能被7整除数
(完整版)常见数字整除判定法则

2、4、8、5、25、125整除判定
1.能被2(或5)整除的数,末一位数字能被2(或5)整除;
2.能被4(或25)整除的数,末两位数字能被4(或25)整除;
3.能被8(或125)整除的数,末三位数字能被8(或125)整除;
4.一个数被2(或5)除得的余数,就是其末一位数字被2(或5)除得的余数
5.一个数被4(或25)除得的余数,就是其末两位数字被4(或25)除得的余数
6.一个数被8(或125)除得的余数,就是其末三位数字被8(或125)除得的余数
3、9整除判定
1.能被3(或9)整除的数,各位数字和能被3(或9)整除。
2.一个数被3(或9)除得的余数,就是其各位相加后被3(或9)除得的余数。
11整除判定
1.能被11整除的数,奇数位的和与偶数位的和之差,能被11整除。
7整除判定
1.能被7整除的数,末三位与前位数的差,能被7整除。
2.能被7整除的数,末一位的两倍与前位数的差,能被7整除。
能被2、3、5、7、11、13、17、19整除的数的特征

【数学】能被2、3、5、7、11、13、17、19整除的数的特征★★能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍感)能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。
例如:判断491678能不能被11整除。
—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。
这种方法叫“奇偶位差法”。
除上述方法外,还可以用割减法进行判断。
即:从一个数里减去11的10倍、20倍、30倍……到余下一个100以内的数为止。
如果余数能被11整除,那么,原来这个数就一定能被11整除。
又如:判断583能不能被11整除。
用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除。
能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
如果数字仍然太大不能直接观察出来,就重复此过程。
如:判断1284322能不能被13整除。
128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。
被7整除的数的特征

被7整除的数的特征首先,我们来看一下7的倍数的特征。
一个数如果是7的倍数,那么它一定可以被7整除,余数为0。
换句话说,如果一个数能够被7整除,那么该数与7的余数一定为0。
这是被7整除的最基本的特征。
在这个基本特征的基础上,我们可以进一步探讨被7整除的数的其他特征。
我们可以将一个大的数,例如527,分解为多个小的部分,来判断这个数是否能够被7整除。
具体来说,我们可以用数的各位数字与7的倍数的特征相结合,来判断这个数是否能够被7整除。
举个例子来说,我们来看一个三位数:432、如果我们将这个数分解成各个位上的数字,即4、3和2,然后用它们做一些数学运算,我们可以得到如下结果:4*10^2+3*10^1+2*10^0=400+30+2=432现在我们可以使用这个公式来检查这个三位数是否能够被7整除。
首先,我们可以将4*100、3*10和2*1相加,得到400+30+2=432、然后,我们检查这个和是否能够被7整除。
如果能够整除,那么这个三位数就是7的倍数。
对于更大的数,我们可以重复上述步骤。
例如,对于一个四位数1092,我们可以将它分解为1*1000+0*100+9*10+2*1,然后将这些数字相加得到1092、我们再次检查1092是否能够被7整除。
如果可以整除,那么这个四位数就是7的倍数。
上述方法对于任意大的数都是适用的。
无论是五位数、六位数还是更多位数,我们都可以将其分解为各位数字的和,然后检查这个和是否能够被7整除。
但是,为了更方便地进行判断,我们还可以使用另一种方法,称为"7的重复法"。
这种方法通过重复地将原数的最后一位数字(个位)减去前面各位数字的9倍,直到得到一个能够被7整除的数为止。
如果最后得到的数能够被7整除,那么原数也能够被7整除。
让我们以一个例子来说明这种方法。
我们来看一个四位数:5271、按照"7的重复法",我们首先从个位开始,将7*0(前面各位数字的9倍)减去个位数字1,得到7*0-1=-1、接下来,将7*-1减去十位数字7,得到7*-1-7=-8、再继续将7*-8减去百位数字2,得到7*-8-2=-54、最后,将7*-54减去千位数字5,得到7*-54-5=-379、由于-379是一个负数,我们需要取它的绝对值,即379、我们再次检查379是否能够被7整除。
能被7-11-13整除的数规律

