计量经济学(伍德里奇第五版中文版)答案

合集下载

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第17章 限值因变量模型和样本选择纠正【圣才

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第17章 限值因变量模型和样本选择纠正【圣才

第17章限值因变量模型和样本选择纠正17.1复习笔记一、二值响应的对数单位和概率单位模型1.线性概率模型的不足(1)拟合出来的概率可能小于0或大于1;(2)任何一个解释变量(以水平值形式出现)的偏效应都是不变的。

二值响应模型的核心是响应概率:()()12P 1x P 1 k y y x x x ===⋅⋅⋅,,,其中,用x 表示全部解释变量所构成的集合。

2.设定对数单位和概率单位模型(1)二值响应模型在LPM 中,响应概率对一系列参数j β是线性的,为避免LPM 的局限性,考虑二值响应模型:()()()01101x k k P y G x x G x βββββ==++⋅⋅⋅+=+其中,G 是一个取值范围严格介于0和1之间的函数:对所有实数z,都有0﹤G(z)﹤1。

这就确保估计出来的响应概率严格地介于0和1之间。

(2)函数G 的各种非线性形式①对数单位模型中,G 是对数函数:()()()()exp /1exp G z z z z =+=Λ⎡⎤⎣⎦对所有的实数z,它都介于0和1之间。

它是一个标准逻辑斯蒂随机变量的累积分布函数。

②概率单位模型中,G 是标准正态的累积分布函数,可表示为积分()()()d z G z z v vφ-∞=Φ≡⎰其中,()z φ是标准正态密度函数()()()1/222exp /2z z φπ-=-也确保了对所有参数和x j 的值都严格介于0和1之间。

③两个模型中G 函数都是增函数,在z=0时增加的最快,在z →-∞时,()0G z →,而在z →∞时,()1G z →。

(3)两种函数形式的推导对数单位和概率单位模型都可以由一个满足经典线性模型假定的潜变量模型推导出来。

令y *为一个由0y x e ββ*=++,y=1[y *﹥0]决定的无法观测变量或潜变量。

在其中引入记号1[·]来定义一个二值结果。

函数1[·]被称为指标函数,它在括号中的事件正确时取值1,而在其他情况下取值0。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第11章 OLS用于时间序列数据的其他问题【

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第11章 OLS用于时间序列数据的其他问题【

第11章OLS 用于时间序列数据的其他问题11.1复习笔记一、平稳和弱相关时间序列1.平稳和非平稳时间序列平稳时间序列过程,就是概率分布在如下意义上跨时期稳定的时间序列过程:如果从这个序列中任取一个随机变量集,并把这个序列向前移动h 个时期,那么其联合概率分布仍然保持不变。

(1)平稳随机过程对于随机过程{ 1 2 }t x t =:,,…,如果对于每一个时间指标集121m t t t ≤<<⋅⋅⋅<和任意整数h≥1,()12m t t t x x x ⋅⋅⋅,,,的联合分布都与()12 m t h t h t h x x x ++⋅⋅⋅+,,,的联合分布相同,那么这个随机过程就是平稳的。

这种平稳经常称为严平稳,它是从概率分布的角度去定义的。

其含义之一是(取m=1和t 1=1):对所有t=2,3,…,x 1与x t 都有相同的分布。

序列{ 1 2 }t x t =:,,…是同分布的。

不平稳的随机过程称为非平稳过程。

因为平稳性是潜在随机过程而非其某单个实现的性质,所以很难判断所搜集到的数据是否由一个平稳过程生成。

但是,要指出某些序列不是平稳的却很容易。

(2)协方差平稳过程(宽平稳,弱平稳)对于一个具有有限二阶矩()2t E x ⎡⎤∞⎣⎦<的随机过程{ 1 2 }t x t =:,,…,若:(i)E(x t )为常数;(ii)Var(x t )为常数;(iii)对任何t,h≥1,Cov(x t ,x t+h )仅取决于h,而不取决于t,那它就是协方差平稳的。

协方差平稳只考虑随机过程的前两阶矩:这个过程的均值和方差不随着时间而变化,而且,x t 和x t+h 的协方差只取决于这两项之间的距离h,与起始时期t 的位置无关。

