土石坝毕业设计介绍

合集下载

土石坝毕业设计资料

土石坝毕业设计资料

土石坝毕业设计资料题目:土石坝设计及施工技术的综合分析摘要:该毕业设计主要以土石坝的设计和施工技术为研究对象,通过对土石坝的相关理论知识进行深入学习和总结,结合实际案例,分析土石坝的设计原理和施工过程中的技术要点。

通过对土石坝设计与施工工艺的综合分析,进一步提高土石坝工程的质量和安全性。

本文主要分为引言、土石坝的设计原理、土石坝施工技术以及结论四个部分。

1.引言土石坝作为一种常见的水利工程建筑物,起到了水库蓄水和防洪的重要作用,因此对其设计和施工技术进行研究具有重要意义。

本章主要介绍研究背景和研究目的,明确本论文的主要内容和研究方法。

2.土石坝的设计原理介绍土石坝的定义、分类和设计原则。

分析土石坝的重力坝和堆石坝两种主要设计方式,并对其设计原理进行详细解释。

重点介绍土石坝的坝体结构设计、防渗措施及排水设计等方面的原理和方法。

3.土石坝施工技术从土石坝施工的准备阶段、基础施工、坝体施工和防渗施工四个方面,详细介绍了土石坝施工过程中的关键技术要点。

包括土石料的选择、卸料和压实技术、重力坝的坝体施工流程、堆石坝的填筑和压实方法,以及防渗层的施工工艺等。

4.结论通过对土石坝设计与施工技术的综合分析,总结了土石坝设计和施工技术的关键要点。

强调了设计中应考虑的因素和施工过程中的注意事项,以及土石坝工程质量和安全性的重要性。

最后,提出了进一步研究和改进土石坝设计与施工技术的建议。

关键词:土石坝、设计原理、施工技术、质量、安全性注:以上摘要只为示例,实际内容可以根据具体情况进行调整和增加。

具体内容请查看附件。

土石坝初步设计---毕业设计

土石坝初步设计---毕业设计

⼟⽯坝初步设计---毕业设计前⾔毕业设计是我们在校期间最后的、总结性的重要教学环节,其⽬的是:1.巩固、加深、扩⼤我们所学的基本理论和专业知识,并使之系统化;2.培养我们运⽤所学的理论知识解决实际技术问题功能⼒,初步掌握设计原则、⽅法和步骤;3.培养我们具有正确的设计思想,树⽴严肃认真、实事求是和刻苦钻研的⼯作作风;4.锻炼我们独⽴思考、独⽴⼯作的能⼒,并加强计算、绘图、编写说明书及使⽤规范、⼿册等技能训练。

本次毕业设计为⼟⽯坝设计,设计满⾜枢纽布置安全要求。

本设计结合国内外⼀些⼟⽯坝实例作出⽐较合理的选择,设计以减⼩⼯程量,布局经济合理为原则。

本设计共分六章。

第⼀章为本⼯程的⼀些概况,包括枢纽任务、流域概况、⽓候特性、⽔⽂特性、⼯程地质、建筑材料、经济资料等的介绍;第⼆章为洪⽔调节计算,主要内容为泄洪⽅式和拟定泄洪建筑物孔⼝尺⼨的选择,及防洪库容、上游设计和校核洪⽔位和相应的下泄流量的确定;第三章为坝型选择及枢纽布置,主要通过不同⽅案的初步技术经济⽐较,选定坝型,并确定⽔利枢纽的布置⽅案;第四章为⼟⽯坝的设计,主要通过分析⽐较,确定⼤坝基本剖⾯型式与轮廓尺⼨,通过渗流验算和静⼒稳定计算以论证选⽤坝坡的合理性;第五章为泄⽔建筑物的设计,主要为泄⽔⽅案、线路的选择和隧洞的⽔⼒计算;第六章为施⼯组织设计,也是本次设计的深⼊部分,主要进⾏施⼯导流和施⼯控制性进度的设计,⽽施⼯交通运输、施⼯总布置由于能⼒有限和时间关系并没有做进⼀步的设计。