若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
能被9整除的数的规律规律:能被9整除的数,这个数的所有位上的数字的和一定能被9整除。
能被11整除的数的规律若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
11的倍数检验法:去掉个位数,再从余下的数中,减去个位数,如果差是11的倍数,则原数能被11整除。
如果差太大或心算不易看出是否11的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断132是否11的倍数的过程如下:13-2=11,所以132是11的倍数;又例如判断10901是否11的倍数的过程如下:1090-1=1089 ,108-9=99,所以10901是11的倍数,余类推。
相当于1000除以13余-1,那么1000^2除以13余1(即-1的平方),1000^3除以13余-1,……所以对一个位数很多的数(比如:51 578 953 270),从右向左每3位隔开从右向左依次加、减,270-953+578-51=-156能被13整除,则原数能被13整除什么样的数能被7和11和13整除有什么规律是分开来的三个问题还是同时被这三个整除?若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
数的整除特征(1--11)

数的整除特征
1.能被2整除的数的特征:
个位是:0、2、4、6、8.
2.能被3整除的数的特征:
各位数字之和是3的倍数。
3.能被4整除的数的特征:
一个数的末尾2位数能被4整除。
4.能被5整除的数的特征:
个位是0或5.
5.能被6整除的数的特征:
个位数字是:0、2、4、6、8.且各位数字之和是3的倍数。
6.能被7整除的数的特征:
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
7.能被8整除的数的特征:
若一个整数的末尾三位数能被8整除,则这个数能被8整除。
8.能被9整除的数的特征:
若一个整数的数字和能被9整除,则这个整数能被9整除。
9.能被10整除的数的特征:
个位是0。
10 . 能被11整除的数的特征:
若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
判断一个数能否被整除的方法

一个数能否被整除的判断方法
能被2整除的数:若一个整数个位上是偶数,则这个数能被
2整除。
能被3整除的数:若一个整数的数字之和能被3整除,则这
个数能被3整除。
能被4整除的数:若一个整数的末尾两位数能被4整除,则
这个数能被4整除。
能被5整除的数:若一个整数的末位是0或5,则这个数能
被5整除。
能被6整除的数:若一个整数能被2和3整除,则这个数能
被6整除。
能被7整除的数:若一个整数的个位之前的数字,减去个位
数的2倍,如果差是7的倍数,则原数能
被7整除。
如果数值太大看不出是否7的
倍数,就需要继续上述的过程,直到能清
楚判断为止。
能被8整除的数:若一个整数的未尾三位数能被8整除,则
这个数能被8整除。
能被9整除的数:若一个整数的数字和能被9整除,则这个
整数能被9整除。
能被10整除的数:若一个整数的末位是0,则这个数能被
10整除。
能被11整除的数:若一个整数的奇位数字之和与偶位数字
之和的差能被11整除,则这个数能被
11整除。
11的倍数检验法也可用上述
检查7的「割尾法」处理!
能被12整除的数:若一个整数能被3和4整除,则这个数
能被12整除。
能被13整除的数:若一个整数的个位数字截去,再从余下
的数中,加上个位数的4倍,如果差是
13的倍数,则原数能被13整除。
能被7 11 13整除的数规律