由此立即可知x t 与x t+h 之间的相关性也只取决于h。

如果一个平稳过程具有有限二阶矩,那么它一定是协方差平稳的,但反过来未必正确。

由于严平稳的条件比较苛刻,在实际中从概率分布的角度去验证是无法实现的,所以在实际运用中所指的平稳都是指宽平稳,即协方差平稳。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第7章含有定性信息的多元回归分析:二值(或

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第7章含有定性信息的多元回归分析:二值(或

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第7章含有定性信息的多元回归分析:二值(或第7章含有定性信息的多元回归分析:二值(或虚拟)变量7.1复习笔记一、对定性信息的描述定性信息通常以二值信息的形式出现。

在计量经济学中,二值变量最常见的称呼是虚拟变量。

二、只有一个虚拟自变量1.只有一个虚拟自变量的简单模型考虑如下决定小时工资的简单模型:001wage female educ uβδβ=+++用0δ表示female 的参数,以强调虚拟变量参数的含义。

假定零条件均值假定() 0E u female educ =,成立,那么:()()0| 1 |0 E wage female educ E wage female educ δ==-=,,由于female=1对应于女性且female=0对应于男性,所以可以简单的把模型写为:()()0| | E wage female educ E wage male educ δ=-,,这种情况可以在图形上描绘成男性与女性之间的截距变化。

男性线的截距是0β,女性线的截距是00βδ+。

由于只有两组数据,所以只需要两个不同的截距。

这意味着,除了0β之外,只需要一个虚拟变量。

因为female +male=1,意味着male 是female 的一个完全线性函数,如果使用两个虚拟变量就会导致完全多重共线性,这就是虚拟变量陷阱。

2.当因变量为log(y)时,对虚拟解释变量系数的解释在应用研究中有一个常见的设定,当自变量中有一个或多个虚拟变量时,因变量则以对数形式出现。

在这种情况下,此系数具有一种百分比解释。

当log(y)是一个模型的因变量时,将虚拟变量的系数乘以100,可解释为y 在保持所有其他因素不变情况下的百分数差异。

当一个虚拟变量的系数意味着y 有较大比例的变化时,可以得到精确的百分数差异。

一般地,如果1β是一个虚拟变量(比方说x 1)的系数,那么,当log(y)是因变量时,在x 1=1时预测的y 相对于在x 1=0时预测的y,精确的百分数差异为:()1?100exp 1β-??三、使用多类别虚拟变量1.在方程中包括虚拟变量的一般原则如果回归模型具有g 组或g 类不同截距,那就需要在模型中包含g-1个虚拟变量和一个截距。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第2章 简单回归模型【圣才出品】

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第2章 简单回归模型【圣才出品】

第2章简单回归模型2.1复习笔记一、简单回归模型的定义1.简单线性回归模型一个简单的方程是:01y x uββ=++假定方程在所关注的总体中成立,它便定义了一个简单线性回归模型。

因为它把两个变量x 和y 联系起来,所以又把它称为两变量或者双变量线性回归模型。

变量u 称为误差项或者干扰项,表示除x 之外其他影响y 的因素。

1β就是y 与x 的关系式中的斜率参数,表示在其他条件不变的情况下,x 变化一个单位y 平均变化。

0β被称为截距参数,在一般的模型中除非有很强的理论依据说明模型没有截距项,否则一般情况下都要带上截距项。

2.回归术语表2-1简单回归的术语3.零条件均值假定(1)零条件均值u 的平均值与x 值无关。

可以把它写作:()()|E u x E u =当方程成立时,就说u 的均值独立于x。

(2)零条件均值假定的意义①零条件均值假定给出1β的另一种非常有用的解释。

以x 为条件取期望值,并利用()|0E u x =,便得到:()01|E y x xββ=+方程表明,总体回归函数(PRF)()|E y x 是x 的一个线性函数,线性意味着x 变化一个单位,将使y 的期望值改变1β。

