用回溯法解决0-1背包问题

合集下载

动态规划与回溯法解决0-1背包问题

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。

原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。

但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。

回溯法和分支限界法解决背包题

回溯法和分支限界法解决背包题

0-1背包问题计科1班朱润华 32方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。

问题的解空间至少包含问题的一个(最优)解。

对于0-1背包问题,解空间由长度为n的0-1向量组成。

该解空间包含对变量的所有0-1赋值。

例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。

二、回溯法步骤思想描述:0-1背包问题是子集选取问题。

0-1 背包问题的解空间可以用子集树表示。

在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。

当右子树中有可能含有最优解时,才进入右子树搜索。

否则,将右子树剪去。

设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。

当cp+r<=bestp时,可剪去右子树。

计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。

例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。

这4个物品的单位重量价值分别为[3,2,3,5,4]。

以物品单位重量价值的递减序装入物品。

先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装的物品2。

由此得一个解为[1,,1,1],其相应价值为22。

尽管这不是一个可行解,但可以证明其价值是最优值的上界。

回溯法解决0-1背包问题

回溯法解决0-1背包问题

回溯法解决0-1背包问题问题描述: 有n件物品和⼀个容量为c的背包。

第i件物品的价值是v[i],重量是w[i]。

求解将哪些物品装⼊背包可使价值总和最⼤。

所谓01背包,表⽰每⼀个物品只有⼀个,要么装⼊,要么不装⼊。

回溯法: 01背包属于找最优解问题,⽤回溯法需要构造解的⼦集树。

在搜索状态空间树时,只要左⼦节点是可⼀个可⾏结点,搜索就进⼊其左⼦树。

对于右⼦树时,先计算上界函数,以判断是否将其减去,剪枝啦啦!上界函数bound():当前价值cw+剩余容量可容纳的最⼤价值<=当前最优价值bestp。

为了更好地计算和运⽤上界函数剪枝,选择先将物品按照其单位重量价值从⼤到⼩排序,此后就按照顺序考虑各个物品。

#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装⼊//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j])//冒泡排序perp[],order[],sortv[],sortw[]{temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i];order[i]=order[j];order[j]=temporder;temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右⼦数backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输⼊物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输⼊物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装⼊的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}时间复杂度分析: 上界函数bound()需要O(n)时间,在最坏的情况下有O(2^n)个右⼦结点需要计算上界,回溯算法backtrack需要的计算时间为O(n2^n)。

0-1背包问题——回溯法求解【Python】

0-1背包问题——回溯法求解【Python】

0-1背包问题——回溯法求解【Python】回溯法求解0-1背包问题:问题:背包⼤⼩ w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放⼊背包中物品的总价值最⼤。

回溯法核⼼:能进则进,进不了则换,换不了则退。

(按照条件深度优先搜索,搜到某⼀步时,发现不是最优或者达不到⽬标,则退⼀步重新选择)注:理论上,回溯法是在⼀棵树上进⾏全局搜索,但是并⾮每种情况都需要全局考虑,毕竟那样效率太低,且通过约束+限界可以减少好多不必要的搜索。

解决本问题思路:使⽤0/1序列表⽰物品的放⼊情况。

将搜索看做⼀棵⼆叉树,⼆叉树的第 i 层代表第 i 个物品,若剩余空间允许物品 i 放⼊背包,扩展左⼦树。

若不可放⼊背包,判断限界条件,若后续继续扩展有可能取得最优价值,则扩展右⼦树(即此 i 物品不放⼊,但是考虑后续的物品)。

在层数达到物品的个数时,停⽌继续扩展,开始回溯。

注:如何回溯呢?怎样得到的,怎样恢复。

放⼊背包中的重量取出,加在bagV上的价值减去。

约束条件:放⼊背包中物品的总质量⼩于等于背包容量限界条件:当前放⼊背包中物品的总价值(i及之前) + i 之后的物品总价值 < 已知的最优值这种情况下就没有必要再进⾏搜索数据结构:⽤⼀个变量记录当前放⼊背包的总价值 bagV(已扩展),⼀个变量记录后续物品的总价值 remainV(未扩展),当前已得到的⼀种最优值 bestV(全局情况),⼀个⽤0/1表⽰的数组bestArr[]记录哪些物品放⼊了背包。

