1.1集合的概念基础练习题

合集下载

高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(52)

高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(52)
故选:A
3.已知 , ,且 ,则( )
A. B. C. D.
答案:B
解析:根据集合的包含关系可求得 的取值范围.
详解:
, ,且 , .
故选:B.
4.能够组成集合的是( )
A.与2非常数接近的全体实数
B.很著名的科学家的全体
C.某教室内的全体桌子
D.与无理数π相差很小的数
答案:C
解析:由集合中元素的特征:确定性、互异性、无序性,进行判断即可
1.1 集合的概念
一、单选题
1.已知集合 ,集合 ,若 ,则实数 的值是( )
A.0B. C.0或 D.0或
答案:C
解析:计算 ,考虑 , , 三种情况,计算得到答案.
详解:
, ,
当 时, , ;当 时, , ;当 时, .
即 或 或 .
故选:C.
2.已知 小于 的自然数},则( )
A. B. C. D.
故答案为:
2.已知 ,则实数 的值是_________.
答案:-1
解析:试题分析:
考点:元素互异性
【名师点睛】对于集合中含有参数的问题,要注意将得到的参数的值代回集合中,对解出的元素进行检验,判断是否满足集合中元素的互异性.
3.已知集合 ,则实数 的取值范围为__________.
答案:
解析:根据题意得 ,解不等式即可得答案
点睛:
本题考查了一元二次不等式的解法,属于基础题.
7.设集合 , ,则下列关系中正确的是( )
A. B. C. D.
答案:C
解析:根据元素与集合之间的关系,即可求出结果.
详解:
由题意可知, ,所以 ,故选C.
点睛:
本题主要考查了元素与集合之间的关系.

1.1集合的基本概念练习题(含答案)

1.1集合的基本概念练习题(含答案)

集合的基本概念练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.集合M={(x,y)|xy>0,x+y<0,x∈R,y∈R}是()A.第一象限的点集B.第二象限的点集C.第三象限的点集D.第四象限的点集【答案】C【分析】利用不等式的性质可得x<0,y<0,进而判断出集合的意义.【详解】由xy>0,x+y<0⇔x<0,y<0,故集合M={(x,y)|xy>0,x+y<0,x∈R,y∈R}是第三象限的点集.故选:C.2.集合{x∈N|x−2<2}用列举法表示是()A.{1,2,3}B.{1,2,3,4}C.{0,1,2,3,4}D.{0,1,2,3}【答案】D【分析】解不等式x−2<2,结合列举法可得结果.【详解】{x∈N|x−2<2}={x∈N|x<4}={0,1,2,3}.故选:D.3.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.4【答案】A【分析】根据x,y为整数,分析所有可能的情况求解即可【详解】当x=−1时,y2≤2,得y=−1,0,1,当x=0时,y2≤3,得y=−1,0,1当x=1时,y2≤2,得y=−1,0,1即集合A中元素有9个,故选:A.4.已知集合M={x∣x2+x=0},则()A.{0}∈M B.∅∈M C.−1∉M D.−1∈M 【答案】D【分析】先求得集合M,再根据元素与集合的关系,集合与集合的关系可得选项.【详解】因为集合M={x∣x2+x=0}={0,−1},所以−1∈M,故选:D.5.已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}【答案】D【分析】根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可【详解】由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B={−2,−1,0,1,2}故选:D6.若集合A={1,m2},集合B={2,4},若A∪B={1,2,4},则实数m的取值集合为()A.{−√2,√2}B.{2,√2}C.{−2,2}D.{−2,2,−√2,√2}【答案】D【分析】由题中条件可得m2=2或m2=4,解方程即可.【详解】因为A={1,m2},B={2,4},A∪B={1,2,4},所以m2=2或m2=4,解得m=±√2或m=±2,所以实数m的取值集合为{−2,2,−√2,√2}.故选:D.二、多选题7.下列结论不正确的是()A.1∈N B.√2∈Q C.0∈N∗D.−3∈Z【答案】BC【分析】根据N、Q、N∗、Z表示的数集,结合元素与集合之间的关系即可做出判断.【详解】由N表示自然数集,知1∈N,故A正确;由√2为无理数且Q表示有理数集,知√2∉Q,故B错;由N∗表示正整数集,知0∉N∗,故C错;由Z表示整数集,知−3∈Z,故D正确.故选:BC.8.已知集合A={y|y=x2+1},集合B={x|x>2},下列关系正确的是()A.B⊆A B.A⊆B C.0∉A D.1∈A【答案】ACD【解析】求出集合A,利用元素与集合、集合与集合的包含关系可得出结论.【详解】∵A={y|y=x2+1}={y|y≥1},B={x|x>2},所以,B⊆A,0∉A,1∈A.故选:ACD.三、填空题9.