sinln cox x x x x x x ⎡=-=-⋅⎣⎰()()1sinln cosln sinln d x x x x x xx=-+-⎰()sinln cosln sinln d x x x x x =--⎰所以 原式()sinln cosln 2xx x C =-+.(5)22arctan d (1)xx x x +⎰; 解 原式22arctan arctan 1d d arctan d(-)arctan d 1x x x x x x x x x =-=-+⎰⎰⎰⎰()221111arctan d arctan 12x x x x x x =-+⋅-+⎰()()22221111arctan d arctan 221x x x x x x =-+-+⎰ 22211111arctan d 212x x x x x ⎛⎫=-+-- ⎪+⎝⎭⎰()()22111arctan ln ln 122x x x x =-+-+-()22111arctan ln arctan 212x x x x x =-+-+.(6)ln(x x x +⎰.解原式ln(x x x =+⋅⎰dln(x =⋅+-⋅⎰ln(d x x =⋅+-=⎰.例2 求 22sin d (cos sin )xx x x x -⎰. 解 原式2sin sin sin 1d d (cos sin )cos sin x x x x x x x x x x x x x ⎛⎫=⋅= ⎪--⎝⎭⎰⎰sin 11cos sin cos sin x x x x x x x x ⎛⎫=⋅-⋅ ⎪--⎝⎭⎰2sin 11s d cos sin (cos x x x x x x x x x ⎛⎫=⋅-=⎪-⎝⎭⎰.例3 求ed xx x ⎰.(先换元,后分部积分) 解: 原式222222d d 12ln(1)d 2[ln(1)2d ]1tt x t t ttt t t t t =++=+-+⎰⎰24arctan C =-++.题型4 分项--分部积分法(将积分分成两项(或多项)的积分和,然后利用分部积分抵消不可积部分)例1 求 2ln 1d ln x x x-⎰; 例2求 22e (tan 1)d x x x +⎰. 题型5 有理函数积分例1 求25d 613x x x x +-+⎰; 例2 求221d (1)x x x +⎰.题型6 三角有理函数积分例1 求 d sin 22sin xx x+⎰ 例2 求d 1sin cos xx x --⎰题型7 简单无理函数积分例1求d x⎰; 例2 求d x⎰.例3求d x⎰(0,0)a b x <<>.解:原式2=⎰2arcsin C =+;题型8 分段函数的积分例1 求|1|ed x x -⎰.例2 求2()max(1,)x x ϕ=的一个原函数()F x ,且(0)1F =.题型9 含有抽象函数的不定积分例1设()d arcsin xf x x x C =+⎰,求1d ()x f x ⎰.例2设()f x 为非负连续函数,当0x ≥时,有20()()d e 1xxf x f x t t ⋅-=-⎰,求()d f x x ⎰. 解 方程化为20()()d ()()d =e 1xxxf x f x t t f x f x t t ⋅-=--⎰⎰,()d ()d u x txxf x t t f u u =--====⎰⎰,代入原方程得()20()d e 1xxf x f u u ⋅=-⎰,令()()()()()20()d exxF x f u u F x f x F x F x ''=⇒=⇒⋅=⎰,两边积分()()()2d e 1d xF x F x x x '⋅=-⎰⎰,得()2211e 22xF x x C =-+, 又()()22100,e 212xF C F x x =⇒=-∴=--,()()(F x F x ∴=≥.()()d f x x F x C =+=⎰.例3设(,)f x y 可微,且(,)ff x y x∂=-∂,e cos xf y y-∂=∂,(0,0)0f =,求(,)d f x x x ⎰. 例4设()f x 在[0,)+∞上可导,(0)1f =,且满足01()()()d 01xf x f x f t t x '-+=+⎰,求[()()]e d xf x f x x -'''-⎰.四、不定积分常用的计算技巧总结(考生自看)1.加减常数法例1 求 cos d 1cos xx x-⎰. 解:原式2cos 111()d (1)d 1cos 1cos 2sin (/2)x x x x x x x -=+=-+=----⎰⎰.2.加减函数法例2 求 21d 1exx +⎰. 解:原式2222221e e e 1d (1)d ln(1e )1e 1e 2x x xx x xx x x C +-==-=-++++⎰⎰.例3 求 d (1)nxx x +⎰. 解:原式1111d d d ln ||ln |1(1)1nnn n n nx x x x x x x x x x x x n -+-==-=-+++⎰⎰⎰.3.乘除函数法例4 求 d e ex x x-+⎰.解:原式22e d de arctane 1(e )1(e )x xxx x x C ===+++⎰⎰. 4.分母整体化法例5 求 2100d (1)xx x +⎰. 解:原式2219899100100100(1)(1)d d (2)d u xu u u u u u u uu u=+-----=====-+⎰⎰⎰9798991212979899u u u C ---=-+-+.例6 求 2sin d (sin cos )xx x x +⎰.解:原式π4222πsin()sin csin 114d d π2sin 2sin ()4u x u x u x x u u x =+-=====+⎰⎰⎰2d d(sin )()[l n |csc(4sin sin 4u u x u u =-=+⎰⎰.5.