由于没有参加过实际⼯程的施⼯组织设计,⼯作经验有限,查阅参考资料⼜有许多局限性,设计中定会存在⼀些缺点和错误,请⽼师批评指正。

摘要本⽔利枢纽⼯程由挡⽔建筑物、泄⽔建筑物和⽔电站建筑物等组成,同时具有防洪、发电、灌溉、渔业等综合作⽤。

本次设计主要内容如下:1.根据防洪要求,对⽔库进⾏洪⽔调节计算,确定坝顶⾼程及溢洪道尺⼨;2.对可能的⽅案进⾏⽐较,确定枢纽组成建筑物的型式、轮廓尺⼨及⽔利枢纽布置⽅案;3.通过详细设计和⽐较,确定⼤坝的基本剖⾯和轮廓尺⼨,拟定地基处理⽅案与坝⾝构造;4.坝型选定后,选择建筑物的型式及轮廓尺⼨,确定布置⽅案;拟定细部构造,进⾏⽔⼒、静⼒计算。

斜心墙土石坝毕业设计

斜心墙土石坝毕业设计

前言这次我的设计任务是E江水利枢纽工程设计(土石坝),本设计采用斜心墙坝。

该斜心墙土石坝设计大致分为:洪水调节计算、坝型选择与枢纽布置、大坝设计、泄水建筑物的选择与设计等部分。

1工程提要E江水利枢纽系防洪、发电、灌溉、渔业等综合利用的水利工程,该水利枢纽工程由土石坝、泄洪隧洞、冲沙放空洞、引水隧洞、发电站等建筑物组成。

该工程建成以后,可减轻洪水对下游城镇、厂矿和农村的威胁,根据下游防洪要求,设计洪水时最大下泄流量限制为900sm/3,本次经调洪计算100年一遇设计洪水时,下泄洪峰流量为672.6sm/3。

原100年一遇设计洪峰流量为1680sm/3;其发电站装机为3×8000kw,共2.4 m/3,水库消减洪峰流量1007.4s×104kw;建成水库增加保灌面积10万亩,正常蓄水位时,水库面积为17.70km2,为发展养殖创造了有利条件。

综上该工程建成后发挥效益显著。

1.1工程等别及建筑物级别根据SDJ12-1978《水利水电枢纽工程等级划分设计标准(山区,丘陵区部分)》之规定,水利水电枢纽工程根据其工程规模﹑效益及在国民经济中的重要性划分为五类,综合考虑水库的总库容、防洪库容、灌溉面积、电站的装机容量等,工程规模由库容决定,由于该工程正常蓄水位为2821.4m,库容约为 3.85亿m3,估计校核情况下的库容不会超过10亿m3,故根据标准(SDJ12-1978),该工程等别为二等,工程规模属于大(2)型,主要建筑物为2级,次要建筑物为3级,临时性建筑物级别为4级。

1.2洪水调节计算该工程主要建筑物级别为2级,根据《防洪标准》(GB50201-94)规定2级建筑物土坝堆石坝的防洪标准采用100年一遇设计,2000年一遇校核,水电站厂房防洪标准采用50年一遇设计,500年一遇校核。

临时性建筑物防洪标准采用20年一遇标准。

根据资料统计分析得100年一遇设计洪峰流量为设Q =,/16803s m (p=1%),2000年一遇校核洪峰流量为校Q =2320m 3/s ,(%05.0 p )。

粘土斜墙土石坝毕业设计资料

粘土斜墙土石坝毕业设计资料

1.综合说明1.1枢纽概况及工程目的某水库工程是河北省和水利部“八·五”重点工程建设项目之一。

该工程是以供水、灌溉、发电、养殖等综合利用为主的大型控制枢纽工程。

青龙河流域水量充沛,控制流域面积6340km2,,多年平均径流量9.6亿m3,是滦河流域较大的一条支流。

但由于降雨、径流的年际年内分配极不均匀,必须修建大型控制工程调节水量,丰富的水资源才能得以充分开发利用。

水库按满足秦皇岛市生活、工业用水和滦河中下游农业用水的需要设计,工程规模是:正常蓄水位141 m,调节库容7.09亿m3,水库库容系数0.77,水量利用系数为70%。

坝后式电站装机容量20Mw。

根据《水利水电枢纽工程等级划分及设计标准》SDJ12-78的规定,一期工程为二等工程,大坝为II级建筑物,正常应用洪水为100年一遇,非常运用洪水为1000年一遇。

