伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第5~9章【圣才出品】
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解

读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
第版
计量经济 学
时间
习题
序列
经典
变量
笔记
教材
笔记 复习
模型
导论
笔记
第章
习题
分析
数据
回归
内容摘要
本书是伍德里奇《计量经济学导论》(第5版)教材的配套电子书,主要包括以下内容:(1)整理名校笔记, 浓缩内容精华。每章的复习笔记以伍德里奇所著的《计量经济学导论》(第5版)为主,并结合国内外其他计量经 济学经典教材对各章的重难点进行了整理,因此,本书的内容几乎浓缩了经典教材的知识精华。(2)解析课后习 题,提供详尽答案。本书参考国外教材的英文答案和相关资料对每章的课后习题进行了详细的分析和解答。(3) 补充相关要点,强化专业知识。一般来说,国外英文教材的中译本不太符合中国学生的思维习惯,有些语言的表 述不清或条理性不强而给学习带来了不便,因此,对每章复习笔记的一些重要知识点和一些习题的解答,我们在 不违背原书原意的基础上结合其他相关经典教材进行了必要的整理和分析。本书特别适用于参加研究生入学考试 指定考研考博参考书目为伍德里奇所著的《计量经济学导论》的考生,也可供各大院校学习计量经济学的师生参 考。
讨
2.1复习笔记 2.2课后习题详解
3.1复习笔记 3.2课后习题详解
4.1复习笔记 4.2课后习题详解
5.1复习笔记 5.2课后习题详解
6.1复习笔记 6.2课后习题详解
7.1复习笔记 7.2课后习题详解
伍德里奇-计量经济学(第4版)答案

伍德里奇-计量经济学(第4版)答案计量经济学答案第二章2.4 (1)在实验的准备过程中,我们要随机安排小时数,这样小时数(hours )可以独立于其它影响SAT 成绩的因素。
然后,我们收集实验中每个学生SAT 成绩的相关信息,产生一个数据集{}n i hours sat i i ,...2,1:),(=,n 是实验中学生的数量。
从式(2.7)中,我们应尽量获得较多可行的i hours 变量。
(2)因素:与生俱来的能力(天赋)、家庭收入、考试当天的健康状况①如果我们认为天赋高的学生不需要准备SAT 考试,那天赋(ability )与小时数(hours )之间是负相关。
②家庭收入与小时数之间可能是正相关,因为收入水平高的家庭更容易支付起备考课程的费用。
③排除慢性健康问题,考试当天的健康问题与SAT 备考课程上的小时数(hours )大致不相关。
(3)如果备考课程有效,1β应该是正的:其他因素不变情况下,增加备考课程时间会提高SAT 成绩。
(4)0β在这个例子中有一个很有用的解释:因为E (u )=0,0β是那些在备考课程上花费小时数为0的学生的SAT平均成绩。
2.7(1)是的。
如果住房离垃圾焚化炉很近会压低房屋的价格,如果住房离垃圾焚化炉距离远则房屋的价格会高。
(2)如果城市选择将垃圾焚化炉放置在距离昂贵的街区较远的地方,那么log(dist)与房屋价格就是正相关的。
也就是说方程中u包含的因素(例如焚化炉的地理位置等)和距离(dist)相关,则E(u︱log(dist))≠0。
这就违背SLR4(零条件均值假设),而且最小二乘法估计可能有偏。
(3)房屋面积,浴室的数量,地段大小,屋龄,社区的质量(包括学校的质量)等因素,正如第(2)问所提到的,这些因素都与距离焚化炉的远近(dist,log(dist))相关2.11(1)当cigs(孕妇每天抽烟根数)=0时,预计婴儿出生体重=110.77盎司;当cigs(孕妇每天抽烟根数)=20时,预计婴儿出生体重(bwght)=109.49盎司。
伍德里奇《计量经济学导论》笔记和课后习题详解(异方差性)【圣才出品】

(4)在丌包括截距癿情况下将 1 对 r1u, r2u, , rqu 做回归。异斱差-稳健癿 LM 统计
χ 量就是 n-SSR1,其中 SSR1 是最后这个回归通常癿残差平斱和。在 H0 下 LM 渐近服从
2 q
分布。
4 / 36
圣才电子书 十万种考研考证电子书、题库视频学习平台
变量乊类癿情况出现则具有这种影响。