依分母分解法例7 求 3cos 4sin d cos 2sin x xx x x-+⎰. 解:因为cos x 与sin x 的导数互相转化,所以 可设3cos 4sin (cos 2sin )(cos 2s x x A x x B x -=+++(2)cos (2)sin A B x A B x =++- 故得:231,224A B A B A B +=⎧⇒=-=⎨-=-⎩. 原式cos 2sin (cos 2sin )d 2d cos 2sin cos 2sin x x x x x x x x x x '++=-+=-++⎰⎰.6.还原法例8 求 11(1)ed x xx x x++-⎰.解:11121ed (1)ed ed d(ex x x x xxx x x x x x+++=+-=+⎰⎰⎰⎰1111ed eed ex x x x xxxxx x x x C ++++=+-=+⎰⎰.7.待定函数法 例9 (上例)解:因为被积函数是一个函数与1ex x+的乘积,它的一个原函数必定也是某一个函数与1e x x+的乘积.令 111(1)ed ()ex x xxx x F x C x +++-=+⎰,其中()F x 为待定函数, 两边求导数11211(1)e[()()(1)]ex x xxx F x F x xx++'+-=+-,22111(1)()()(1)()x F x F x F x x x'∴+-=+-⇒=, 故 原式1ex xx C +=+.8.相关积分法例10 求 221e sin d x I x x =⎰,221e cos d xI x x =⎰.解:221222211e d e ,21e cos2d e (cos2sin 2),4xx x x I I x C I I x x x x C ⎧+==+⎪⎪⎨⎪-==++⎪⎩⎰⎰ 1I ∴=22111e e (cos2sin 2)224x x x x C⎡⎤-++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =-++; 2I =22111e e (cos2sin 2)224x x x x C⎡⎤+++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =+++.五、练习题31-1.若()f x 的导函数是e cos xx -+,则()f x 的一个原函数为( ).(A) e cos xx -- (B) esin x x --+ (C)ecos xx --- (D) esin xx -+2.若()f x '为连续函数,则(2)d f x x '=⎰( ).(A) (2)f x C + (B) ()f x C + (C)1(2)2f x C + (D) 2(2)f x C + 3.若()f x 是以l 为周期的连续函数,则其原函数( ).(A) 是以l 为周期的连续函数 (B)是周期函数,但周期不是l(C) 不是周期函数 (D)不一定是周期函数4.设cos x x 是()f x 的一个原函数,求()d xf x x '⎰. 5.2222221sin cos d d sin cos sin cos x x x x x x x x +=⋅⋅⎰⎰. 6. 22e 1e (1)d (e )d sin sin xxxx x x x--=-⎰⎰.7.11e ed d 1e 1e xxx xx x +-=++⎰⎰. 8.45422sincos d sin (1sin )dsin x x x x x x =⋅-⎰⎰.9.1515sin cos d (sin cos )d(sin cos )(sin cos )x xx x x x x x x +=---⎰⎰.10.21111d d d(1)111n n n nnn n n x x x x x x x x x x --⋅+-==++++⎰⎰⎰. 11.cos sin d(sin cos )d cos sin cos sin x x x x x x x x x-+=++⎰⎰.12.321()arctan d arctan d()33x x x x x x x ++=⎰⎰. 13.2d x x⎰. 14.d 1d(3)3xx =⎰⎰ 15.22222d 2ln 2d d 2d 1d 12(14)2(12)ln 2(1)ln 2xxxu x x x x u x x x u u u =========+++⎰⎰⎰.16.22sin d x x x ⎰.17.arcsin 2arcsin x =-⎰⎰.18.2arctan tan 3d sec d 22ed sin d (1)xx ttx t tx x e t t x ==+====⎰⎰. 19.241d 1x x x -+⎰. 20.421d (1)x x x +⎰21. 1183848282821d d d (1)(1)4(1)x x x x x x x x x x ⋅==+++⎰⎰⎰42221d 4(1)x tt t t =+===⎰2tan 24d sec d 1tan sec d 4sec t u t u u u u u u ======⎰.22. 112d d x x x x +-+=⎰⎰22112d[(1)3]2x =-++⎰⎰.23. 2d d d x xx x x =+⎰⎰⎰.24.313(1)4d d x x x x +-+=⎰⎰.25.d 4sin 3cos 5x x x ++⎰(可令tan 2xt =);26. 3sin 2cos d 2sin 3cos x x x x x ++⎰(可令tan 2xt =或依分母分解法);27.