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]= {5n+k|n∈Z},k=0,1,2,3,4;给出下列四个结论:①2015∈[0];①−3∈[3];①Z=[0]∪[1]∪[2]∪[3]∪[4];①“整数a,b属于同一‘类’”的充要条件是“a−b∈[0]”.其中,正确结论的个数..是_______.【答案】3【分析】根据2015被5除的余数为0,可判断①;将−3=−5+2,可判断①;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断①;令a=5n1+m1,b=5n2+m2,根据“类”的定理可证明①的真假.【详解】①由2015÷5=403,所以2015∈[0],故①正确;①由−3=5×(−1)+2,所以−3∉[3],故①错误;①整数集就是由被5除所得余数为0,1,2,3,4的整数构成,故①正确;①假设a=5n1+m1,b=5n2+m2,a−b=5(n1−n2)+m1−m2,a,b要是同类.则m1=m2,即m1−m2=0,所以a−b∈[0],反之若a−b∈[0],即m1−m2=0,所以m1=m2,则a,b是同类,①正确;故答案为:3【点睛】本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理,属中档题.10.已知集合A={12,a2+4a,a−2},且−3∈A,则a=_________.【答案】-3【分析】由集合A={12,a2+4a,a−2},且−3∈A,得a2+4a=−3或a−2=−3,由此能求出结果.【详解】解:∵集合A={12,a2+4a,a−2},且−3∈A,∴a2+4a=−3或a−2=−3,解得a=−1,或a=−3,当a=−1时,A={12,−3,−3},不合题意,当a=−3时,A={12,−3,−5},符合题意.综上,a=−3.故答案为:−3.11.用∈或∉填空:0________N【答案】∈【解析】可知0是自然数,即可得出.【详解】∵0是自然数,∴0∈N.故答案为:∈.12.集合{2a,a2−a}中实数a的取值范围是________【答案】{a|a≠0且a≠3}【分析】由2a≠a2−a得结论.【详解】由题意2a≠a2−a,a≠0且a≠3,故答案为{a|a≠0且a≠3}.【点睛】本题考查集合中元素的性质:互异性,属于基础题.四、解答题13.已知集合A={x|x=m+√6n,其中m,n∈Q}.(1)试分别判断x1=−√6,x2=√2−√3√2+√3与集合A的关系;(2)若x1,x2∈A,则x1x2是否一定为集合A的元素?请说明你的理由.14.试分别用描述法和列举法表示下列集合:(1)方程x2−2=0的所有实数根组成的集合A;(2)由大于10且小于20的所有整数组成的集合B.{11,12,13,14,15,16,17,18,19}.【解析】(1)用描述法表示集合A,再解方程求出对应根,用列举法表示即可;(2)用描述法表示集合B,再列举出大于10且小于20的所有整数,用列举法表示集合B即可.【详解】(1)设x∈A,则x是一个实数,且x2−2=0.因此,用描述法表示为A={x∈R|x2−2=0}.方程x2−2=0有两个实数根√2,−√2,因此,用列举法表示为A={√2,−√2}.(2)设x∈B,则x是一个整数,即x∈Z,且10<x<20.因此,用描述法表示为B={x∈Z|10<x<20}.大于10且小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B={11,12,13,14,15,16,17,18,19}.【点睛】本题主要考查了用描述法以及列举法表示集合,属于基础题.15.已知集合A={x∈R|ax2−3x+1=0,a∈R}.(1)若1∈A,求实数a的值;(2)若集合A中仅含有一个元素,求实数a的值;(3)若集合A中仅含有两个元素,求实数a的取值范围.【答案】(1)a=2(2)a=0或a=94,a≠0}(3){a|a<94【分析】(1)将x=1代入方程求解即可;(2)分a=0、a≠0两种情况求解即可;(3)由条件可得a≠0,且Δ=(−3)2−4a>0,解出即可.(1)①1∈A,①a×12−3×1+1=0,①a=2;(2)当a=0时,x=13,符合题意;当a≠0时,Δ=(−3)2−4a=0,①a=94.综上,a=0或a=94;(3)集合A中含有两个元素,即关于x的方程ax2−3x+1=0有两个不相等的实数解,①a≠0,且Δ=(−3)2−4a>0,解得a<94且a≠0,①实数a的取值范围为{a|a<94,a≠0}.16.用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(x+1)(x2−4)=0的所有实数根组成的集合;(3)一次函数y=2x与y=x+1的图象的交点组成的集合.【答案】(1){0,2,4,6,8,10};(2){−2,−1,2}(3){(1,2)}【分析】(1)根据偶数的定义即可列举所有的偶数,(2)求出方程的根,即可写出集合,(3)联立方程求交点,进而可求集合.(1)11以内的非负偶数有0,2,4,6,8,10,所以构成的集合为{0,2,4,6,8,10},(2)(x+1)(x2−4)=0的根为x1=−1,x2=2,x3=−2,所以所有实数根组成的集合为{−2,−1,2},(3)联立y=x+1和y=2x,解得{x=1y=2,所以两个函数图象的交点为(1,2),构成的集合为{(1,2)}。