2.异斱差性对拟合优度癿影响
对拟合优度指标 R2 和 R2 癿解释丌受异斱差性癿影响。通常癿 R2 和调整 R2 都是估计总
体
R2
癿丌同斱法,而总体
R2 无非就是1 σu2
/
σ
2 y
,其中
σu2
是总体误差斱差,
σ
2 y
则是
y
癿总体斱差。关键是,由亍总体 R2 中这两个斱差都是无条件斱差,所以总体 R2 丌受
十万种考研考证电子书、题库视频学习平台
令 uˆi 表示原来 y 对 x 做回归所得到癿 OLS 残差。那么,对亍仸何形式癿异斱差(包括
同斱差),Var βˆ j 癿一个确当估计量都是
n
xi x 2 uˆi2
i 1
SSTx2
可以证明,将斱程乘以样本容量
n
后,会依概率收敛亍
在没有同斱差假定癿情况下,估计量癿斱差是有偏癿。由亍 OLS 标准误直接以这些斱
差为基础,所以它们都丌能用来构造置信区间和 t 统计量。
4.对统计检验癿影响
1 / 36
圣才电子书 十万种考研考证电子书、题库视频学习平台
在出现异斱差性癿情况下,在高斯-马尔可夫假定下用来检验假设癿统计量都丌再成立。 (1)在出现异斱差性时,通常普通最小二乘法癿 t 统计量就丌具有 t 分布,使用大样 本容量也丌能解决这个问题。 (2)F 统计量也丌再是 F 分布。 (3)LM 统计量也丌服从渐近 χ2 分布。
伍德里奇《计量经济学导论》笔记和课后习题详解(时间序列回归中的序列相关和异方差)【圣才出品】

第12章 时间序列回归中的序列相关和异方差12.1 复习笔记一、含序列相关误差时OLS 的性质 1.无偏性和一致性在时间序列回归的前3个高斯-马尔可夫假定(TS.1~TS.3)之下,OLS 估计量是无偏的。
特别地,只要解释变量是严格外生的,无论误差中的序列相关程度如何,ˆj β都是无偏的。
这类似于误差中的异方差不会造成ˆjβ产生偏误。
把严格外生性假定放松到()0t t E u X =,并证明了当数据是弱相关的时候,ˆjβ仍然是一致的(但不一定无偏)。
这一结论不以对误差中序列相关的假定为转移。
2.效率和推断高斯-马尔可夫定理要求误差的同方差性和序列无关性,所以,在出现序列相关时,OLS 便不再是BLUE 的了。
通常的OLS 标准误和检验统计量也不再确当,而且连渐近确当都谈不上。
在序列相关的时候,通常的方差估计量都是()1ˆVar β的有偏估计。
因为ˆj β的标准误是ˆjβ的标准差的估计值,所以在出现序列相关的时候,使用通常的OLS 标准误就不再确当。
因此,检验单个假设的t 统计量也不再确当。
因为较小的标准误意味着较大的t 统计量,所以当ρ>0时,通常的统计量常常过大。
用于检验多重假设的通常的F 统计量和LM 统计量也不再可靠。
3.拟合优度t时间序列回归模型中的误差若存在序列相关,通常的拟合优度指标R 2和调整R 2便会失效,但只要数据是平稳和弱相关的,拟合优度指标依然有效。
在横截面背景中将总体R 2定义为221/u y σσ-。
在使用平稳而又弱相关数据的时间序列回归背景中,这个定义依然确当:误差和因变量的方差都不随时间而变化。
根据大数定律,R 2和调整R 2都是总体R 2的一致估计。
拟合优度指标仍是总体参数的一致估计量。
若{y t }是一个I (1)过程,则因为Var (y t )随着t 而递增,所以就无法通过重新定义R 2为221/uy σσ-来证明;此时的拟合优度便没有什么意义。
4.出现滞后因变量时的序列相关回归中出现滞后因变量时,误差有序列相关的危险。
伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第1~4章【圣才出品】

Байду номын сангаас
2.假设让你进行一项研究,以确定较小的班级规模是否会提高四年级学生的成绩。
4 / 119
圣才电子书 十万种考研考证电子书、题库视频学习平台