对任何给定的x 值,y 的分布都以()|E y x 为中心。

1β就是斜率参数。

②给定零条件均值假定()|0E u x =,把方程中的y 看成两个部分是比较有用的。

一部分是表示()|E y x 的01x ββ+,被称为y 的系统部分,即由x 解释的那一部分,另一个部分是被称为非系统部分的u,即不能由x 解释的那一部分。

二、普通最小二乘法的推导1.最小二乘估计值从总体中找一个样本。

令(){} 1 i i x y i n =,:,…,表示从总体中抽取的一个容量为n 的随机样本。

01i i iy x u ββ=++在总体中,u 与x 不相关。

因此有:()()()0cov 0E u x u E xu ===,和用可观测变量x 和y 以及未知参数0β和1β表示为:()010E y x ββ--=()010E x y x ββ--=⎡⎤⎣⎦得到()0111ˆˆ0ni ii y x n ββ=--=∑和()0111ˆˆ0ni i ii x y x n ββ=--=∑这两个方程可用来解出0ˆβ和1ˆβ01ˆˆy x ββ=+则01ˆˆy x ββ=-一旦得到斜率估计值1ˆβ,则有:()111ˆˆ0niiii x y y x x ββ=⎡⎤---=⎣⎦∑整理后便得到:()()111ˆnniii i i i x yy x x x β==-=-∑∑根据求和运算的基本性质,有:()()211n ni i i i i x x x x x ==-=-∑∑()()()11nniii i i i x yy x x y y==-=--∑∑因此,只要有()21nii x x =->∑估计的斜率就为:()()()1121ˆnii i ni i xx y yx x β==--=-∑∑所给出的估计值称为0β和1β的普通最小二乘(OLS)估计值。

计量经济学伍德里奇第五版中文版)答案

计量经济学伍德里奇第五版中文版)答案

第1章解决问题的办法1.1(一)理想的情况下,我们可以随机分配学生到不同尺寸的类。

也就是说,每个学生被分配一个不同的类的大小,而不考虑任何学生的特点,能力和家庭背景。

对于原因,我们将看到在第2章中,我们想的巨大变化,班级规模(主题,当然,伦理方面的考虑和资源约束)。

(二)呈负相关关系意味着,较大的一类大小是与较低的性能。

因为班级规模较大的性能实际上伤害,我们可能会发现呈负相关。

然而,随着观测数据,还有其他的原因,我们可能会发现负相关关系。

例如,来自较富裕家庭的儿童可能更有可能参加班级规模较小的学校,和富裕的孩子一般在标准化考试中成绩更好。

另一种可能性是,在学校,校长可能分配更好的学生,以小班授课。

或者,有些家长可能会坚持他们的孩子都在较小的类,这些家长往往是更多地参与子女的教育。

(三)鉴于潜在的混杂因素 - 其中一些是第(ii)上市 - 寻找负相关关系不会是有力的证据,缩小班级规模,实际上带来更好的性能。

在某种方式的混杂因素的控制是必要的,这是多元回归分析的主题。

1.2(一)这里是构成问题的一种方法:如果两家公司,说A和B,相同的在各方面比B公司à用品工作培训之一小时每名工人,坚定除外,多少会坚定的输出从B 公司的不同?(二)公司很可能取决于工人的特点选择在职培训。

一些观察到的特点是多年的教育,多年的劳动力,在一个特定的工作经验。

企业甚至可能歧视根据年龄,性别或种族。

也许企业选择提供培训,工人或多或少能力,其中,“能力”可能是难以量化,但其中一个经理的相对能力不同的员工有一些想法。

此外,不同种类的工人可能被吸引到企业,提供更多的就业培训,平均,这可能不是很明显,向雇主。

(iii)该金额的资金和技术工人也将影响输出。

所以,两家公司具有完全相同的各类员工一般都会有不同的输出,如果他们使用不同数额的资金或技术。

管理者的素质也有效果。

(iv)无,除非训练量是随机分配。

许多因素上市部分(二)及(iii)可有助于寻找输出和培训的正相关关系,即使不在职培训提高工人的生产力。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第18章 时间序列高级专题【圣才出品】

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第18章 时间序列高级专题【圣才出品】

第18章时间序列高级专题18.1复习笔记一、无限分布滞后模型1.无限分布滞后模型令{(y t ,z t ):t=…,-2,-1,0,1,2,…}代表一个双变量时间序列过程。

将y t 与z 的当期和所有过去值相联系的一个无限分布滞后模型(IDL)为:01122t t t t ty z z z u αδδδ--=+++++…其中,z 的滞后可以一直追溯到无限过去,因此IDL 模型不要求在某个特定时刻截断滞后。