高中数学必修一人教A版1.1 集合的概念练习(含解析)(10)

高中数学必修一人教A版1.1 集合的概念练习(含解析)(10)

1.1 集合的概念一、单选题1.已知集合{}0,1,2A =,那么( )A .0A ⊆B .0A ∈C .1AD .{}0,1,2A ⋃2.已知集合{}1,A x x x Z =≤∈,则满足条件BA 的集合B 的个数为( ) A .3 B .4C .7D .83.已知集合{}14A x Z x =∈-<<,则集合A 的非空子集个数是( )A .7B .8C .15D .16 4.集合{,,}a b c 的真子集共有( )个 A .5 B .6C .7D .8 5.下列表示正确的是 A .0∈N B .27∈NC .–3∈ND .π∈Q 6.设集合{|21,},5A x x k k Z a ==+∈=,则有( ) A .a A ∈ B .a A -∈ C .{}a A ∈ D .{}a A ⊇7.下列关于空集∅的叙述:①0∈∅;②{}∅∈∅;③{}0∅=.正确的个数为( )A .0B .1C .2D .3 85R ;②14Q ∉;③1.5Z ∈.其中正确的个数是( )A .1B .2C .3D .09.方程组2219x y x y +=-=⎧⎨⎩的解集是( ) A .()5,4B .()5,4-C .(){}5,4-D .(){}5,4-二、填空题 1.如果有一集合含有两个元素:x ,2x x -,则实数x 的取值范围是________.2.已知集合A =0, 1}, B =2{,2}a a ,其中a R ∈, 我们把集合1212{|,,}x x x x x A x B =+∈∈记作A +B ,若集合A +B 中的最大元素是21a +,则a 的取值范围是______.3.一元二次方程x 2+4x+3=0的解集为________(用列举法)4.已知集合2{|320,,}A x ax x x R a R =-+=∈∈,若集合A 中只有一个元素,则实数a 的取值为______ .5.若不等式组120161x x a-≥⎧⎨+⎩的解集中的元素有且仅有有限个数,则a =________. 三、解答题 1.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎧⎫=⎨⎨⎬+=⎩⎭⎩表示什么?集合C ,D 之间有什么关系?2.已知集合2{|210}A x ax x =∈++=R ,其中a ∈R .(1)若12A ∈,用列举法表示集合A ;(2)若集合A 中有且仅有一个元素,求a 的值组成的集合B .3.用列举法表示下列集合.(1)x|x 2-2x -8=0}.(2)x|x 为不大于10的正偶数}.(3)a|1≤a<5,a∈N}.(4)169A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭∣ (5)(x ,y)|x∈1,2},y∈1,2}}.参考答案一、单选题1.B解析:根据元素与集合的关系、集合与集合的关系判断即可.详解:由{}0,1,2A =,则0A ∈,{}1A ⊆故选:B2.C解析:先确定集合A 中元素,再由真子集个数的计算公式,即可得出结果.详解: 因为{}{}1,101A x x x Z =≤∈=-,,,所以满足条件B A 的集合B 的个数为3217-=,故选:C .3.C解析:利用列举法表示集合A ,确定集合A 中元素的个数,进而可求得集合A 的非空子集个数.详解:{}{}140,1,2,3A x Z x =∈-<<=,集合A 中共4个元素,因此,集合A 的非空子集个数是42115-=.故选:C.4.C解析:直接根据含有n 个元素的集合,其子集个数为2n ,真子集为21n -个;详解:解:因为集合{,,}a b c 含有3个元素,故其真子集为3217-=个故选:C5.A解析:根据自然数集以及有理数集的含义判断数与集合关系. 详解:N表示自然数集,在A中,0∈N,故A正确;在B中,27N∉,故B错误;在C中,–3∉N,故C错误;Q表示有理数集,在D中,π∉Q,故D错误.故选A.点睛:本题考查自然数集、有理数集的含义以及数与集合关系判断,考查基本分析判断能力,属基础题.6.A解析:5221a==⨯+,结合集合A,即可得出结果.详解:5221a A==⨯+∈.故选:A点睛:本题考查元素和集合的关系,考查学生对基本概念的理解,属于基础题.7.B解析:直接根据∅中没有任何中元素,∅是{}∅的元素,且是{}0的真子集即可判断.详解:∵∅中没有任何中元素,0∉∅,故①错误;{}∅∈∅,故②正确;{}0≠∅,故③错误.故正确的只有②.故选:B.点睛:本题考查命题真假的判断,考查元素与集合、空集和单元素集合{}0关系等基础知识,是基础题.8.A解析:根据元素和常用数集之间的关系,直接判定,即可得出结果.详解:R R,即①正确;Q 为有理数集,故14Q ∈,即②错; Z 为整数集,故1.5Z ∉,即③错;故,正确的个数为1个.故选:A.点睛:本题主要考查元素与集合之间关系的判定,属于基础题型.9.D解析:解出方程组的解,然后用集合表示.详解:因为()()229x y x y x y -==+-,将1x y +=代入得,得9x y -=.210x y x y x ++-==,解得5x =.代入得4y =-.所以方程组2219x y x y +=⎧⎨-=⎩的解集(){}5,4-. 故选:D.点睛: 本题考查集合的表示,考查用列举法表示方程组解的集合,注意解的表示形式,属于基础题.二、填空题1.0x ≠且2x ≠解析:根据集合的元素的互异性列出不等式,解之即得.详解:由集合元素的互异性可得2x x x -≠,解得0x ≠且2x ≠.故答案为:0x ≠且2x ≠.2.(0, 2)解析:只要解不等式2121a a +<+即得.详解:由题意2121a a +<+,解得02a <<,即a 的取值范围是(0,2).故答案为(0,2).点睛:本题考查集合的创新问题,解题中需要理解新概念,转化为旧知识.如本题转化为解不等式2121a a +<+.3.{}1,3--解析:求出方程的解,用列举法表示出即可.详解:由2430x x ++=解得1x =-或3-,2430x x +∴+=的解集为{}1,3--.故答案为:{}1,3--.点睛:本题考查列举法表示集合,属于基础题.4.0或98解析:由题意,集合A 中只有一个元素,转化为方程2320ax x -+=只有一个解,分类讨论,即可得到答案.详解:因为集合2A {x |ax 3x 20,x R,a R}=-+=∈∈有且只有一个元素,当a 0=时,2ax 3x 20-+=只有一个解2x 3=,当a 0≠时,一元二次方程有重根,即98a 0=-=即9a 8=.所以实数a 0=或98.点睛:本题主要考查了集合中元素个数的判定与应用,其中根据题意把集合A 中只有一个元素,转化为方程2320ax x -+=只有一个解,分类讨论求解是解答的关键,着重考查了转化思想,及分类讨论数学思想的应用.5.2018解析:若不等式组120161x x a -≥⎧⎨+⎩的解集中有且仅有有限个数,则12017a -=,进而得到答案. 详解:解12016x -≥得:2017x ≥,解1x a +≤得:1x a ≤-,若12017a -<,则不等式的解集为空集,不满足条件;若12017a -=,则不等式的解集有且只有一个元素,满足条件,此时2018a =;若12017a ->,则不等式的解集为无限集,不满足条件;综上可得:2018a =,故答案为:2018点睛:本题主要考查集合中元素的个数,同时考查了不等式组的解法,属于简单题.三、解答题1.D C解析:集合表示两条直线的交点,解得交点得到集合关系.详解:集合21(,)|45x y D x y x y ⎧-=⎧⎫=⎨⎨⎬+=⎩⎭⎩表示直线21x y -=与直线45x y +=交点的集合, 即{(1,1)}D =. D C点睛:本题考查了集合表示的意义,集合的包含关系,意在考查学生对于集合的理解和掌握.2.(1) 11,42A ⎧⎫=-⎨⎬⎩⎭(2) {0,1}B = 解析:(1)由题,将12x =代入方程中,进而得到8a =-,再解得方程,并用列举法表示解的集合即可;(2)当0a =时,解得12x =-,即为一个解,当0a ≠时,令0∆=,求解即可详解:(1)∵12A ∈, ∴12是方程2210ax x ++=的根, ∴21121022a ⎛⎫⨯+⨯+= ⎪⎝⎭,解得8a =-, ∴方程为28210x x -++=, ∴112x =,214x =-,此时11,42A ⎧⎫=-⎨⎬⎩⎭(2)若0a =,则方程为210x +=,解得12x =-,此时A 中仅有一个元素,符合题意;若0a ≠,A 中仅有一个元素,那440a ∆=-=,即1a =,方程有两个相等的实根,即121x x ==- ∴所求集合{0,1}B =点睛:本题考查列举法表示集合, 考查由元素的个数求参数,考查分类讨论的思想,考查解方程,属于中档题.3.(1){4,-2};(2){2,4,6,8,10};(3){1,2,3,4};(4){1,5,7,8};(5){(1,1),(1,2),(2,1),(2,2)}解析:根据题意,列举出集合中所有的元素,即可求得结果.详解:(1)2280x x--=,解得4x=或2-,故x|x2-2x-8=0}={4,-2};(2)x|x为不大于10的正偶数}={2,4,6,8,10};(3)a|1≤a<5,a∈N},故1,2,3,4a=,则a|1≤a<5,a∈N}={1,2,3,4};(4)169A x N Nx⎧⎫=∈∈⎨⎬-⎩⎭∣={1,5,7,8};(5)(x,y)|x∈1,2},y∈1,2}}={(1,1),(1,2),(2,1),(2,2)}点睛:本题考查用列举法表示集合,属简单题.。