设(cos )sin f x x '=(0)x π<<,求()f x . 28.设()F x 是()f x 的一个原函数,且当0x ≥时,有2e()()2(1)xx f x F x x ⋅=+,又(0)1F =, ()0F x >, 求()f x .29.()d ()f x x F x C =+⎰,且当0x ≥时,有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .30.求2[ln ()ln ()][()()()]d f x f x f x f x f x x ''''++⎰.31.设ln(1)(ln )x f x x +=,计算()d f x x ⎰.32.2()(1)()d exxf x x f x x x '-+⎰. 33.1e (ln )d x x x x +⎰.3-1参考答案1.A2.C3.D 4.2cos sin xx C x--+. 5.tan cot x x C -+.6.e cot xx C ++. 7.ln(1e )xx C -++.8.579111sin sin sin 579x x x C -++9.455(sin cos )4x x C -+.10.1[(1)ln |1|]n nx x C n+-++.11.ln|cos sin|x x C++.12.32arctan36x x xx C+-+.13.arcsin x Cx--+14.1ln|3|3x C++. 15.11(arctan2)ln22xxC-++.16.321sin2cos2sin26448x x xx x x C --++.17.arcsin C-++.18arctan1e+xxC-.1ln C+. 20.311arctan 3x C x x-+++. 21. 44811arctan 881x x C x-⋅++. 22. 2ln |1|x C +-++.23. 1arcsin 22x x C --+. 244ln |1|x C +-++.25. 1tan 22C x -++. 26.125ln |2sin 3cos |1313x x x C -++.27. 1()arcsin 22x f x x C =++. 28.232e()2(1)xx f x x =+.29.2sin 2()xf x =.30.()()[ln ()()1]f x f x f x f x C ''-+. 31.e ln(1e )ln(1e )xxxx C --++-++.32.()ex f x C x +. 33.e ln xx C +.§2 定 积分【考试要求】 1.理解定积分的概念,掌握定积分的基本性质及定积分中值定理.2.掌握定积分的换元积分法和分部积分法.3.理解积分上限函数,会求它的导数,掌握牛顿 –莱布尼茨公式.4.了解反常(广义)积分的概念,会计算反常(广义)积分.一、基本概念 1.定积分定义设()f x 在[,]a b 上有定义且有界,做下述四步:(1)分割:用1n -个分点分割区间[,]a b011i ia x x x x -=<<<<;(2)作乘积:()i i f x ξ∆,其中1[,]i i i x x ξ-∈,1i i i x x x -∆=-;(3)求和:1()ni i i f x ξ=∆∑;(4)取极限:01lim ()ni i i f x λξ→=∆∑,其中1max ||i i nx λ≤≤=∆,如果上述极限存在,则称()f x 在[,]a b 上可积,并称上述极限为()f x 在[,]a b 上的定积分,记作1lim ()()d nbi i ai f x f x x λξ→=∆=∑⎰.注 ()d baf x x ⎰的值与对区间[,]a b 的分法无关,与i ξ的取法无关,与积分变量用什么字母表示无关;与[,]a b 有关,与()f x 有关, 即()d ()d bbaaf x x f t t =⎰⎰.2.定积分的存在性定理设()f x 在[,]a b 上连续,或在[,]a b 上有界且只有有限个第一类间断点,则()d ba f x x ⎰一定存在.3.几何意义定积分()d baf x x ⎰表示由曲线()y f x =,,x a x b ==及x 轴所围平面图形面积的代数和.4.定积分的运算性质:(1)()d ()d a abbf x x f x x =-⎰⎰. (4)[()()]d ()d ()d bb baaaf xg x x f x x g x x ±=±⎰⎰⎰.(2)()d 0aaf x x =⎰. (5)()d ()d b baakf x x k f x x =⎰⎰.(3)d bax b a =-⎰. (6)()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.5.定理定理1 (定积分的比较定理)若在[,]a b 上恒有()()f x g x ≤,则()d ()d bbaaf x xg x x ≤⎰⎰.推论1 若()f x 与()g x 在[,]a b 上连续,()()f x g x ≤,且至少有一点0[,]x a b ∈,使00()()f x g x <,则()d ()d bbaaf x xg x x<⎰⎰.推论2 若在[,]a b 上恒有()0f x ≥,则()d 0baf x x ≥⎰.推论3 ()d ()d bbaaf x x f x x ≤⎰⎰. 定理2(估值定理)若在[,]a b 上,()m f x M ≤≤,则()()d ()ba mba f x x Mb a -≤≤-⎰.定理3(积分中值定理)(1)若()f x 在[,]a b 上连续,则[,]a b ξ∃∈,使()d ()()baf x x f b a ξ=-⎰.