核⼼结构:递归思路进⾏解决。

层层递归,递归到尽头,保留最优值,恢复递归中,层层回溯,即将原来加上去的重量与价值恢复。

# -*- coding:utf-8 -*-def Backtrack(t):global bestV, bagW, bagV,arr, bestArr, cntVif t > n: #某次深度优先搜索完成if bestV < bagV:for i in range(1, n+1):bestArr[i] = arr[i]bestV = bagVelse: #深度优先搜索未完成if bagW + listWV[t][0] <= w: #第t个物品可以放⼊到背包中,扩展左⼦树arr[t] = TruebagW += listWV[t][0]bagV += listWV[t][1]Backtrack(t+1)bagW -= listWV[t][0]bagV -= listWV[t][1]if cntV[t] + bagV > bestV: #有搜索下去的必要arr[t] = FalseBacktrack(t+1)if__name__ == '__main__':w = int(input()) #背包⼤⼩n = int(input()) #物品个数listWV = [[0,0]]listTemp = []sumW = 0sumV = 0for i in range(n):listTemp = list(map(int, input().split())) #借助临时list每次新增物品对应的list加⼊到listWV中sumW += listTemp[0]sumV += listTemp[1]listWV.append(listTemp) #依次输⼊每个物品的重量与价值bestV = 0bagW = 0bagV = 0remainV = sumVarr = [False for i in range(n+1)]bestArr = [False for i in range(n+1)]cntV = [0 for i in range(n+1)] #求得剩余物品的总价值,cnt[i]表⽰i+1~n的总价值 cntV[0] = sumVfor i in range(1, n+1):cntV[i] = cntV[i-1] - listWV[i][1]if sumW <= w:print(sumV)else:Backtrack(1)print(bestV)print(bestArr)print(cntV)检测:1052 65 34 52 43 617[False, True, False, True, False, True][24, 18, 15, 10, 6, 0]。

Python基于回溯法子集树模板解决0-1背包问题实例

Python基于回溯法子集树模板解决0-1背包问题实例

Python基于回溯法⼦集树模板解决0-1背包问题实例本⽂实例讲述了Python基于回溯法⼦集树模板解决0-1背包问题。

分享给⼤家供⼤家参考,具体如下:问题给定N个物品和⼀个背包。

物品i的重量是Wi,其价值位Vi ,背包的容量为C。

问应该如何选择装⼊背包的物品,使得放⼊背包的物品的总价值为最⼤?分析显然,放⼊背包的物品,是N个物品的所有⼦集的其中之⼀。

N个物品中每⼀个物品,都有选择、不选择两种状态。

因此,只需要对每⼀个物品的这两种状态进⾏遍历。

解是⼀个长度固定的N元0,1数组。

套⽤回溯法⼦集树模板,做起来不要太爽代码'''0-1背包问题'''n = 3 # 物品数量c = 30 # 包的载重量w = [20, 15, 15] # 物品重量v = [45, 25, 25] # 物品价值maxw = 0 # 合条件的能装载的最⼤重量maxv = 0 # 合条件的能装载的最⼤价值bag = [0,0,0] # ⼀个解(n元0-1数组)长度固定为nbags = [] # ⼀组解bestbag = None # 最佳解# 冲突检测def conflict(k):global bag, w, c# bag内的前k个物品已超重,则冲突if sum([y[0] for y in filter(lambda x:x[1]==1, zip(w[:k+1], bag[:k+1]))]) > c:return Truereturn False# 套⽤⼦集树模板def backpack(k): # 到达第k个物品global bag, maxv, maxw, bestbagif k==n: # 超出最后⼀个物品,判断结果是否最优cv = get_a_pack_value(bag)cw = get_a_pack_weight(bag)if cv > maxv : # 价值⼤的优先maxv = cvbestbag = bag[:]if cv == maxv and cw < maxw: # 价值相同,重量轻的优先maxw = cwbestbag = bag[:]else:for i in [1,0]: # 遍历两种状态 [选取1, 不选取0]bag[k] = i # 因为解的长度是固定的if not conflict(k): # 剪枝backpack(k+1)# 根据⼀个解bag,计算重量def get_a_pack_weight(bag):global wreturn sum([y[0] for y in filter(lambda x:x[1]==1, zip(w, bag))])# 根据⼀个解bag,计算价值def get_a_pack_value(bag):global vreturn sum([y[0] for y in filter(lambda x:x[1]==1, zip(v, bag))])# 测试backpack(0)print(bestbag, get_a_pack_value(bestbag))效果图更多关于Python相关内容感兴趣的读者可查看本站专题:《》、《》、《》及《》希望本⽂所述对⼤家Python程序设计有所帮助。