辅助建筑物按Ⅲ级设计,临时建筑物按Ⅳ级设计。

1.2水库枢纽设计基础资料1.2.1地形、地质(1)地形:见1:2000坝址地形图。

(2)库区工程地质条件。

水库位于高山区,构造剥蚀地形。

青龙河侵蚀能力较强,沿河形成不对称河谷,由于构造运动影响,河流不断下切,形成岸边阶地、陡岸。

流域内地形北高南低,平均高程与500m,最高峰海拔1680m。

河道蜿蜒曲折,河谷宽度400~100m不等,河道比降1/400~1/600。

库区两岸基岩出露高程大部分在200米左右,库区左岸非可溶性岩层分布广泛,其中主要由绢云母、千枚岩、石英、砂质页岩组成。

透水性较小,也没有发现沟通库内外的大断层。

库区可溶性岩层分布于青龙河右岸,从隔水层分布、熔岩发育情况分析,水库蓄水后向邻近河流渗透的可能性很小。

经过对库区断层的分析,水库向外流域及下游渗漏的可能性很小。

库区外岩层抗风化作用较强,库岸基本上是稳定的。

(3)坝址区工程地质条件位于坝区中部背斜的西北,岩层倾向青龙河上游,两岸山体较厚。

河床宽约300米,河床地面高程85m,河床砂卵石覆盖层平均厚度5—7米,渗透系数K=1×10-2厘米/秒。

土石坝毕业设计

土石坝毕业设计

前言 (2)第一章基本资料 (3)第一节、工程概况及工程目的 (3)第二节、基本资料 (3)第二章、枢纽布置 (6)第一节、坝轴线选择 (6)第二节、枢纽布置 (6)第三章、坝工设计 (8)第一节、坝型确定 (8)第二节、挡水坝体断面设计 (8)第三节、坝体渗流计算 (11)第四节、土坝稳定计算 (14)第五节、细部构造 (22)第四章、溢洪道设计 (25)第一节、溢洪道地形资料 (25)第二节、溢洪道地质资料 (25)第三节、溢洪道的位置选择 (25)第四节、溢洪道布置 (26)第五章、地基处理 (32)1、坝基清理 (32)2、土石坝的防渗处理 (32)3、土石坝与坝基的连接 (32)结论 (33)参考文献 (34)致谢 (35)前言土石坝泛指由当地土料、石料或混合料,经过抛填、辗压等方法堆筑成的挡水坝。

当坝体材料以土和砂砾为主时,称土坝、以石渣、卵石、爆破石料为主时,称堆石坝;当两类当地材料均占相当比例时,称土石混合坝。

土石坝是历史最为悠久的一种坝型。

近代的土石坝筑坝技术自20世纪50年以后得到发展,并促成了一批高坝的建设。

目前,土石坝是世界坝工建设中应用最为广泛和发展最快的一种坝型。

土石坝按坝高可分为:低坝、中坝和高坝。

土石坝按其施工方法可分为:碾压式土石坝;冲填式土石坝;水中填土坝和定向爆破堆石坝等。

应用最为广泛的是碾压式土石坝。

按照土料在坝身内的配置和防渗体所用的材料种类,碾压式土石坝可分为以下几种主要类型:1、均质坝。

坝体断面不分防渗体和坝壳,基本上是由均一的黏性土料(壤土、砂壤土)筑成。

2、土质防渗体分区坝。

即用透水性较大的土料作坝的主体,用透水性极小的黏土作防渗体的坝。

包括黏土心墙坝和黏土斜墙坝。

防渗体设在坝体中央的或稍向上游且略为倾斜的称为黏土心墙坝。

防渗体设在坝体上游部位且倾斜的称为黏土斜墙坝,是高、中坝中最常用的坝型。

3、非土料防渗体坝。

防渗体由沥青混凝土、钢筋混凝土或其他人工材料建成的坝。

土石坝毕业设计

土石坝毕业设计

引言概述:
土石坝作为一种常见的重要水利工程结构,被广泛应用于水资源利用、洪水控制、水流调节等方面。

在毕业设计中,我们将对土石坝进行综合分析和设计,通过详细的介绍和研究土石坝的各方面内容,以期提高对土石坝工程设计和施工的认识和理解。

正文内容:
1.土石坝的概念和分类
1.1土石坝的定义
1.2土石坝的分类
1.3土石坝的结构特点
2.土石坝的材料与力学性质
2.1土石坝使用的材料
2.2土石坝材料的力学性质
2.3土石坝材料的可行性分析
3.土石坝的基本设计原理
3.1土石坝的稳定性分析
3.2土石坝的渗透性分析
3.3土石坝的抗震性设计
3.4土石坝的温度效应分析
3.5土石坝的变形与监测
4.土石坝的施工工艺和质量管理
4.1土石坝的施工工艺
4.2土石坝的施工监测
4.3土石坝的质量管理
5.土石坝的经济性与环境影响
5.1土石坝的经济性分析
5.2土石坝的社会影响
5.3土石坝的环境影响评价
总结:
通过对土石坝的综合分析和设计,我们深入了解了土石坝的概念、分类、结构特点以及土石坝材料的力学性质。