(2)若()f x 在[,]a b 上连续,()g x 在[,]a b 上不变号,且在[,]a b 上可积,则[,]a b ξ∃∈,使()()d ()baf xg x x f ξ=⎰⎰.定理4(变上限积分函数及其导数) 设()f x 在[,]a b 上连续,()()d xa F x f t t =⎰称为变上限积分函数,则导数为d ()()d ()()d xt x aF x f t t f t f x x ='===⎰.推论1 设()()()d x aF x f t t ϕ=⎰,则()d ()()d [()]()d x aF x f t t f x x x ϕϕϕ''==⋅⎰.推论2 设21()()()()d x x F x f t t ϕϕ=⎰,则21()2211()d ()()d [()]()[()](d x x F x f t t f x x f x x x ϕϕϕϕϕϕ'''==⋅-⋅⎰.推论3 设()()()()d x aF x f t g x t ϕ=⎰,则()()()()d x a F x g x f t t ϕ'⎡⎤'=⎢⎥⎣⎦⎰()()()d ()[()](x ag x f t t g x f x ϕϕϕ''=+⎰.定理5(变上限积分函数与不定积分的关系) 设()f x 在[,]a b 上连续,则变上限积分函数()()d xaF x f t t =⎰是()f x 的一个原函数, 即()d ()d xaf x x f t t C =+⎰⎰.注:不定积分()d f x x ⎰只能作为运算符号,不能表示一个具体的原函数,特别当()f x 为一个抽象的函数时,无法用()d f x x ⎰来讨论它的某一原函数的性质;而()d xa f t t ⎰为某一确定的原函数,可以用它来讨论此原函数的性质.定理6(牛顿-莱布尼兹公式)设()f x 在[,]a b 上连续,()F x 是()f x 的一个原函数,则()d ()()()bb aaf x x F x F b F a ==-⎰. 6.定积分的计算方法(1) 换元法:设()f x 在[,]a b 上连续,()x t ϕ=在[,]αβ上有连续的导数,且当t 从α变到β时,()t ϕ从()a ϕα=单调地变到()b ϕβ=,则()d [baf x x f βαϕ=⎰⎰要点:换元要换限,变量不还原,不换元则不换限.(2)分部积分法:设()u x ,()v x 在[,]a b 上有连续的导数,则d d bbb aaauv x uv u v x ''=-⎰⎰或 d d b b b aaau v uv v u =-⎰⎰.注:求不定积分时适用的积分法,相应地也适用定积分的求法.7.广义积分的概念与计算 (1)无穷限的广义积分ο1 设()f x 在[,)a +∞上连续,则()d lim()d baab f x x f x x +∞→+∞=⎰⎰;ο2 设()f x 在(,]b -∞上连续,则()d lim()d b baa f x x f x x -∞→-∞=⎰⎰;ο3 设()f x 在(,)-∞+∞上连续,则()d lim()d lim ()d bbaaa b f x x f x x f x x +∞-∞→-∞→+∞=+⎰⎰⎰.仅当等式右边的两个极限都存在时,左边的无穷限广义积分收敛,否则发散.注意: ο3式中等式右边的两个极限若有一个不存在,则()d f x x +∞-∞⎰发散.(2)无界函数的广义积分(瑕积分) ο1 设()f x 在(,]a b 上连续,lim ()x af x +→=∞, 则()d lim ()d bbaa f x x f x x εε++→=⎰⎰,x a =称为瑕点.ο2 设()f x 在[,)a b 上连续,lim ()x bf x -→=∞, 则0()d lim ()d bb aaf x x f x x εε+-→=⎰⎰,x b =称为瑕点.ο3 设()f x 在[,]a b 上除点c 外均连续,lim ()x cf x →=∞,则()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰12120lim ()d lim ()d c bac f x x f x x εεεε++-+→→=+⎰⎰.x c =称为瑕点.仅当等式右边的极限存在时,瑕积分收敛,否则发散.注意:ο3式中等式右边的两个极限若有一个不存在,则瑕积分()d ba f x x ⎰发散.二、重要结论(1)利用定积分定义求n 项和的极限 设()f x 连续,则ο1 1()d lim ()nban k b a b af x x f a k n n →∞=--=+⋅∑⎰.ο2 111()d lim ()nn k k f x x f n n →∞==⋅∑⎰.(2)奇、偶函数的积分ο1 设()f x 连续,若()f x 为偶函数,则()d xf t t ⎰为奇函数;若()f x 为奇函数,则对任意a ,()d xaf t t ⎰为偶函数.ο2 设()f x 在[,]a a -上连续,则()d [()()]d aaaf x x f x f a x-=+-⎰⎰(3)周期函数的积分设()f x 在(,)-∞+∞上连续,且以T 为周期,则ο1 202()d ()d ()d T a TTT af x x f x x f x x +-==⎰⎰⎰;ο2 0()d ()d nTT a f x x n f x x =⎰⎰;ο3 0()d ()d a nT Taf x x n f x x +=⎰⎰.即:周期函数在每个周期长度区间上的积分均相等,与起点无关.(4)常用结论ο1 ππ22(sin )d (cos )d f x x f x x =⎰⎰, 令π2x t =-;ο2 ππ00π(sin )d (sin )d 2xf x x f x x =⎰⎰, 令πx t =-;ο3 ππ2(sin )d 2(sin )d f x x f x x =⎰⎰,。