回溯法解决01背包问题

回溯法解决01背包问题

回溯法是一个既带有系统性又带有跳跃性的搜索算法。

它在包含问题的所有解的解空间树中按照深度优先的策略,从根节点出发搜索解空间树。

算法搜索至解空间树的任一节点时,总是先判断该节点是否肯定不包含问题的解。

如果肯定不包含,则跳过对以该节点为根的子树的系统搜索,逐层向其原先节点回溯。

否则,进入该子树,继续按深度优先的策略进行搜索。

运用回溯法解题通常包含以下三个步骤:∙针对所给问题,定义问题的解空间;∙确定易于搜索的解空间结构;∙以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;在0/1背包问题中,容量为M的背包装载。

从n个物品中选取装入背包的物品,物品i的重量为Wi,价值为Pi。

最佳装载指装入的物品价值最高,即∑PiXi(i=1..n)取最大值。

约束条件为∑WiXi ≤M且Xi∈[0,1](1≤i≤n)。

在这个表达式中,需求出Xi的值。

Xi=1表示物品i装入背包,Xi=0表示物品i不装入背包。

∙即判断可行解的约束条件是:∑WiXi≤M(i=0..n),Wi>0,Xi∈[0,1](1≤i≤n)∙目标最大值:max∑PiXi(i=0..n-1),Pi>0,Xi=0或1(0≤i<n)0/1背包问题是一个自己选取问题,适合于用子集树表示0/1背包问题的解空间。

在搜索解空间树时,只要左儿子节点是一个可行节点,搜索就进入左子树,在右子树中有可能包含最优解才进入右子树搜索,否则将右子树剪去。

程序分析:将物品个数,每个物品体积/价值输入,计算总物品体积S,输入背包体积V,如果V<0或者V>S则前置条件错误,即背包体积输入错误,否则顺序将物品放入背包。

假设放入前i件物品,背包没有装满,继续选取第i+1件物品,若该物品“太大”不能装入,则弃之继而选取下一件直到背包装满为止;如果剩余物品中找不到合适物品以填满背包,则说明“刚刚”装入的第i件物品不合适,应将i拿出,继续从i+1及以后的物品中选取,如此重复,直到找到满足条件的解。