(i)如果你能设定你想做的任何实验,你想做些什么?请具体说明。 (ii)更现实地,假设你能搜集到某个州几千名四年级学生的观测数据。你能得到他们 四年级班级规模和四年级末的标准化考试分数。你为什么预计班级规模与考试成绩存在负相 关关系? (iii)负相关关系一定意味着较小的班级规模会导致更好的成绩吗?请解释。 答:(i)假定能够随机的分配学生们去不同规模的班级,也就是说,在不考虑学生诸如 能力和家庭背景等特征的前提下,每个学生被随机的分配到不同的班级。因此可以看到班级 规模(在伦理考量和资源约束条件下的主体)的显著差异。 (ii)负相关关系意味着更大的班级规模与更差的考试成绩是有直接联系的,因此可以 发现班级规模越大,导致考试成绩越差。 通过数据可知,两者之间的负相关关系还有其他的原因。例如,富裕家庭的孩子在学校 可能更多的加入小班,而且他们的成绩优于平均水平。 另外一个可能性是:学校的原则是将成绩较好的学生分配到小班。或者部分父母可能坚 持让自己的孩子进入更小的班级,而同样这些父母也更多的参与子女的教育。 (iii)鉴于潜在的其他混杂因素(如 ii 所列举),负相关关系并不一定意味着较小的班 级规模会导致更好的成绩。控制混杂因素的方法是必要的,而这正是多重回归分析的主题。
伍德里奇《计量经济学导论》笔记和课后习题详解(一个经验项目的实施)【圣才出品】

伍德⾥奇《计量经济学导论》笔记和课后习题详解(⼀个经验项⽬的实施)【圣才出品】第19章⼀个经验项⽬的实施19.1 复习笔记⼀、问题的提出提出⼀个⾮常明确的问题,其重要性不容忽视。
如果没有明确阐述假设和将要估计的模型类型,那么很可能会忘记收集某些重要变量的信息,或是从错误的总体中取样,甚⾄收集错误时期的数据。
1.查找数据的⽅法《经济⽂献杂志》有⼀套细致的分类体系,其中每篇论⽂都有⼀组标识码,从⽽将其归于经济学的某⼀⼦领域之中。
因特⽹(Internet)服务使得搜寻各种主题的已发表论⽂更为⽅便。
《社会科学引⽤索引》(Social Sciences Citation Index)在寻找与社会科学各个领域相关的论⽂时⾮常有⽤,包括那些时常被其他著作引⽤的热门论⽂。
⽹络搜索引擎“⾕歌学术”(Google Scholar)对于追踪各类专题研究或某位作者的研究特别有帮助。
2.构思题⽬时⾸先应明确的⼏个问题(1)要使⼀个问题引起⼈们的兴趣,并不需要它具有⼴泛的政策含义;相反地,它可以只有局部意义。
(2)利⽤美国经济的标准宏观经济总量数据来进⾏真正原创性的研究⾮常困难,尤其对于⼀篇要在半个或⼀个学期之内完成的论⽂来说更是如此。
然⽽,这并不意味着应该回避对宏观或经验⾦融模型的估计,因为仅增加⼀些更新的数据便对争论具有建设性。
⼆、数据的收集1.确定适当的数据集⾸先必须确定⽤以回答所提问题的数据类型。
最常见的类型是横截⾯、时间序列、混合横截⾯和⾯板数据集。
有些问题可以⽤任何⼀种数据结构进⾏分析。
确定收集何种数据通常取决于分析的性质。
关键是要考虑能够获得⼀个⾜够丰富的数据集,以进⾏在其他条件不变下的分析。
同⼀横截⾯单位两个或多个不同时期的数据,能够控制那些不随时间⽽改变的⾮观测效应,⽽这些效应通常使得单个横截⾯上的回归失效。
2.输⼊并储存数据⼀旦你确定了数据类型并找到了数据来源,就必须把数据转变为可⽤格式。
通常,数据应该具备表格形式,每次观测占⼀⾏;⽽数据集的每⼀列则代表不同的变量。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第9章 模型设定和数据问题的深入探讨【圣才出

(c)
来检验模型
y 0 1x1 2 x2 u
(d)
或者把这两个模型反过来。然而,它们是非嵌套模型,所以不能仅使用标准的 F 检验。
(1)综合模型的 F 检验
构造一个综合模型,将每个模型都作为一个特殊情形而包含其中,然后检验导致每个模
型的约束。在目前的例子中,综合模型为:
y 0 1x1 2 x2 3 log x1 4 log x2 u
y 0 1x1 2 x2 3 x3 u
但有 x3 的一个代理变量,并称之为 x3
x3 0 3 x3 v3
其中,v3 是因 x3 与 x3 并非完全相关所导致的误差。参数 3 度量了 x3 与 x3 之间的关系。 x3 和 x3 正相关,所以 δ3 0 。如果 δ3 0 ,则 x3 不是 x3 合适的代理变量。截距 δ0 ,是容许 x3
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 9 章 模型设定和数据问题的深入探讨
9.1 复习笔记
一、函数形式设误 1.函数形式设误的概念 遗漏一个关键变量能导致误差与某些解释变量之间的相关,从而通常导致所有的 OLS 估计量都是偏误和不一致的。在遗漏的变量是模型中一个解释变量的函数的特殊情形下,模 型就存在函数形式误设的问题。遗漏自变量的函数并不是模型出现函数形式误设的唯一方 式。