第三章一元函数积分学



原式
a sect tan t a tan t
dt
sect d t
ln sec t tan t C1
ln
x a
x2 a2 a
C1
x2 a2
t
(C C1 ln a)
当x a 时, 令 x u , 则 u a , 于是
d u ln u u2 a2
u 2 a2 C1
3.2.1 换元积分法
一、第一类换元积分法(凑微分法)
有一些不定积分, 将积分变量进行一 定的变换后, 积分表达式由于引进中间变 量而变为新的形式, 而新的积分表达式和 新的积分变量可直接由基本积分公式求 出不定积分来.
例如
想到基本积分公式
若令u=4x, 把4x看成一个整体(新的积分变 量), 这个积分可利用基本积分公式算出来
除法呢?
不 对, 例 如 f(x) g(x) x
3.2 不定积分的计算
利用基本积分公式及不定积分的性质 直接计算不定积分, 有时很困难, 因此, 需要引进一些方法和技巧。下面介绍不 定积分的两大积分方法:
换元积分法与分部积分法
3.2 不定积分的计算 3.2.1 换元积分法 3.2.2 分部积分法 3.2.3* 有理函数积分简介 3.2.4* 积分表的使用
定义2: 若 F(x)是 f(x)的一个原函数,则 f(x)的所有原函数 F(x)+ C 称为f(x)的 不定积分(indefinite integral),记为
∫ f(x)dx = F(x) + C
其中∫ 称为积分号, x 称为积分变量 f(x)称为被积函数, C 称为积分常数 f(x)dx 称为被积表达式
2
2
x2 1 x2
dx
1 x2 arctan x 1