回溯法和分支限界法解决0-1背包题要点教学内容

回溯法和分支限界法解决0-1背包题要点教学内容

回溯法和分支限界法解决0-1背包题要点0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。

问题的解空间至少包含问题的一个(最优)解。

对于0-1背包问题,解空间由长度为n的0-1向量组成。

该解空间包含对变量的所有0-1赋值。

例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。

二、回溯法步骤思想描述:0-1背包问题是子集选取问题。

0-1 背包问题的解空间可以用子集树表示。

在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。

当右子树中有可能含有最优解时,才进入右子树搜索。

否则,将右子树剪去。

设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。

当cp+r<=bestp时,可剪去右子树。

计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。

例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。

这4个物品的单位重量价值分别为[3,2,3,5,4]。

以物品单位重量价值的递减序装入物品。

先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。

回溯法(二)——0-1背包问题

回溯法(二)——0-1背包问题

回溯法(⼆)——0-1背包问题 问题1、给定背包容量w,物品数量n,以及每个物品的重量wi,求背包最多能装多少多重的物品。

问题2、给定背包容量w,物品数量n,以及每个物品的重量wi、价值vi,求背包最多能装多少价值的物品。

这是⼀个基本的0-1背包问题,每个物品有两种状态(0:不装、1:装),总共有n步,所以可以⽤回溯法来解决,复杂度是O(2^n)。

C++版代码如下#include <iostream>#include <math.h>#include <cstring>using namespace std;#define MAXSIZE 256int maxWeight = -9999;// 回溯法解决0-1背包问题(其实可以暴⼒(n层for循环),回溯法也是n层for循环,即复杂度是O(2^n))void basePackage(int stuff[], int curState, int state, int curWeight, int weight){// 如果装满了(其实应该是接近装满了)或者已经“⾛完”所有物品if(curState == state || curWeight == weight){if(curWeight > maxWeight)maxWeight = curWeight;return ;}// 不装basePackage(stuff, curState + 1, state, curWeight + 0, weight);// 装if(curWeight + stuff[curState] <= weight)basePackage(stuff, curState + 1, state, curWeight + stuff[curState], weight);}// 回溯法解决0-1背包问题(其实可以暴⼒(n层for循环),回溯法也是n层for循环,即复杂度是O(2^n))// 背包升级问题回溯法解决(加⼊背包的价值)void secPackage(int weight[], int value[], int curV, int curW, int weightLimit, int curS, int n){// 如果背包总重量等于背包限制if(curW == weightLimit || curS == n){if(curV > maxWeight)maxWeight = curV;return ;}// 不装secPackage(weight, value, curV, curW, weightLimit, curS + 1, n);if(curW + weight[curS] <= weightLimit)// 装secPackage(weight, value, curV + value[curS], curW + weight[curS], weightLimit, curS + 1, n);}int main(int argc, char* argv[]){// 总重量,物品个数int w, n;cin>>w>>n;int a[MAXSIZE + 1];for(int i = 0; i < n; i++)cin>>a[i];basePackage(a, 0, n, 0, w);cout<<maxWeight<<endl;return 0;}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
if(bestPrice>bp)
{
bp=bestPrice;
for(int j=1;j<=n;j++)
bA[j]=bestAnswer[j];
}
return;
}
if(currentWeight+weight[i]<=c)
{ //将物品i放入背包,搜索左子树
bestAnswer[i] = 1;
currentWeight += weight[i];
printf("请输入物品的数量:\n");
scanf("%d",&n);
printf("请输入背包的容量(能承受的重量):\n");
scanf("%d",&c);
printf("请依次输入%d个物品的重量:\n",n);
for(i=1;i<=n;i++)
scanf("%d",&weight[i]);
bestPrice += price[i];
Backtracking(i+1); //完成上面的递归,返回到上一结点,物品i不放入背包,准备递归右子树
currentWeight -= weight[i];
bestPrice -= price[i];
}
bestAnswer[i] = 0;
Backtracking(i+1);
int bestPrice=0; //当前最优值
int bestAnswer[100]; //当前最优解
int bp=0;
int bA[100]; //当前最优解
int times=0;
void Print();
void Backtracking(int i)
{ቤተ መጻሕፍቲ ባይዱ
times+=1;
if(i>n)
{
Print();
printf("\n最优解路径为{");
for(i=1;i<n;++i)
printf("%d,",bA[i]);
printf("%d}\t总价值为%d\n",bA[i],bp);
printf("\n\n总共搜索结点数%d\n",times);
}
#include<stdio.h>
int c; //背包容量
int n; //物品数
int weight[100]; //存放n个物品重量的数组
int price[100]; //存放n个物品价值的数组
int currentWeight=0; //当前重量
int currentPrice=0; //当前价值
printf("请依次输入%d个物品的价值:\n",n);
for(i=1;i<=n;i++)
scanf("%d",&price[i]);
printf("各符合条件的路径为:\n");
Backtracking(1);
printf("*******************************************************\n");
}
void Print()
{
int i;
printf("\n路径为{");
for(i=1;i<n;++i)
printf("%d,",bestAnswer[i]);
printf("%d}\t价值为%d\n",bestAnswer[i],bestPrice);
}
void main()
{
int i;
/*输入部分*/
相关文档
最新文档