为了使IDL 模型有意义,随着j 趋于无穷大,滞后系数j δ必须趋于0。

这并不意味着2δ在数量上比1δ小,只是要求z t-1对y t 的影响必须随着j 无限递增而最终变得很小。

相应的经济含义:遥远过去的z 对y 的解释能力不如新近过去的z。

如果IDL 模型不加限制,那么是无法估计的,因为模型中有无数个参数,而只能观测到有限的样本数据。

(1)无限分布滞后模型的短期倾向01122t t t t t y z z z u αδδδ--=+++++…的短期倾向就是0δ。

假设s﹤0时,z s =0;s ﹥0时z s =1,z 1=0。

也就是说,z 在t=0时期暂时性地增加一个单位,然后又回到它的初始值0。

对所有h≥0,都有h h h y u αδ=++ ,所以有()h hE y αδ=+给定z 在0时期的一个单位的暂时变化,h δ就是E (y k )的改变值。

因为在IDL 模型中,h δ必须随着h 渐增而趋于0,所以z 的一个暂时变化对y 的期望值没有长期影响:随着h →∞,()h h E y αδα=+→。

如果z 在t 时期暂时增加一个单位,那么h δ就度量了h 个时期后y 的期望值变化。

滞后分布显示了给定z 暂时增加一个单位,未来的y 所服从的期望路径。

(2)无限分布滞后模型的长期倾向长期倾向等于所有滞后系数之和:0123LRP δδδδ=++++…因为假定j δ必须收敛于0,所以对于足够大的p,LRP 常常用01....p δδδ+++近似,LRP 度量了给定z 一个单位的永久性增加,y 的期望值的长期变化。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第9章 模型设定和数据问题的深入探讨【圣才出

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第9章 模型设定和数据问题的深入探讨【圣才出

(c)
来检验模型
y 0 1x1 2 x2 u
(d)
或者把这两个模型反过来。然而,它们是非嵌套模型,所以不能仅使用标准的 F 检验。
(1)综合模型的 F 检验
构造一个综合模型,将每个模型都作为一个特殊情形而包含其中,然后检验导致每个模
型的约束。在目前的例子中,综合模型为:
y 0 1x1 2 x2 3 log x1 4 log x2 u
y 0 1x1 2 x2 3 x3 u
但有 x3 的一个代理变量,并称之为 x3
x3 0 3 x3 v3
其中,v3 是因 x3 与 x3 并非完全相关所导致的误差。参数 3 度量了 x3 与 x3 之间的关系。 x3 和 x3 正相关,所以 δ3 0 。如果 δ3 0 ,则 x3 不是 x3 合适的代理变量。截距 δ0 ,是容许 x3
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 9 章 模型设定和数据问题的深入探讨
9.1 复习笔记
一、函数形式设误 1.函数形式设误的概念 遗漏一个关键变量能导致误差与某些解释变量之间的相关,从而通常导致所有的 OLS 估计量都是偏误和不一致的。在遗漏的变量是模型中一个解释变量的函数的特殊情形下,模 型就存在函数形式误设的问题。遗漏自变量的函数并不是模型出现函数形式误设的唯一方 式。
②用戴维森—麦金农检验拒绝了式(d),这并不意味着式(c)就是正确的模型。模型 (d)可能会因多种误设的函数形式而被拒绝。
③在比较因变量不同那么就不能得到上面的综合嵌套模型。
二、对无法观测解释变量使用代理变量 1.代理变量 代理变量就是某种与我们在分析中试图控制而又无法观测的变量相关的东西。例如,人 的能力无法观测,可以使用 IQ 得分作为能力的一个代理变量。 (1)遗漏变量问题的植入解 假设在有 3 个自变量的模型中,其中有两个自变量是可以观测的,解释变量 x3 观测不 到:

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第12章 时间序列回归中的序列相关和异方差性

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第12章 时间序列回归中的序列相关和异方差性

第12章时间序列回归中的序列相关和异方差性12.1复习笔记一、含序列相关误差时OLS 的性质1.无偏性和一致性在时间序列回归的前3个高斯—马尔可夫假定(TS.1~TS.3)之下,OLS 估计量是无偏的。