高一数学1.1集合的概念练习

高一数学1.1集合的概念练习

1.1集合的概念练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}212,4,2A a a a =+-,3A -∈,则=a ( )A .1-B .3-或1C .3D .3-2.已知集合{}(,),,2M x y x y N x y *=∈+≤,则M 中元素的个数为( ) A .1 B .2 C .3 D .03.下列能构成集合的是( )A .中央电视台著名节目主持人B .我市跑得快的汽车C .上海市所有的中学生D .数学必修第一册课本中所有的难题4.设集合{}21,25A a a =--+,若4∈A ,则a =( ) A .-1 B .0 C .1 D .35.下列各组集合表示同一集合的是( )A .{}{}(3,2),(2,3)M N ==B .{}{}(,)1,1M x y x y N y x y =+==+=C .{}4,5M =,{}5,4N =D .{}{}1,2,(1,2)M N ==二、多选题6.下列结论不正确的是( )A .1N ∈B QC .*0N ∈D .3Z -∈ 7.已知集合{2M =-,2334x x +-,24}x x +-,若2M ∈,则满足条件的实数x 可能为( )A .2B .2-C .3-D .1三、填空题8.已知集合{}22,2A a a a =++,若3A ∈,求实数a 的值_______9.集合{}2320,M x ax x a =--=∈R 中只有一个元素,则实数a 的值是___________.10.若集合{}220x ax x ++=有且只有一个元素,则实数a 的取值集合为______________.11.已知集合32A x Z Z x ⎧⎫=∈∈⎨⎬-⎩⎭∣,用列举法表示集合A ,则A =__________.四、解答题12.已知集合{}2320A x x x =-+=,集合()(){}222150B x x a x a =+++-=. (1)若{}2A B ⋂=,求实数a 的值.(2)若A B A ⋃=,求实数a 的取值范围.(3)若U =R ,A B A =,求实数a 的取值范围.13.已知全集{}4U x x =≤,集合{}23A x x =-<<,{}32B x x =-≤≤,求(1)()U A B(2)()U A B .参考答案:1.D【分析】依题意可得234a a -=+或32a -=-,分别求出a 的值,再代入检验是否满足集合元素的互异性,即可得解.【详解】∈3A -∈,∈234a a -=+或32a -=-.若234a a -=+,解得1a =-或3a =-.当1a =-时,2423a a a +=-=-,不满足集合中元素的互异性,故舍去;当3a =-时,集合{}12,3,5A =--,满足题意,故3a =-成立.若32a -=-,解得1a =-,由上述讨论可知,不满足题意,故舍去.综上所述,3a =-.故选:D .2.A【分析】由列举法表示M 即可求解【详解】集合{}(,),,2{(1,1)}M x y x y N x y *=∈+≤=∣, M 中只有1个元素.故选:A3.C【分析】根据集合的定义可直接确定结果. 【详解】构成集合的元素具有确定性,选项ABD 中没有明确标准,不符合集合定义,选项C 正确.故选:C.4.C【分析】由4∈A ,可得2254a a -+=,解方程即可得到答案.【详解】因为4∈A ,所以2254a a -+=,解得1a =.故选:C5.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A :集合{}(3,2)M =表示含有点()3,2的集合,{}(2,3)N =表示含有点()2,3的集合,显然不是同一集合,故A 错误;对于B :集合M 表示的是直线1x y +=上的点组成的集合,集合N R =为数集,故B 错误;对于C :集合M 、N 均表示含有4,5两个元素组成的集合,故是同一集合,故C 正确; 对于D :集合M 表示的是数集,集合N 为点集,故D 错误;故选:C6.BC【分析】根据N 、Q 、N *、Z 表示的数集,结合元素与集合之间的关系即可做出判断.【详解】由N 表示自然数集,知1N ∈,故A 正确;Q Q ,故B 错;由N *表示正整数集,知*0N ∉,故C 错;由Z 表示整数集,知3Z -∈,故D 正确.故选:BC.7.AC【解析】根据集合元素的互异性2M ∈必有22334x x =+-或224x x =+-,解出后根据元素的互异性进行验证即可.【详解】解:由题意得,22334x x =+-或224x x =+-,若22334x x =+-,即220x x +-=,2x ∴=-或1x =,检验:当2x =-时,242x x +-=-,与元素互异性矛盾,舍去;当1x =时,242x x +-=-,与元素互异性矛盾,舍去.若224x x =+-,即260x x +-=,2x ∴=或3x =-,经验证2x =或3x =-为满足条件的实数x .故选:AC .【点睛】本题主要考查集合中元素的互异性,属于基础题.8.32-## 1.5- 【分析】根据题意,可得23a +=或223+=a a ,然后根据结果进行验证即可.【详解】由题可知:集合{}22,2A a a a =++,3A ∈所以23a +=或223+=a a ,则1a =或32a =-当1a =时,222a a a +=+,不符合集合元素的互异性, 当32a =-时,1,32⎧⎫=⎨⎬⎩⎭A ,符合题意 所以32a =-, 故答案为:32- 9.0或98- 【分析】根据a 的取值分类讨论可得.【详解】0a =时,2{|320}{}3M x x =--==-,满足题意; 0a ≠时,980a ∆=+=,98a =-. 综上,0a =或98-. 故答案为:0或98-. 10.10,8⎧⎫⎨⎬⎩⎭##1,08⎧⎫⎨⎬⎩⎭【分析】分0a =、0a ≠两种情况讨论,结合已知条件可得出关于a 的等式,进而可求得实数a 的取值.【详解】当0a =时,则有{}{}{}220202x ax x x x ++==+==-,合乎题意;当0a ≠时,由题意可得180a ∆=-=,解得18a =. 综上所述,实数a 的取值集合为10,8⎧⎫⎨⎬⎩⎭. 故答案为:10,8⎧⎫⎨⎬⎩⎭. 11.{1,1,3,5}-【分析】根据集合的描述法即可求解. 【详解】32A x Z Z x ⎧⎫=∈∈⎨⎬-⎩⎭∣, {1,1,3,5}A ∴=-故答案为:{1,1,3,5}-12.(1)1a =-或3-;(2)(],3-∞-;(3)()()(),33,1313,1-∞-------(()1,113,---++∞.【分析】(1)将2x =代入集合B 中,解方程可求得a 的值,验算可得结果; (2)由A B A ⋃=知B A ⊆,由此得到B 所有可能的结果,由此分类讨论B 每种可能性即可得到结果;(3)由A B A =知A B =∅,分别在B =∅,1B ∈和2B ∈三种情况下确定A B =∅的解,综合可得结果. 【详解】{}()(){}{}23201201,2A x x x x x x =-+==--==(1){}2A B =,()244150a a ∴+++-=,即2430a a ++=,解得:1a =-或3-;当1a =-时,{}{}2402,2B x x =-==-,满足{}2A B ⋂=;当3a =-时,{}{}24402B x x x =-+==,满足{}2A B ⋂=;综上所述:1a =-或3-;(2)A B A =,B A ∴⊆,B ∴可能的结果为∅,{}1,{}2,{}1,2;∈当B =∅时,()()2241450a a ∆=+--<,解得:3a <-;∈当{}1B =时,()()212150a a +++-=,解得:1=-a若1a =-{}{}2101,1B x x =-+==,不满足B A ⊆;若1a =-{}{}2101B x x =+-==--,不满足B A ⊆; ∈当{}2B =时,()()244150a a +++-=,解得:1a =-或3-;若1a =-,则{}{}2402,2B x x =-==-,不满足B A ⊆;若3a =-,则{}{}24402B x x x =-+==,满足B A ⊆;∈当{}1,2B =时,()21221125a a ⎧+=-+⎨⨯=-⎩,方程组无解; 综上所述:实数a 的取值范围为(],3-∞-; (3)A B A =,A B ∴⋂=∅;当B =∅时,由(2)知:3a <-,满足A B =∅;当1B ∈时,由(2)知:1=-±a A B =∅,则1≠-a 当2B ∈时,由(2)知:1a =-或3-;若A B =∅,则1a ≠-且3a ≠-;综上所述:实数a 的取值范围为()()(),33,1313,1-∞-------(()1,113,---++∞. 13.(1){|2x x ≤或}34x ≤≤;(2){|3x x <-或34}x ≤≤.【分析】根据集合交集和补集,并集的定义分别进行计算即可.【详解】(1){|2U A x x =≤-或}34x ≤≤,{()|2U A B x x ⋃=≤或}34x ≤≤,.(2){|33}A B x x =-< (){|3U A B x x =<-或34}x .。