新编高等数学第二版教材答案

新编高等数学第二版教材答案第一章:函数和极限1. 函数的概念和性质2. 极限的概念和性质3. 极限的运算法则4. 无穷大与无穷小量5. 函数的连续性6. 一元函数的导数和微分第二章:一元函数的微分学1. 导数的定义和性质2. 导数的几何意义和物理意义3. 微分的概念和性质4. 微分中值定理5. 函数的高阶导数6. 复合函数的导数第三章:一元函数的积分学1. 不定积分和定积分的概念2. 基本积分公式3. 定积分性质和计算方法4. 牛顿-莱布尼茨公式5. 定积分的几何意义和物理意义6. 定积分和不定积分的关系第四章:一元函数的应用1. 曲线的切线和法线2. 函数的单调性和凹凸性3. 函数的极值和最值4. 弧长和曲线的曲率5. 定积分的应用:面积和体积计算6. 微分方程的应用第五章:数列和级数1. 数列的概念和性质2. 数列的极限和收敛性3. 数列极限的运算法则4. 单调数列的性质5. 级数的概念和性质6. 常见级数的收敛性判别第六章:无穷级数1. 可数无穷集合和不可数无穷集合2. 数列极限存在准则3. 函数项级数的收敛性4. 幂级数的收敛性5. 傅里叶级数的收敛性6. 项级数的运算性质和收敛域第七章:多元函数的微分学1. 多元函数的极限和连续性2. 偏导数和全微分3. 多元复合函数的导数4. 隐函数的导数5. 方向导数和梯度6. 条件极值和拉格朗日乘子法第八章:多元函数的积分学1. 二重积分和三重积分的概念2. 二重积分和三重积分的性质3. 二重积分和三重积分的计算方法4. 广义积分的概念和性质5. 广义积分的收敛性判别6. 曲线积分和曲面积分第九章:多元函数的应用1. 向量场及其运算2. 向量场的散度和旋度3. 曲线、曲面的方程4. 曲线积分和曲面积分的应用5. 散度定理和高斯公式6. 斯托克斯公式及其应用第十章:常微分方程1. 方程的解和初值问题2. 一阶线性微分方程3. 二阶线性常系数齐次微分方程4. 二阶线性非齐次微分方程5. 微分方程的应用6. 线性微分方程组该教材答案包含了新编高等数学第二版教材中各个章节的题目答案,以方便学生们辅助学习和复习。

《高等数学(上册)》读书笔记思维导图PPT模板


0 1
第一节 导数的概 念及基本 求导公式
0 2
第二节 导数的计 算法则
0 3
第三节 微分的概 念与应用
0 4
第四节 微分中值 定理及其 应用
0 5
*第五节 泰勒中值 定理
0 6
第六节 函数的性 态与图形
第七节 微分学的 实际应用
本章小结
章节测试二 拓展阅读
第三章 一元函数积分学及其 应用
0 1
《高等数学(上册)》
PPT书籍导读
读书笔记模板




目录
01 第一章 函数、极限与 连续
03
第三章 一元函数积分 学及其应用
02
第二章 一元函数微分 学及其应用
04 第四章 微分方程来自本书是按照教育部大学数学教学指导委员会的基本要求,充分吸取当前高等数学教材的精华,并 结合数年 来的教学实践经验,针对当前学生的知识结构和习惯特点而编写的。全书分为上、下两册。本书 为上册,是一元 函数微积分部分,共四章,主要内容包括函数极限与连续,一元函数微分学及其应用,一 元函数积分学及其应用, 微分方程。每节前面配有课前导读,核心知识点配备微课,每章后面附有章节测 试和拓展阅读。 本书注重知识 点的引入方法,使之符合认知规律,更易于读者接受。同时,本书精炼了主要内容,适当 降低了学习难度,对部 分内容调整了顺序,使结构更加简洁,思路更加清晰。本书还注重知识的连贯性,例 题的多样性和习题的丰富性、 层次性,使读者在学习数学知识点的同时拓宽了视野,欣赏数学之美。 本书可作为高等院校理工科类各专业的教 材,也可作为社会从业人员的自学参考用书。
谢谢观看
读书笔记
最 新