特别地,只要解释变量是严格外生的,无论误差中的序列相关程度如何,ˆjβ都是无偏的。

这类似于误差中的异方差不会造成ˆjβ产生偏误。

把严格外生性假定放松到()|0t t E u X =,并证明了当数据是弱相关的时候,ˆj β仍然是一致的(但不一定无偏)。

这一结论不以对误差中序列相关的假定为转移。

2.效率和推断高斯—马尔可夫定理要求误差的同方差性和序列无关性,所以,在出现序列相关时,OLS 便不再是BLUE 的了。

通常的OLS 标准误和检验统计量也不再确当,而且连渐近确当都谈不上。

假定误差存在序列相关,1,1,2,...,ρ-=+=tt t u u e t n ,1ρ<。

其中e t 是均值为0方差为2e σ满足经典假定的误差,对于简单回归模型:01ββ=++t t ty x u 假定x t 的样本均值为零,于是1111ˆn x t t i SST x u ββ-==+∑其中21n x t i SST x ==∑,计算1ˆβ的方差,()()22221111ˆ/2/n n n t j x t t x x t t j i i j Var SST Var x u SST SST x x βσσρ--+===⎛⎫==+ ⎪⎝⎭∑∑∑其中()2σ=t Var u 由1ˆβ的方差表达形式可知,第一项为2/xSST σ,为经典假定条件下的简单回归模型中参数的方差,所以当模型中的误差项存在序列相关时,按照OLS 估计的方差是有偏的。

在出现序列相关的时候,使用通常的OLS 标准误就不再准确。

因此,检验单个假设的t 统计量也不再正确。

因为较小的标准误意味着较大的t 统计量,所以当ρ﹥0时,通常的t 统计量常常过大。

用于检验多重假设的通常的F 统计量和LM 统计量也不再可靠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章解决问题的办法1.1(一)理想的情况下,我们可以随机分配学生到不同尺寸的类。

也就是说,每个学生被分配一个不同的类的大小,而不考虑任何学生的特点,能力和家庭背景。

对于原因,我们将看到在第2章中,我们想的巨大变化,班级规模(主题,当然,伦理方面的考虑和资源约束)。

(二)呈负相关关系意味着,较大的一类大小是与较低的性能。

因为班级规模较大的性能实际上伤害,我们可能会发现呈负相关。

然而,随着观测数据,还有其他的原因,我们可能会发现负相关关系。

例如,来自较富裕家庭的儿童可能更有可能参加班级规模较小的学校,和富裕的孩子一般在标准化考试中成绩更好。

另一种可能性是,在学校,校长可能分配更好的学生,以小班授课。

或者,有些家长可能会坚持他们的孩子都在较小的类,这些家长往往是更多地参与子女的教育。

(三)鉴于潜在的混杂因素- 其中一些是第(ii)上市- 寻找负相关关系不会是有力的证据,缩小班级规模,实际上带来更好的性能。

在某种方式的混杂因素的控制是必要的,这是多元回归分析的主题。

1.2(一)这里是构成问题的一种方法:如果两家公司,说A和B,相同的在各方面比B公司à用品工作培训之一小时每名工人,坚定除外,多少会坚定的输出从B公司的不同?(二)公司很可能取决于工人的特点选择在职培训。