能被七整除得数规律若一个整数得个位数字截去,再从余下得数中,减去个位数得2倍,如果差就是7得倍数,则原数能被7整除。
如果差太大或心算不易瞧出就是否7得倍数,就需要继续上述「截尾、倍大、相减、验差」得过程,直到能清楚判断为止。
例如,判断133就是否7得倍数得过程如下:13-3×2=7,所以133就是7得倍数;又例如判断6139就是否7得倍数得过程如下:613—9×2=595 ,59-5×2=49,所以6139就是7得倍数,余类推。
能被9整除得数得规律规律:能被9整除得数,这个数得所有位上得数字得与一定能被9整除。
能被11整除得数得规律若一个整数得奇位数字之与与偶位数字之与得差能被11整除,则这个数能被11整除.11得倍数检验法:去掉个位数,再从余下得数中,减去个位数,如果差就是11得倍数,则原数能被11整除。
如果差太大或心算不易瞧出就是否11得倍数,就需要继续上述「截尾、倍大、相减、验差」得过程,直到能清楚判断为止.例如,判断132就是否11得倍数得过程如下:13-2=11,所以132就是11得倍数;又例如判断10901就是否11得倍数得过程如下:1090—1=1089,108-9=99,所以10901就是11得倍数,余类推.被13整除得数规律相当于1000除以13余-1,那么1000^2除以13余1(即-1得平方),1000^3除以13余-1,……所以对一个位数很多得数(比如:51578 953270),从右向左每3位隔开从右向左依次加、减,270—953+578—51=—156能被13整除,则原数能被13整除什么样得数能被7与11与13整除???有什么规律就是分开来得三个问题还就是同时被这三个整除?若一个整数得个位数字截去,再从余下得数中,减去个位数得2倍,如果差就是7得倍数,则原数能被7整除。
如果差太大或心算不易瞧出就是否7得倍数,就需要继续上述「截尾、倍大、相减、验差」得过程,直到能清楚判断为止。
能被1—31整除的数的特征

能被1—31整除的数的特征能被质数整除的数的特征(1—31)7-2 11-1 13+4 17-5 19+2 23+7 29+3 31-3能被2整除:偶数。
能被3整除:各个数位的和,是3的倍数。
能被5整除:个位为0或5。
能被7整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的2倍,差是7的倍数。
例如,6139是否7的倍数?613-9×2=595,59-5×2=49,所以6139是7的倍数。
方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是7的倍数。
例如,6139是否7的倍数?139-6=133,所以6139是7的倍数。
能被11整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数,差是11的倍数。
方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是11的倍数。
方法3:奇数位的和减去偶数位的和,差是11的倍数。
能被13整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的4倍,和是13的倍数。
方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是13的倍数。
能被17整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的5倍,差是17的倍数。
方法2(能被17、19整除类似):末三位数与3倍的非末三位数的差,是17的倍数。
能被19整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的2倍,和是19的倍数。
方法2(能被17、19整除类似):末三位数与7倍的非末三位数的差,是19的倍数。
能被23整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的7倍,和是23的倍数。
方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是23的倍数。
能被29整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的3倍,和是29的倍数。
方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是29的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、能被4整除的数的特征
若一个整数的末尾两位数能被4整除,则这个数能被4整除.
练习:2146 985 1489 5140 6512 782 982 4529 4556 55252 1025 1000 8512 7891
二、能被7整除的数的特征
把一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样一次次减下去,如果最后的结果是7的倍数(包括0),那么原来这个数就一定能被7整除。
我们称为割减法。
例1:判断3164能不能被7整除。
316-4×2=308 30-8×2=14
因为14是7的倍数,所以3164能被7整除。
练习:1015
45661
62745
6014
8735
697
三、能被9整除的数的特征
若一个整数的数字和能被9整除,则这个整数能被9整除.
如:86751,8+6+7+5+1=27,27是9的3倍,所以86751能被9整除.
练习:1236 465
486 520
4875 5662
8899 556
测试:
1、下面的数分别能被几整除
746 256 4562 5993 699 256 1280 456 336 25969 233 8550 559 663 599 2596 123 2236 8890 206 305 489 136 456 能被4整除的数:
能被7整除的数:
能被9整除的数:
2、任意写出4个能被4和9整除的四位数:
3、任意写出4个能被7和9整除的三位数:
拓展:如果一个整数能被2和3整除,则这个数能被6整除.
如果一个整数能被3和4整除,则这个数能被()整除.
练习:4525 599 110 362 5252 9332 2222 456 552 669 810 605 460 930 8945 7788。