高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)

高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)

1.1 集合的概念1.定义集合运算:(){},,A B z z x x y x A y B ==-∈∈※︳,设集合 {}1,2A =,{}2,3B =,则集合 A B ※ 的所有元素个数为( )A .2B .3C .4D .5答案:B 解析:求出集合 A B ※ 的所有元素,即得解.详解:当1,2x y ==时,1(12)1z =⨯-=-;当1,3x y ==时,1(13)2z =⨯-=-;当2,2x y ==时,2(22)0z =⨯-=;当2,3x y ==时,2(23)2z =⨯-=-.所以集合 A B ※ 的共有3个元素.故选:B点睛:本题主要考查集合的新定义,考查集合的元素的互异性,意在考查学生对这些知识的理解掌握水平.2.设集合M=x|x 2-3x≤0},则下列关系式正确的是( )A .2⊆MB .2∉MC .2∈MD .2}∈M答案:C解析:本题已知集合M ,先将相应的不等式化简,得到集合中元素满足的条件,再看元素2是否满足条件,可得到正确选项.详解:230x x -,03x ∴, 2{|30}{|03}M x x x x x ∴=-=.又023<<,2M ∴∈.故选:C .点睛:本题考查的是集合知识,重点是判断元素与集合的关系,难点是对一元二次不等式的化简.计算量较小,属于容易题.3.已知集合{}012M =,,,则M 的子集有( ) A .3个B .4个C .7个D .8个答案:D 解析:根据集合子集的个数计算公式求解.详解:因为集合{}012M =,,共有3个元素,所以子集个数为328=个. 故选:D.4.已知集合{}1,2A =,{}2,4B =,则集合{},,M z z x y x A y B ==⋅∈∈中元素的个数为( )A .1个B .2个C .3个D .4个答案:C解析:根据集合{},,M z z x y x A y B ==⋅∈∈列举求解.详解:因为集合{}1,2A =,{}2,4B =,所以集合{}2,4,8M =,故选:C5.设全集为U ,定义集合M 与N 的运算:{()*|M N x x M N =∈⋃且()}x M N ∉⋂,则()**N N M = A .MB .NC .U MN D .U N M答案:A 解析:先由题意得出*N M 表示区域,再由题中的定义,即可得出()**N N M 表示的区域,从而可得出结果.详解:如图所示,由定义可知*N M 为图中的阴影区域,()**N N M ∴为图中阴影Ⅰ和空白的区域,即()**N N M M =.故选A.点睛:本题主要考查集合的交集与并集的应用,熟记概念即可,属于常考题型.6.对于集合{}22,,M a a x y x y ==-∈∈Z Z ,给出如下三个结论:①如果{}21,P b b n n ==+∈Z ,那么P M ⊆;②如果42,c n n =+∈Z ,那么c M ∉;③如果1a M ∈,2a M ∈,那么12a a M ∈.其中正确结论的个数是A .0B .1C .2D .3答案:D解析:①根据2221(1)n n n +=+-,得出21n M +∈,即P M ⊆;②根据42c n =+,证明42n M ,即c M ∉;③根据1a M ∈,2a M ∈,证明12a a M ∈.详解:解:集合22{|M a a x y ==-,x ∈Z ,}y Z ∈,对于①,21b n =+,n Z ∈,则恒有2221(1)n n n +=+-,21n M ∴+∈,即{|21P b b n ==+,}n Z ∈,则P M ⊆,①正确;对于②,42c n =+,n Z ∈, 若42n M ,则存在x ,y Z ∈使得2242x y n, 42()()n x y x y ∴+=+-, 又x y +和x y -同奇或同偶,若x y +和x y -都是奇数,则()()x y x y +-为奇数,而42n +是偶数;若x y +和x y -都是偶数,则()()x y x y +-能被4整除,而42n +不能被4整除,42n M ∴+∉,即c M ∉,②正确;对于③,1a M ∈,2a M ∈,可设22111a x y =-,22222a x y =-,i x 、i y Z ∈;则2222121122()()a a x y x y =--222212121221()()()()x x y y x y x y =+--2212121221()()x x y y x y x y M =+-+∈那么12a a M ∈,③正确.综上,正确的命题是①②③.故选D .点睛:本题考查了元素与集合关系的判断、以及运算求解能力和化归思想,是难题.7.已知集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>,则集合T 中元素的个数为A .9B .10C .11D .12答案:C解析:先阅读题意,再写出集合T 即可.详解:解:由集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>, 则11213123415,,,,,,,,,,23344555566T ⎧⎫=⎨⎬⎩⎭, 则集合T 中元素的个数为11,故选C.点睛:本题考查了元素与集合的关系,重点考查了阅读能力,属基础题.8.关于集合下列正确的是( )A .0∈∅B .0N ∉C .{}0∅∈D .0Q ∈答案:D解析:根据元素和集合的关系进行判断即可.详解:解:0∈∅,故A 错;0N ∈,故B 错,{}0∅⊆,故C 错,0Q ∈,故D 正确.故选:D点睛:本题主要考查元素和集合关系的判断,比较基础,正确理解N ,Z ,R ,集合的意义是解决本题的关键.9.下列关系中正确的个数是( )①12Q ∈ R ③*0N ∈ ④π∈ZA .1B .2C .3D .4答案:A解析:根据集合的概念、数集的表示判断.