一些观察到的特点是多年的教育,多年的劳动力,在一个特定的工作经验。

企业甚至可能歧视根据年龄,性别或种族。

也许企业选择提供培训,工人或多或少能力,其中,“能力”可能是难以量化,但其中一个经理的相对能力不同的员工有一些想法。

此外,不同种类的工人可能被吸引到企业,提供更多的就业培训,平均,这可能不是很明显,向雇主。

(iii)该金额的资金和技术工人也将影响输出。

所以,两家公司具有完全相同的各类员工一般都会有不同的输出,如果他们使用不同数额的资金或技术。

管理者的素质也有效果。

(iv)无,除非训练量是随机分配。

许多因素上市部分(二)及(iii)可有助于寻找输出和培训的正相关关系,即使不在职培训提高工人的生产力。

1.3没有任何意义,提出这个问题的因果关系。

经济学家会认为学生选择的混合学习和工作(和其他活动,如上课,休闲,睡觉)的基础上的理性行为,如效用最大化的约束,在一个星期只有168小时。

然后我们可以使用统计方法来衡量之间的关联学习和工作,包括回归分析,我们覆盖第2章开始。

但我们不会声称一个变量“使”等。

他们都选择学生的变量。

第2章解决问题的办法2.1(I)的收入,年龄,家庭背景(如兄弟姐妹的人数)仅仅是几个可能性。

似乎每个可以与这些年的教育。

(收入和教育可能是正相关,可能是负相关,年龄和受教育,因为在最近的同伙有妇女,平均而言,更多的教育和兄弟姐妹和教育的人数可能呈负相关)。

(ii)不会(i)部分中列出的因素,我们与EDUC。

因为我们想保持这些因素不变,它们的误差项的一部分。

但是,如果u与EDUC那么E(U | EDUC),所以SLR.4失败。

2.2方程,加减的右边,得到y =()()。

调用新的错误,故E(E)= 0。

新的拦截,但斜率仍然是。

2.3(一)让易= GPAI,XI = ACTI,和n = 8。

= 25.875,=3.2125,(十一- )(艺- )= 5.8125,(十一- )2 = 56.875。

从公式(2.9),我们得到了坡度为= 5.8125/56.875 0.1022,四舍五入至小数点后四个地方。

(2.17)= - 3.2125 - 0.1022 25.875 0.5681。

因此,我们可以这样写= 0.5681 + 0.1022 ACT每组8只。

拦截没有一个有用的解释,因为使不接近零的人口的利益。

,如果ACT是高5点,增加0.1022(5)= .511。

(二)观察数i和GPA的拟合值和残差- 四舍五入至小数点后四位- 随着于下表:íGPA1 2.8 2.7143 0.08572 3.4 3.0209 0.37913 3.0 3.2253 - 0.22534 3.5 3.3275 0.17255 3.6 3.5319 0.06816 3.0 3.1231 - 0.12317 2.7 3.1231 - 0.42318 3.7 3.6341 0.0659您可以验证的残差,表中报告,总结到,这是非常接近零,由于固有的舍入误差。

(ⅲ)当ACT = 20 = 0.5681 + 0.1022(20)2.61。

(iv)本残差平方和,大约是0.4347(四舍五入至小数点后四位),正方形的总和,(YI - )2,大约是1.0288。

因此,R-平方的回归R2 = 1 - SSR / SST 1 - (.4347/1.0288).577的。

因此,约57.7%的GPA的变化解释使学生在这个小样本。

2.4(I)的CIGS = 0,预测出生体重是119.77盎司。

当CIGS = 20,= 109.49。

这是关于一个8.6%的降幅。

(ii)并非必然。

还有许多其他的因素,可以影响新生儿的体重,尤其是整体健康的母亲和产前护理质量。

这些可以与吸烟密切相关,在分娩期间。

此外,如咖啡因消费的东西可以影响新生儿的体重,也可能与吸烟密切相关。

(三)如果我们想预测125 bwght,然后CIGS =(125 - 119.77)/(- .524)-10.18,或约-10香烟!当然,这完全是无稽之谈,并表明会发生什么,当我们试图预测复杂,出生时体重只有一个单一的解释变量的东西。