第一章 函数、极限与连续

一元函数积分学的应用

一元函数积分学的应用教案:一元函数积分学的应用引言:在高中数学中,一元函数积分学是一个重要的概念,它是微积分的核心内容之一。

积分学是研究函数积分的方法和应用的学科。

通过学习一元函数积分学,我们可以研究函数的变化趋势、面积计算、物理问题的建模和解决等一系列问题。

本教案将针对一元函数积分学的应用进行深入的探讨,帮助学生更好地理解该知识点的实际应用。

一、定积分与反常积分1.1 定积分的概念和性质- 定积分的定义与几何意义- 定积分的性质:线性性质、区间可加性、保号性1.2 反常积分的概念和性质- 反常积分存在的条件- 反常积分的判定方法二、定积分的应用2.1 函数的面积计算- 定积分与曲线下面积的关系- 利用定积分计算曲线下的面积2.2 平均值和中值定理- 平均值定理的说明和应用- 中值定理的说明和应用2.3 函数的积分学基本定理与变限积分 - 函数的积分学基本定理的说明和应用 - 变限积分的定义和计算2.4 应用题- 利用定积分求解几何问题- 利用定积分求解物理应用问题三、反常积分的应用3.1 收敛性和计算方法- 收敛性的定义和判定- 常见反常积分的计算方法3.2 物理问题的建模与解决- 利用反常积分解决物理问题- 建立数学模型求解问题结语:通过本教案的学习,学生将对一元函数积分学的应用有更深入的理解,能够掌握定积分和反常积分的基本概念、性质和应用方法,并能够将其应用于面积计算、物理问题的建模和解决等实际场景中。

同时,本教案也可激发学生对数学的兴趣和求知欲望,培养他们的数学思维和问题解决能力。

希望学生们通过学习,能够掌握一元函数积分学的应用,为今后的学习打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 一元函数的积分学及其应用
第一节 一元函数的积分 第二节 积分的应用
第一节 一元函数的积分
一、不定积分 二、定积分 三、广义积分
一、不定积分
1. 不定积分的概念和性质
1)原函数与不定积分的概念
定义1 设函数f 与F 在区间I上有定义,若
F '(x ) f(x )或 d F (x ) f(x )d x x I,
2)不定积分的几何意义
如果F(x)是f(x)的一个原函数,则F(x)所对应 的曲线称为函数f(x)的一条积分曲线,将这条积分曲线 沿轴方向上下任意平行移动,就得到F(x)+C,即为积分 曲线族.在每一条积分曲线上作横坐标相同的点处的切线, 这些切线都是相互平行的.
f(x)的不定积分的几何意义就表示相互平行的积分 曲线族.这些积分曲线在横坐标相同的点x处的切线相互 平行
导,则有公式
f [(x)](x)dx f (u)du F[(x)] C
上述公式称为不定积分的第一类换元积分公式.
说明 使用此公式的关键在于将
g(x)dx 化为 f[(x) ](x)d.x
观察重点不同,所得结论不同.
如果要求的不定积分是 g(x)dx ,先要把被积表达
式 g(x)dx “ 凑 成 ” 某 一 已 知 函 数 的 微 分 形 式 f [(x)]d(x) ,以便引进新变量 u (x) 使用基本积
被 积 函 数
被 积 表 达

积 分 变 量
任 意 常 数
定理1(原函数存在定理) 如果函数f(x) 在某个区间上连续,那么f(x)在该区间上一定 存在原函数.
简单理解:连续函数一定有原函数
定理2 如果函数F(x)是函数f(x)的一个 原函数,则F(x)+C(C为任意数)是f(x)的全 部原函数.
1 x
f
(ln
(1) tan xdx ;(2) cot xdx ;(3) csc xdx ;(4) sec xdx .