详解:120不是正整数,π是无理数,当然不是整数.只有①正确. 故选:A .点睛:本题考查元素与集合的关系,掌握常用数集的表示是解题关键.10.已知集合{}1,2,3M =,(){},,,N x y x M y M x y M =∈∈+∈,则集合N 中的元素个数为( )A .2B .3C .8D .9答案:B解析:由,,x M y M x y M ∈∈+∈即可求解满足题意的点(),x y 的坐标.详解:解:由题意,满足条件的平面内以(),x y 为坐标的点集合()()(){}1,1,1,2,2,1N =,所以集合N 的元素个数为3.故选:B.11.设集合{}12|M x x =<<,{}|3N x x =<,则集合M 和集合N 的关系是( )A .N M ∈B .M N ∈C .M N ⊆D .N M ⊆答案:C解析:由子集的概念进行判断结合选项得出答案.详解:集合{}12|M x x =<<中的每一个元素都是集合{}|3N x x =<中的元素,∴集合M 是集合N 的子集 故选:C12.对于任意两个正整数m 、n ,定义某种运算,当m 、n 都为正偶数或正奇数时,m n m n ∆=+;当m 、n 中一个为正奇数,另一个为正偶数时,m n mn ∆=.则在上述定义下,(){}**,36,,M x y x y x y =∆=∈∈N N ,集合M 中元素的个数为( ) A .40B .48C .39D .41答案:D 解析:分x 、y 都为正偶数或正奇数和x 、y 中一个为正奇数,另一个为正偶数,两种情况,根据运算列举求解.详解:当x 、y 都为正偶数或正奇数时,36x y x y ∆=+=,集合M 中的元素有()()()()()()1,35,2,34,3,33,4,32,...,34,2,35,1,共35个;当x 、y 中一个为正奇数,另一个为正偶数时,36x y x y ∆=⋅=,,集合M 中的元素有()()()()()()1,36,3,12,4,9,9,4,36,1,12,3共6个,所以集合M 中元素的个数为35641+=,故选:D点睛:本题主要考查集合的概念和表示方法,属于基础题.13.已知元素a∈0,1,2,3},且a ∉1,2,3},则a 的值为( )A .0B .1C .2D .3答案:A解析:由题意,根据集合中元素与集合的关系,即可求解,得到答案.详解:由题意,元素a∈0,1,2,3},且a ∉1,2,3}, ∴a 的值为0.故选A .点睛:本题主要考查了集合中元素与集合的关系的应用,其中解答中牢记集合的元素与集合的关系,合理应用是解答本题的关键,着重考查了推理与论证能力,属于基础题.14.已知集合1{|,Z}24k M x x k ==+∈,*1{|,N }42k N x x k ==+∈,若0x M ∈,则0x 与N 的关系是( )A .0x N ∈或0x N ∉B .0x N ∈C .0x N ∉D .不能确定答案:A解析:用列举法表示集合,M N ,最后可以选出正确答案.详解:131357{|,Z},,,,,2444444k M x x k ⎧⎫==+∈=--⎨⎬⎩⎭, *1353{|,N },1,,,42442k N x x k ⎧⎫==+∈=⎨⎬⎩⎭,当01,4x M =-∈但0x N ∉, 当03,4x M =∈有0x N ∈.故选:A点睛:本题考查了列举法表示集合,考查了元素与集合的关系,属于基础题.15.已知,,a b c 均为非零实数,集合{|}a b ab A x x a b ab ==++,则集合A 的元素的个数为. A .2B .3C .4D .5答案:A解析:当0a >,0b >时,1113a b ab x a b ab =++=++=;当0a >,0b <时,1111ab ab x a b ab =++=--=-,当0a <,0b >时,1111a b ab x a b ab=++=-+-=-,;当0,0a b <<时,1111ab ab x a b ab =++=--+=-,故x 的所有值组成的集合为{}1,3-,故选A. 16.若集合A =x|kx 2+4x +4=0,x∈R}中只有一个元素,则实数k 的值为( )A .1B .0C .0或1D .以上答案都不对答案:C解析:当k =0时,A =-1};当k≠0时,Δ=16-16k =0,k =1.故k =0或k =1.选C.17.集合M =(x ,y)|xy<0,x∈R,y∈R}是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集答案:D详解:根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.选D.点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集18.定义集合A 、B 的一种运算:{}1212|,,A B x x x x x A x B *==⨯∈∈其中,若{1,2,3,5}A =, {1,2}B =,则A B *中的所有元素之和为为 A .30B .31C .32D .34答案:B详解: 试题分析:由{}1212|,,A B x x x x x A x B *==⨯∈∈其中可知{}1,2,3,5,4,6,10A B *=,所以所有元素之和为31考点:集合运算19.设由“我和我的祖国”中的所有汉字组成集合A ,则A 中的元素个数为( )A .4B .5C .6D .7答案:B解析:列举出集合A 中的元素,由此可得出结论.详解:由题意可知,集合A 中的元素分别为:我、和、的、祖、国,共5个元素. 故选:B.20.已知集合{}21,A a =,实数a 不能取的值的集合是( ) A .{}1,1-B .{}1-C .{}1,0,1-D .{}1答案:A 解析:根据元素的互异性可得出关于实数a 的不等式,由此可求得结果. 详解:由已知条件可得21≠a ,解得1a ≠±.故选:A.。