最大的预测出生体重必然是119.77。

然而,近700个样品中有出生出生体重高于119.77。

(四)1,176 1,388名妇女没有在怀孕期间吸烟,或约84.7%。

因为我们使用的唯一的的CIGS 解释出生体重,我们只有一个预测出生体重在CIGS = 0。

预测出生体重必然是大致中间观察出生体重在CIGS = 0,所以我们会根据预测高出生率。

2.5(i)本截距意味着,,当INC = 0,缺点被预测为负124.84美元。

,当然,这不可能是真实的,反映了这一事实,在收入很低的水平,这个消费函数可能是一个糟糕的预测消费。

另一方面,在年度基础上,124.84美元至今没有从零。

(二)只需插上30,000入公式:= -124.84 + .853(30,000)= 25,465.16元。

(iii)该MPC和APC的是在下面的图表所示。

尽管截距为负时,样品中的最小的APC是正的。

图开始以每年1,000元(1970美元)的收入水平。

2.6(i)同意。

如果生活密切焚化炉抑制房价过快上涨,然后越远,增加住房价格。

(ii)若选择的城市定位在一个地区焚化炉远离更昂贵的街区,然后登录(区)呈正相关,与房屋质量。

这将违反SLR.4,OLS估计是有失偏颇。

(三)大小的房子,浴室的数量,很多的大小,年龄,家庭,居委会(包括学校质量)质量,都只是极少数的因素。

正如前面提到的(ii)部分,这些肯定会被分派[日志(DIST)]的相关性。

2.7(一)当我们条件的公司在计算的期望,成为一个常数。

所以E(U | INC)= E(E | INC)= E(E | INC)= 0,因为E(E | INC)= E(E)= 0。

(2)同样,当我们条件的公司在计算方差,成为一个常数。

所以V AR(U | INC)= V AR(E | INC)=()2V AR(E | INC)INC,因为V AR(E | INC)=。

(三)家庭收入低没有对消费有很大的自由裁量权,通常情况下,一个低收入的家庭必须花费在食品,服装,住房,和其他生活必需品。

收入高的人有更多的自由裁量权,有些人可能会选择更多的消费,而其他更节省。

此酌情权,建议在收入较高的家庭储蓄之间的更广泛的变异。

第2.8(i)从方程(2.66),= /。

堵在义给人= /。

标准代数后,分子可以写为。

把这个分母显示,我们可以写。

西安条件,我们有E()因为E(UI)对于所有的i = 0。

因此,偏置在这个方程中的第一项由下式给出。

这种偏见显然是零,当。

也为零时,= 0,= 0这是相同的。

在后者的情况下,通过原点的回归是回归截距相同。

(ii)从最后一个表达式部分(i)我们有,有条件兮,(VAR)= V AR === /。

(iii)由(2.57),V AR()。

从心领神会,,所以无功():()。

看,这是一种更直接的方式来写,这是小于除非= 0 =。

(ⅳ)对于一个给定的样本大小,偏置的增加(保持在固定的总和)的增加。

但增加的方差相对增加(V AR)。

偏置也是小的,小的时候。

因此,无论是我们优选的平均平方误差的基础上取决于大小,和n(除的大小)。

2.9(i)我们按照提示,注意到=(样本均值为C1义的样本平均)=。

当我们:回归c1yi c2xi (包括截距)我们使用公式(2.19)获得的斜率:(2.17),我们得到的截距=(C1)- (C2)=(C1)- [(C1/C2)](C2)= C1(- )= C1),因为拦截从回归毅喜(- )。

(ii)我们使用相同的方法,伴随着一个事实,即(i)部分= C1 + C2 +。

因此,=(C1 +易)- (C1 +)=易- (C2 + XI)- = XI - 。

因此,C1和C2完全辍学的回归(C1 +毅)(C2 + XI)和=的斜率公式。

截距= - =(C1 +)- (C2 +)=()+ C1 - C2 = C1 - C2,这就是我们想向大家展示。

(三),我们可以简单地适用(ii)部分,因为。

换言之,更换C1与日志(C1),易建联与日志(彝族),并设置C2 = 0。

(iv)同样的,我们可以申请C1 = 0和更换C2日志(C2)和xi日志(十一)(ii)部分。

如果原来的截距和斜率,然后。

2.10(一)该推导基本上是在方程(2.52),一旦带内的求和(这是有效的,因为不依赖于i)。

然后,只需定义。

(ⅱ)由于我们表明,后者是零。

但是,从(i)部分,因为是两两相关(他们是独立的),(因为)。

因此,(iii)本的OLS拦截的公式,堵在给(4)因为是不相关的,,这就是我们想向大家展示。

(五)使用提示和替代给2.11(一)我们想要,随机指定小时数,这样在准备课程时间不受其他因素影响性能的SAT。

然后,我们将收集信息为每一个学生的SA T分数在实验中产生的数据集,其中n是我们可以负担得起的学生人数在研究。

从公式(2.7),我们应该试图得到尽可能多的变化是可行的。

(二)这里有三个因素:先天的能力,家庭收入,和一般健康检查当天上。

如果我们认为具有较高的原生智慧的学生认为,他们不需要准备SA T,能力和时间呈负相关。

家庭收入可能会与时间呈正相关,因为高收入家庭可以更容易负担得起的预备课程。

排除慢性健康问题,健康考试当天应大致准备课程的时间无关。

(iii)倘预备课程是有效的,应该是积极的:,应加大坐在其他因素相等,增加小时。

相关文档
最新文档