(1)
tan
xdx
sin cos
x x
dx
1 cos
x
d
cos
x
1 u
du
ln
|
u
|
C
ln
|
cos
x
|
C


tan x d xln|c o xs|C .
(2)类似地可得 cot xdx ln |sin x|C .
2
2

常见的凑微分形式有:
f
(ax
b)dx
1 a
f
(ax b)d (ax
b)
x n f (x n1 )dx 1 n 1
f ( x n1 )dx n1 ;
f (sin x) cos xdx f (sin x)d sin x
e x f (e x )dx f (e x )dex ;
5) e x dx e x C ;
6) sin xdx cos x C ;
7) cos xdx sin x C ;
8)
sec2 xdx
1 c os2
x
dx
tan
x
C

9)
csc2
xdx
1 sin 2
dx x
cot
x
C

10)
1 dx arcsin x C arccos x C

求不定积分
1 x
x2 x
dx


1 x2
dx
(1
x2
)x
3 2
dx
3
x 2 dx
1
x 2 dx
xx
1
1 3
x 2
3
1 1
1 1
x2
C

1
1
2
2
1
2x 2
2
3
x2
C
3
3. 不定积分的换元积分法
1)第一类换元积分法(凑微分法) 定理 设函数 f (u) 存在原函数 F(u) ,u (x) 可
(1)
dx
a 2 x2 (a 0) ;
dx
(2) x2 a2 .

dx
11
1
x
x
(1)
dx
d ( ) arcsin C
a2 x2
1 ( x)2 a
1 ( x)2 a
a
a
a
(2)
dx x2 a2
1 a
1
1 x a
2
d
(
x a
)
1 arctan a
x a
C

例 2 求下列积分
分公式求得不定积分,所以这种方法又称“凑微分法”. 凑微分法的解题过程,用式子可以表示为:
g(x)dx通过变形 f [(x)](x)dx f [(x)]d(x)(凑微分)
令u (x) f (u)du (换元)
F(u) C
(积分)
(x) u F[(x)] C . (还原)
例 1 求下列积分
则称F为f 在区间I上的一个原函数
问题: (1)什么条件下,一个函数的原函数存在? ( 2 )如果f (x)有原函数,一共有多少个? ( 3 )任意两个原函数之间有什么关系?
① lnx1 (x0)
x ln x是 1在 区 间 (0,) 内 的 原 函 数 .
x
② f(x)d xF (x)C
积 分 号
3)不定积分的性质
性质1 设函数 f ( x)及 g( x)的原函数存在,则
[ f( x ) g ( x ) ] d x f( x ) d x g ( x ) d x
性质2 设函数 f ( x) 的原函数存在, k为非零常数,则
k(fx)dx kf(x)dx
性质3 [ f ( x ) d x ] f ( x ) 或 d f ( x ) d x f ( x ) d x .
性质4 F(x)dx F(x) C 或 dF(x) F(x) C .
2. 不定积分直接积分法
不定积分的基本公式
1) kdx kx C ( k 是常数);
2)
x dx x 1 C
1
( 1是常数);
3)
1dx x
ln
|
x
|
C

4)
a x dx
ax ln a
C
(a
0,
a
1) ;
1 x2

1
11) 1 x 2 dx arctanx C arc cot x C ;
12) sec x tan xdx sec x C ;
13) csc x cot xdx csc x C .
直接积分法 利用不定积分的运算性质和积分基本公式,
直接求出不定积分的方法。关键在于对被积函数 进行恒等变形
(3)
cscxdx
1 sin
x
dx
sin 2 x 2
2 s in
cos2 x 2 dx
xx cos
22
tan
x 2
cot
x d x 2 2
ln
cos
x 2Leabharlann ln sinx 2
C
ln
t
a
nx 2
C

(4)
sec xdx
1 cos
x
dx
d
2
x
sin
2
x
c
sc(
2
x)d(
2
x)
ln csc( x) cot( x) C ln sec x tan x C
相关文档
最新文档