高一数学人教新课预习《1.1集合的概念》训练题

高一数学人教新课预习《1.1集合的概念》训练题

高一数学人教新课预习《1.1集合的概念》训练题一.选择题(共5小题)1.已知A={﹣2,﹣1,0,1,2,3},集合B={﹣2,﹣1,1},则集合{x|x∈A且|x|∉B}=()A.{0,2,3}B.{0,3}C.{﹣2,﹣1,0,1,2,3}D.{﹣2,0,2,3}2.设集合A={1,2,3},B={4,5},C={x+y|x∈A,y∈B},则C中元素的个数为()A.3B.4C.5D.63.已知集合A={x|ax2+2x+1=0,a∈R}只有一个元素,则a的取值集合为()A.{1}B.{0}C.{0,﹣1,1}D.{0,1}4.已知集合A={(x,y)|y≤,x,y∈N},则集合A中元素的个数为()A.3B.4C.5D.65.已知集合A={x|(x﹣3)(x﹣7)≤0,x∈Z},则集合A中元素个数为()A.3B.4C.5D.6二.填空题(共5小题)6.已知集合A={x,x2}(x∈R),若1∈A,则x=.7.若2∈{1,a2},则实数a=.8.已知集合A={a2,a},若1∈A,则实数a的值为.9.已知集合A={x|x2﹣ax+3a≤0},若﹣1∉A,则实数a的取值范围为.10.在平面直角坐标系内,坐标轴上的点的集合用描述法可表示为.三.解答题(共5小题)11.用适当的方法表示下列集合:(1)由1,2,3三个数字中的两个数字(没有重复数字)所组成的自然数的集合;(2)方程的解集.12.已知不等式ax2+5x﹣2>0的解集是M.(1)若2∈M且3∉M,求a的取值范围;(2)若,求不等式ax2﹣5x+a2﹣1>0的解集.13.集合A是由方程ax2﹣2x+1=0的实数解构成的.(1)若集合A是空集,求a的取值范围;(2)若集合A中只有一个元素,求a的值.14.已知A={a+3,2a+2,a2+1},若5∈A,求a所有可能的值.15.含有三个实数的集合可表示为,也可表示为{a2,a+b,0},求a2016+b2017的值.。

人教A版高中数学必修一1.1 集合的概念专练(含解析)(143)

人教A版高中数学必修一1.1 集合的概念专练(含解析)(143)