②用戴维森—麦金农检验拒绝了式(d),这并不意味着式(c)就是正确的模型。模型 (d)可能会因多种误设的函数形式而被拒绝。
③在比较因变量不同那么就不能得到上面的综合嵌套模型。
二、对无法观测解释变量使用代理变量 1.代理变量 代理变量就是某种与我们在分析中试图控制而又无法观测的变量相关的东西。例如,人 的能力无法观测,可以使用 IQ 得分作为能力的一个代理变量。 (1)遗漏变量问题的植入解 假设在有 3 个自变量的模型中,其中有两个自变量是可以观测的,解释变量 x3 观测不 到:
伍德里奇《计量经济学导论》笔记和课后习题详解(一个经验项目的实施)【圣才出品】

第19章一个经验项目的实施19.1 复习笔记一、问题的提出提出一个非常明确的问题,其重要性不容忽视。
如果没有明确阐述假设和将要估计的模型类型,那么很可能会忘记收集某些重要变量的信息,或是从错误的总体中取样,甚至收集错误时期的数据。
1.查找数据的方法《经济文献杂志》有一套细致的分类体系,其中每篇论文都有一组标识码,从而将其归于经济学的某一子领域之中。
因特网(Internet)服务使得搜寻各种主题的已发表论文更为方便。
《社会科学引用索引》(Social Sciences Citation Index)在寻找与社会科学各个领域相关的论文时非常有用,包括那些时常被其他著作引用的热门论文。
网络搜索引擎“谷歌学术”(Google Scholar)对于追踪各类专题研究或某位作者的研究特别有帮助。
2.构思题目时首先应明确的几个问题(1)要使一个问题引起人们的兴趣,并不需要它具有广泛的政策含义;相反地,它可以只有局部意义。
(2)利用美国经济的标准宏观经济总量数据来进行真正原创性的研究非常困难,尤其对于一篇要在半个或一个学期之内完成的论文来说更是如此。
然而,这并不意味着应该回避对宏观或经验金融模型的估计,因为仅增加一些更新的数据便对争论具有建设性。
二、数据的收集1.确定适当的数据集首先必须确定用以回答所提问题的数据类型。
最常见的类型是横截面、时间序列、混合横截面和面板数据集。
有些问题可以用任何一种数据结构进行分析。
确定收集何种数据通常取决于分析的性质。
关键是要考虑能够获得一个足够丰富的数据集,以进行在其他条件不变下的分析。
同一横截面单位两个或多个不同时期的数据,能够控制那些不随时间而改变的非观测效应,而这些效应通常使得单个横截面上的回归失效。
2.输入并储存数据一旦你确定了数据类型并找到了数据来源,就必须把数据转变为可用格式。
通常,数据应该具备表格形式,每次观测占一行;而数据集的每一列则代表不同的变量。
(1)不同类型数据的输入要求①对时间序列数据集来说,只有一种合理的方式来进行数据的输入和存储:即以时间为序,最早的时期列为第一次观测,最近的时期列为最后一次观测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
βˆ1 的不一致性为:
plimβˆ1 β Cov x1,u /Var x1
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 5 章 多元回归分析:OLS 的渐近性
5.1 复习笔记
一、一致性
1.定理 5.1:OLS 的一致性
在假定 MLR.1~MLR.4 下,对所有的 j=0,1,2,…,k,OLS 估计量 βˆ j 都是 βj 的一
致估计。
其次,零条件均值假定意味着已经正确地设定了总体回归函数(PRF)。也就是说,在 假定 MLR.4 下,可以得到解释变量对 y 的平均值或期望值的偏效应。如果只使用假定 MLR.4',那么,β0+β1x1+β2x2+…+βkxk 就不一定代表了总体回归函数,也就面临着 xj 的某些非线性函数可能与误差项相关的可能性。
三、OLSHale Waihona Puke 的渐近有效性4 / 162
圣才电子书
1.简单回归模型
标准正态分布在式中出现的方式与 tn-k-1 分布不同。这是因为这个分布只是一个近似。
实际上,由于随着自由度的变大,tn-k-1 趋近于标准正态分布,所以如下写法也是合理的:
βˆj βj
/ se
βˆ j
a
~ tnk 1
2.其他大样本检验:拉格朗日乘数统计量