在基本设计原理方面,我们分析了土石坝的稳定性、渗透性、抗震性、温度效应、变形与监测等方面。

我们还介绍了土石坝的施工工艺、质量管理以及土石坝的经济性和环境影响等方面内容。

通过本文对土石坝的全面论述,希望能够提高对土石坝工程设计和施工的认识和理解,为相关领域的实践工作提供一定的参考价值。

土石坝毕业设计

土石坝毕业设计

土石坝毕业设计1. 引言土石坝是一种常见的水利工程结构,用于水库的蓄水和防洪。

在毕业设计中,我们将研究土石坝的设计原理、施工过程和监测方法,以及可能遇到的问题和解决方案。

本文档将详细介绍土石坝的相关内容,并提供设计和建设土石坝的指导。

2. 土石坝的基本原理土石坝是一种以土石材料为主要构造材料的大坝,主要由堤体、坝基和坝顶组成。

堤体由多种土石材料堆积而成,形成防洪和蓄水的屏障。

坝基是土石坝的基础,承受来自水体和土壤的力。

坝顶则是坝体的上部,用于堵塞水流并支撑堤体。

3. 土石坝的设计3.1 坝型选择在设计土石坝时,首先需要根据实际情况选择合适的坝型。

常见的土石坝坝型包括碾压土石坝、心墙土石坝和重力土石坝。

不同的坝型适用于不同的地质和水力条件。

本文将介绍各种坝型的特点和适用范围,以供设计参考。

3.2 坝体稳定性分析为了确保土石坝的安全性,需要进行坝体稳定性分析。

这项分析用于确定坝体在正常和极端载荷条件下的稳定性,并评估任何可能的破坏机制。

本文将介绍常用的稳定性分析方法,包括切片法、有限元法和稳定性计算软件的应用。

3.3 坝体渗流分析土石坝的渗流是一个重要的问题,如果不能得到有效控制,可能会导致坝体破坏。

因此,在设计土石坝时,需要进行渗流分析,以确定坝体内部的渗流路径和渗流通量。

本文将介绍渗流分析的基本原理和方法,包括渗流试验和数值模拟。

3.4 坝体材料选择土石坝的堤体材料是其结构的基础,对坝体的稳定性和安全性有重要影响。

在设计土石坝时,需要选择合适的材料,并确定其物理和力学性质。

本文将介绍常见的土石材料和其特点,以及如何选择和测试合适的材料。

4. 土石坝的施工4.1 坝基处理坝基是土石坝的基础,其处理对于坝体的稳定性至关重要。

在施工土石坝之前,需要对坝基进行处理,包括地质勘察、坑底平整和加固措施的设计。

本文将介绍坝基处理的基本原理和具体方法,以保证坝体在施工和运营中的稳定性。

4.2 堤体填筑堤体填筑是土石坝施工的核心环节,涉及大量的土石材料运输和堆积。

土石坝毕业设计

土石坝毕业设计

前言1、设计任务书及原始资料是工作的依据,因此首先要全面了解设计任务,熟悉该河流的一般自然地理条件,坝址附近的水文和气象特性,枢纽及水库的地形、地质条件,当地材料,对外交通及有关规划设计的基本数据,只有在熟悉基本资料的基础上才能正确地选择建筑物的类型,进行枢纽布置、建筑物设计及施工组织设计。

因此,应把必要的资料整理到说明书中。

通过对资料的了解和分析,初步掌握原始资料中对设计和施工有较大影响的主要因素和关键问题,为以后设计工作的进行打下良好的基础。

2、本次设计内容及要求:(1)坝轴线选择。

(2)坝型选择。

(3)枢纽布置。

(4)挡水建筑物设计:包括土坝断面设计、平面布置、渗流计算、稳定计算、细部构造设计、基础处理等。

(5)泄水建筑物设计:溢洪道或导流洞设计(仅选其中一项),以水利计算为主。

选取溢洪道设计。

(6)施工导流方案论证(选作内容)。

仅作简单的阐述。

3、工程设计概要ZH水库位于QH河干流上,水库控制流域面积4990km2,库容5.05×108m3。

水库以灌溉发电为主,结合防洪,可引水灌溉农田71.2×104亩,远期可发展到10.4×105亩。

灌区由一个引水流量45m3/s的总干渠和4条分干渠组成,在总干渠渠首及下游24km处分别修建枢纽电站和HZ电站,总装机容量31.45MW,年发电量1.129×108kw·h。