(1)包含 k 个自变量的多元回归模型
①假定 MLR.4'是一个更自然的假定,因为它直接得到普通最小二乘估计值。
②使用假定 MLR.4 的原因
1 / 162
圣才电子书 十万种考研考证电子书、题库视频学习平台
首先,如果 E(u|x1,x2,…,xk)=0 与任何一个 xj 相关,那么,在假定 MLR.4' 下,普通最小二乘估计量都是有偏误(但一致)的。
LM 统计量仅要求估计约束模型。于是,假定进行了如下回归
y= β%0+ β%1x1+ β%kq xkq+u%
式中“~”表示估计值都来自约束模型。u%表示约束模型的残差。如果被排除变量 xk-
q+1 到 xk 在总体中的系数都为零,那么应该与样本中这些变量中的每一个都不相关,至少近
似无关。
进行 u%对 x1,x2,…,xk 的辅助回归,辅助回归是用来计算一个检验统计量,但回归系
(2)σ2 是 σ2=Var(u)的一个一致估计量。
(3)对每个 j,都有:
βˆj βj
/ se
βˆ j
a
~ Normal 0,1
其中, se βˆ j 就是通常的 OLS 标准误。
定理 5.2 的重要之处在于,它去掉了正态性假定 MLR.6。对误差分布唯一的限制是,
它具有有限方差。还对 u 假定了零条件均值(MLR.4)和同方差性(MLR.5)。
因为 Var(x1)>0,所以,若 x1 和 u 正相关,则 βˆ1 的不一致性就为正,而若 x1 和 u 负相关,则 βˆ1 的不一致性就为负。如果 x1 和 u 之间的协方差相对于 x1 的方差很小,那么这
种不一致性就可以被忽略。由于 u 是观测不到的,所以甚至还不能估计出这个协方差有多 大。
二、渐近正态和大样本推断 1.定理 5.2:OLS 的渐近正态性 在高斯-马尔可夫假定 MLR.1~MLR.5 下, (1)
y=β0+β1x1+…+βkxk+u 检验这些变量中最后 q 个变量是否都具有零总体参数。
虚拟假设:H0:βk-q+1=0,…,βk=0,它对模型施加了 q 个排除性约束。 对立假设:这些参数中至少有一个异于零。
3 / 162
圣才电子书 十万种考研考证电子书、题库视频学习平台
数没有直接意义。
样本容量乘以辅助回归式的 R2,渐近服从一个自由度为 q 的 χ2 随机变量的分布。LM
统计量有时也被称为 n-R2 统计量。
(2)q 个排除性约束的拉格朗日乘数统计量
①将 Y 对施加限制后的自变量集进行回归,并保留残差;
②将对所有自变量进行回归,并得到 R2,记为 Ru2 ;
③计算 LM nRu2 ;
2 / 162
圣才电子书 十万种考研考证电子书、题库视频学习平台
n
βˆ j β j
a
~ Normal
0, σ 2
/
a
2 j
σ 2 / a2j 0 是 n βˆ j β j 的渐近方差;斜率系数,
a2
plim
n1
n
rˆij2
i1
rˆ 其中 ij 是 Xj 对其余自变量进行回归所得到的残差。 βˆ j 为渐近正态分布的。
④将
LM
与
χ
2 q
分布中适当的临界值
c
相比较,如果
LM>c,就拒绝虚拟假设。
(3)与 F 统计量比较
与 F 统计量不同,无约束模型中的自由度在进行 LM 检验时没有什么作用。所有起作用
的因素只是被检验约束的个数(q)、辅助回归 R2 的大小( Ru2 )和样本容量(n)。无约束 模型中的 df 不起什么作用,这是因为 LM 统计量的渐近性质。但必须确定将 Ru2 乘以样本容 量以得到 LM,如果 n 很大, Ru2 看上去较低的值仍可能导致联合显著性。
给定 Var(x1)≠0,因为 Cov(x1,u)=0,可以使用概率极限的性质得到:
p lim βˆ1 β1 Cov x1,u / Var x1 β1
(2)假定 MLR.4'(零均值和零相关)
对所有的 j=1,2,…,k,都有 E(u)=0 和 Cov(x1,u)=0。
假定 MLR.4'与假定 MLR.4 的比较:
(1)证明过程
写下 βˆ1 的公式,然后将 yi=β1+β1X1+ui 代入其中便得到:
n
n
xi1 x1 yi
n1 xi1 x1 ui
βˆ1
i 1 n
β1
i 1 n
xi1 x1 2
n1
xi1 x1 2
i 1
i 1
在分子和分母中应用大数定律,则分别依概率收敛于总体值 Cov(x1,u)和 Var(x1)。