水库防洪标准为百年设计,万年校核。

枢纽工程由挡水坝、溢洪道、导流泄洪洞、灌溉发电洞及枢纽电站组成。

摘要:土坝设计渗流计算稳定计算细部结构第一章基本数据第一节工程概况及工程目的本水库建成后具有灌溉、发电、防洪、解决工业用水和人畜吃水等多方面的效益,是一座综合利用的水库。

水库近期可灌溉农田71.2×104亩,远期可发展到10.4×105亩。

枢纽电站和HZ电站,总装机容量31.45MW,年发电量1.129×108kwh。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西广播电视大学ZF水库水利枢纽工程土石坝课程设计分校(工作站) 水利厅工作站专业 2014水利水电本科学号 ************* 学生姓名魏铎2016 年 1 月第一章基本资料第一节、工程概况及工程目的ZF水库位于QH河干流上,控制面积4990km2总库容5.05×108m3。

该工程以灌溉发电为主,结合防洪,可引水灌溉农田7.12万亩,远期可发展到10.4万亩。

灌溉区由一个引水流量为45m3/s的总干渠和四条分干渠组成,在总干渠渠首及下游24km处分别修建枢纽电站和HZ电站,总装机容量31.45MW,年发电量11290完千瓦时。

水库建成后,除为市区居民生活和工业提供给水外,还可使城市防洪能力得到有效的提高。

水库防洪标准为百年设计,万年校核。

枢纽工程由挡水坝、溢洪道和输水洞、灌溉发电洞及枢纽电站组成。

第二节、基本资料1、特征水位及流量挡水坝、溢洪道、输水洞的特征水位及流量见表2-1。

表2-1 ZF水库工程特征值2、气象气象资料见表2-2。

表2-2 气象资料表3、地质1、坝址区工程地质条件ZF水库的右岸较陡,坡度为30°左右,大部分基岩出露高程为770~810m。

主河槽在右岸,河宽月100米左右;左岸为堆积岸,左岸台地宽200m左右,山岭高程在775m 左右,岸坡较平缓,大都为土层覆盖。

水库枢纽处施工场地狭窄,枢纽建筑物全部布置在左岸,施工布置较为困难。

坝区为上二迭系石千峰组的紫红色、紫灰色细砂岩,间夹同色砾岩及砂质页岩等岩层。

右岸全部为基岩,河床砂卵石层总厚度约50m,覆盖层厚度约5m。

高漫滩表层亚砂土厚5~15m,左岸728m高程以下为基岩。

基岩面向下游逐渐降低,土层增厚。

砂卵石层透水性不会很强,施工开挖排水作业估计不会很困难。

2、溢洪道工程地质条件上坝线方案溢洪道堰顶高程757m,沿建筑物轴线岩层倾向下游。

岩性主要为坚硬的细砂岩,其中软弱层多为透镜体,溢洪道各部分的抗滑稳定条件是好的。

下坝线溢洪道高程750m。

基础以下10m左右为砂质页岩及夹泥层,且单薄分水岭岩层风化严重,透水性大,对建筑安全不利。

第二章、枢纽布置第一节、坝轴线选择选择坝址时,应根据地形、地址、工程规模及施工条件,经过经济和技术的综合分析比较来选定。

应尽量选在河谷的狭窄段。

这样坝轴线短,工程量小,但必须与施工场地和泄水建筑物的布置情况以及运用上的要求等同时考虑对于两岸坝段要有足够的高程和厚度。

坝基和两岸山体应无大的不利地质构成问题。

岩石应较完整,并应将坝基置于透水性小的坚实地层或厚度不大的透水地基上。

坝址附近要有足够数量符合设计要求的土、砂、石料且便于开采运输。

通过以上分析,ZF水库坝轴线的选择,在地形上,应尽量选在河谷狭窄段。

由地形图上可知,上游坡坝轴线、坝轴线以及和下游坝轴线三者的比见地形图,下游的坝轴线最符合。

因为它是河谷的狭窄段,这样坝轴线短,工程量小,可减少投资,库容较大,淹没少。

第二节、枢纽布置枢纽布置应做到安全可靠,经济合理,施工互不干扰,管理运用方便。

高中坝和地震区的坝,不得采用布置在非岩石地基上的坝下埋管型式,低坝采用非岩石地基上的坝下埋管时,必须对埋管周围填土的压实方法,可能达到的压实密度及其抵抗渗透破坏的能力能否满足要求进行保证。

枢纽布置应考虑建筑物开挖料的应用。

土石坝枢纽通常包括拦河坝、溢洪道、泄洪洞输水或引水洞及水电站等,应通过地形地质条件以及经济和技术等方面来确定。

坝址应选在地形地质有利的地方,使坝轴线较短,库容较大,淹没少。

附近有丰富的筑坝材料,便于布置泄水建筑物。

在高山深谷区常将坝址选在弯曲河段,把坝布置在弯道上,利用凸岸山脊抗滑稳定和渗透稳定,并采取排水灌浆等相应加固措施,应尽量避免将坝址选在工程地质条件不良的地段。

如活断层含形成整体滑动的软弱夹层,以及粉细砂、软粘土和淤泥等软弱地基上。

坝轴线一般宜顺直,如布置成折线,转折处山曲线连接。

如坝轴平面形成弧形,最好试凸向上游,如受地形限制,不得凸向下游,曲度应小些,防渗体不要过薄,以免蓄水后防渗体产生拉力而出现顺水流方向的裂缝。

根据枢纽布置原则,枢纽中的泄水建筑物应做到安全可靠、经济合理、施工互不干扰、管理运用方便。

枢纽布置应满足以下原则:枢纽中的泄水建筑物应满足设计规范的运用条件和要求。

选择泄洪建筑物形式时,宜优先考虑采用开敞式溢洪道为主要泄洪建筑物,并经济比较确定。

泄水引水建筑物进口附近的岸坡应有可靠的防护措施,当有平行坝坡方向的水流可能会冲刷坝坡时,坝坡也应有防护措施。

应确保泄水建筑物进口附近的岸坡的整体稳定性和局部稳定性。

当泄水建筑物出口消能后的水流从刷下游坝坡时,应比较调整尾水渠和采取工程措施保护坝坡脚的可靠性和经济性,可采取其中一种措施,也可同时采用两种措施。

对于多泥沙河流,应考虑布置排沙建筑物,并在进水口采取放淤措施。

溢洪道应选择在地形开阔、岸坡稳定、岩土坚实和地下水位较低的地点,宜选用地质条件好良好的天然地基。

壤土、中砂、粗砂、砂砾石适于作为水闸地基,尽量避免淤泥质土和粉砂、细砂地基,必要时应采取妥善处理措施。

从地质地形图可知坝体右岸有天然的垭口,地质条件好,且有天然的石料厂,上下游均有较缓的滩地,两岸岩体较陡,岩体条件好,施工起来更快捷更经济合理。

因此,溢洪道修建于QH右岸山坡上,紧邻右坝肩。

由于闸址段地形条件好,所以采用正槽式溢洪道。

第三章、坝工设计第一节、坝型确定根据所给资料,选择大坝型式,还应根据地形、地质、建筑材料、工程量以及施工条件等综合方面确定坝型。

水库处于平原地区。

由基本资料可知,库区土料丰富,料场距坝址较近,运输条件良好。

施工简便,地质条件合理,造价低。

通过以上几方面的综合分析比较,所以选用土石坝方案。

第二节、挡水坝体断面设计1、坝顶高程的确定1.1、风区长度由题目已知该流域多年平均最大风速为9m/s,水位768.1m时水库吹程为5.5km。

1.2、坝顶高程计算坝顶在静水位以上的超高值按下式计算;y=R+e+A式中 y—坝顶超高,m;R—最大波浪在坝坡上的爬高,m;A—安全加高,m ;由上可知等效吹程5.5km>1.6m,近似估计R+e在0.9~1.2之间。

所以,正常运行条件时 R+e 取1.2非常运行条件时 R+e 取0.9由基本资料可知大坝级别为3级正常运行条件时安全加高 A取0.7非常运行条件时安全加高 A取0.5坝顶高程等于水库静水位与超高之和,应按下列四种情况计算,并取其中最大值;设计洪水位+正常情况的坝顶超高;H=768.1m正常蓄水位+正常情况的坝顶超高;H=767.20m校核洪水位+非常情况的坝顶超高;H=770.40m正常蓄水位+非常情况的坝顶超高;H=737.00m由计算可知,计算坝顶高程为770.4m,考虑坝顶上设与防渗体紧密连接的1.2m高防浪墙,取设计坝顶高程为769.2m。

2、坝顶宽度坝顶宽度根据构造、施工等因素确定,由《碾压式土石坝设计规范(SL274—2001)》[5]高坝选用10~15 m,中低坝可选用5~10 m,根据所给资料,初步拟定坝体断面,坝顶宽度为8m见图3-1。

图3-1 坝顶结构图3、上下游边坡上下游边坡比见表3-2。

表3-2 上下游边坡比根据资料,大坝为中低坝,故定上游坝坡1:3.0 ,下游坝坡1:2.5。

4、马道为了拦截雨水,防止坝面被冲刷,同时便于交通、检测和观测,并且利于坝坡稳定,下游常沿高程每隔10~30 m设置一条马道,其宽度不小于1.5 m,马道一般设在坡度变化处,均质坝上游不宜或少设马道,故本坝不设马道。

第三节、坝体渗流计算渗流计算方法采用有限深透水地基上设灌浆帷幕的土石坝渗流,帷幕灌浆的防渗作用可以用相当于不透水底版的等效长度代替。

渗流分三种情况:上游为设计洪水位、校核洪水位、正常蓄水位和相应的下游水位见图3-2。

图3-2 各水位示意图设计洪水位时 坝顶高程为769.2m ,设计洪水位为768.1m ,河床高度为731.2m ,坝顶宽度为8m ,坝高为38m ,m 1=3.0m 2=2.5。

L=L 2+ m 1(769.2-768.1)+B+ m 2·H=11112H m m ++1.45m 1+B+ m 2·H=123mL 1=L-L 3=117m上游水深H 1=36.55m 下游水深H 2=1.89m 。

h=122121)(L H H L --+ =5.01 mq=])([22221' h H H Lk +- =6.8×106-m s m ⋅3y=x kq H 221-=x 4.119.1325- x(0,114.5)表3-3 设计水位浸润线计算成果表校核洪水位时坝顶高程为769.2m ,设计洪水位为768.1m ,河床高度为731.2m ,坝顶宽度为8m ,坝高为38m ,m 1=3.0 m 2=2.5。

L=L 2+ m 1(769.2-768.1)+B+ m 2·H=11112H m m ++0.29 m 1+B+ m 2·H=120mL 1=L-L 3=113.25m上游水深H 1=37.71m 下游水深H 2=2.15m 。

h=122121)(L H H L --+ =5.45 m q=])([22221' h H H Lk +- =7.2×106-ms m ⋅3y=x kq H 221-=x 126.1342- x(0,110.85)表3-4 校核水位浸润线计算成果表正常蓄水位时 坝顶高程为769.2m ,正常蓄水位为767.2 m ,河床高度为731.2 m ,坝顶宽度为8m ,坝高为38m ,m 1=3.0 m 2=2.5。

L=L 2+ m 1(216.9-213.43)+B+ m 2·H=11112H m m ++3.47 m 1+B+ m 2·H=128.2 mL 1=L-L 3=123.7 m上游水深H 1=37.71m 下游水深H 2=2.15mh=122121)(L H H L --+ =4.73 m q=])([22221' h H H Lk+- =5.67×106-m s m ⋅3y=x kqH 221-=x 33.932.1136- x ∈(0,121.5)表3-5 正常蓄水位浸润线计算成果表第四节、 土坝稳定计算坝坡稳定计算采用计及条块间作用力的简化毕肖普法公式如下。

K=∑∑+±++-±]/sin )[()]/tan tan 1/(1}[sec tan ]sec sec ){[('''RM V W K b c ub V W c αϕααϕαα式中 W —土条重量;Q 、V —分别为水平和垂直的地震惯性力; U —作用于土条底面的空隙压力;α—土条重力线与通过此条块底面中点的半径之间的夹角; b —土条宽度;'c 、'ϕ—土条地面的有效应力和抗剪强度指标;M c —水平地震惯性力对圆心的力矩; R —圆弧半径; 稳定计算系数见表3-6。

相关文档
最新文档