1.1 集合的概念一、单选题1.下列关系正确的是( )A .{}10,1∉B .{}10,1⊆C .{}10,1∈D .{}{}10,1∈答案:C解析:利用元素与集合的关系逐项判断后可得正确的选项.详解:对于A ,{}10,1∈,故A 错.对于B ,{}10,1∈,故B 错.对于C ,因为1为集合中的元素,故C 正确.对于D ,{}1不是{}0,1中的元素,故D 错.故选:C.2.已知集合22{(,)|}A x y x y x Z y Z =+≤∈∈4,,,则A 中元素的个数为()A .15B .14C .13D .12答案:C解析:根据列举法,确定圆及其内部整点个数即可得出结果.详解:224x y +≤24x ∴≤,x Z ∈2,1,0,1,2x ∴=--,当2x =-时,0y =;当1x =-时,1,0,1y =-;当0x =时,2,1,0,1,2y =--当1x =时,1,0,1y =-;当2x =时,0y =;所以共有13个,故选:C.3.集合x∈N*|x–3<1}用列举法可表示为A .0,1,2,3}B .0,1,2,3,4}C .1,2,3}D .1,2,3,4}答案:C 解析:解不等式求得x 的范围,再用列举法求得对应的集合.详解:由31x -<解得4x <,由于x N *∈,所以1,2,3x =,故集合为{}1,2,3,故选C.点睛:本小题主要考查一元一次不等式的解法,考查列举法表示集合,属于基础题.4.若{}212,x x ∈+,则实数x 的值为 A .1-B .1C .1或1-D .1或3答案:B 解析:分类讨论21x +=或21x =,求出x ,检验即可.详解:因为{}212,x x ∈+,所以21x +=或21x =,所以1x =或1x =-, 当1x =-时,22x x +=,不符合题意,所以1x =-舍去;故以1x =,选B点睛:本题主要考查元素与集合之间的关系,注意集合中元素的互异性,属于基础题型.5.下列各项中,能组成集合的是( )A .高一(3)班的好学生B .嘉兴市所有的老人C .不等于0的实数D .我国著名的数学家答案:C解析:根据集合中的元素具有确定性可得选项.详解:∵对于A 、B 、D 选项中“高一(3)班的好学生”、“嘉兴市所有的老人”、“我国著名的数学家”标准不明确,即元素不确定.∴A、B 、D 选项不能构成集合.故选:C .点睛:本题考查集合的元素的特征之一:确定性,属于基础题.6.下列写法正确的是( )A .∅ {}0B .0 ∅C .{}0∅∈D .0∈∅答案:A解析:根据空集定义、空集为任意非空集合真子集、元素与集合关系、集合与集合之间的关系的表示方法依次判断各个选项即可得到结果.详解:空集是任意非空集合的真子集,故∅ {}0,A 正确;元素与集合关系不能用“包含”符号,B 错误;集合与集合关系不能用“属于”符号,C 错误;空集中不含有任何元素,故0∉∅,D 错误.故选:A点睛:本题考查集合中元素与集合、集合与集合之间的关系的辨析,属于基础题.7.已知集合{|2,},{|22}A x x k k Z B x x ==∈=-≤≤,则A B =( )A .[]1,1-B .[]22-,C .{0,2}D .{2,0,2}-答案:D解析:根据集合的交集的概念及运算,即可求得A B ,得到答案.详解:由题意,集合{|2,},{|22}A x x k k Z B x x ==∈=-≤≤,根据集合的交集的概念及运算,可得{2,0,2}A B =-.故选:D.点睛:本题主要考查了集合的表示方法,以及集合交集的概念及运算,属于基础题.8.以下说法中正确的个数是①0与{}0表示同一个集合;②集合{}3,4M =与(){}3,4N =表示同一个集合; ③集合{}45x x <<不能用列举法表示.A .0B .1C .2D .3答案:B 解析:①中,0表示一个实数,{}0表示同一个集合,可判定不正确;②中,根据集合表示的意义,可判定是不正确的;③中,集合{}45x x <<是一个无限数集,可判定是正确的,即可求解.详解:由题意,可得①中,0表示一个实数,{}0表示同一个集合,所以不正确;对于②中,根据集合的表示方法,可得{}3,4M =表示数集,(){}3,4N =表示点集,所以不正确; 对于③中,集合{}45x x <<是一个无限数集且无规律,不能用列举法表示,所以是正确的. 故选B.点睛:本题主要考查了集合的概念,以及集合的表示方法,其中熟记集合的概念,以及集合的表示方法是解答的关键.9.设集合{1A =,2,3,4},{3B =,4,5,6,7},集合{|M x x B =∈且}x A ∉,则M =( )A .{}1,2B .{}3,4C .{5,6,7}D .{3,4,5,6,7}答案:C解析:直接利用已知{|M x x B =∈且}x A ∉,依次验证元素,即可得到答案.详解:解:因为集合{|M x x B =∈且}x A ∉,所以M 中的元素在B 集合中,但是该元素不在A 集合中,因为{3B =,4,5,6,7},依次检验元素,可得元素5,6,7满足题意,所以{5,6,7}M =.故选:C .点睛:本题主要考查元素与集合的关系,考查集合的新定义与运算,考查学生推理能力,属于基础题.10.把集合{}2450x x x --=用列举法表示为( ) A .{}1,5x x =-= B .{}15x x x =-=或C .{}245=0x x --D .{}1,5-答案:D解析:先解方程,再用列举法表示.详解:24501x x x --=∴=-或5x = 所以{}2450x x x --=={}1,5-故选:D点睛:本题考查列举法,考查基本求解能力,属基础题.二、填空题1.已知非空集合{}|1A x ax ==,则a 的取值范围是____________.答案:0a ≠详解:略2.(上海市黄浦区2018届高三4月模拟(二模))已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是_________.答案:2解析:由题,若32,m -= 则1,m = 此时B 集合不符合元素互异性,故1;m ≠若31,2,m m -==则符合题意;若33,0,m m -==则不符合题意.故答案为23.方程组26x y x y +=⎧⎨-=⎩的解集用列举法表示为__________.答案:(){}4,2-解析:先求出方程组的解,根据列举法,可直接得出结果.详解:由26x y x y +=⎧⎨-=⎩解得42x y =⎧⎨=-⎩, 则方程组26x y x y +=⎧⎨-=⎩的解集用列举法表示为(){}4,2-. 故答案为:(){}4,2-.点睛:本题主要考查列举法表示集合,属于基础题型.4.设集合{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9,则实数a 的值为______.答案:3-解析:先通过已知可得219a -=或29a =,解方程求出a ,然后带入集合验证,满足互异性即可.详解:∵{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9, ∴219a -=或29a =.当219a -=时,5a =,此时{}4,9,25A =-,{}9,0,4B =-,A ,B 中还有公共元素4-,不符合题意;当29a =时,3a =±,若3a =,{}9,2,2B =--,集合B 违背互异性.若3,{4,7,9},{9,8,4},{9}a A B A B =-=--=-=,∴3a =-.故答案为:3-.点睛:本题考查元素与集合的关系,以及集合中元素的互异性,是基础题.5.用列举法表示集合{}220,x x x x R -=∈为__________________.答案:{}0,2解析:解出集合中的方程,然后用列举法表示出来.详解: 解:{}{}220,0,2x x x x R -=∈=,故答案为{}0,2.点睛:本题考查集合的表示,列举法,是基础题.三、解答题1.用适当的方法表示下列集合:(1)已知集合P =x|x =2n ,0≤n≤2且n∈N};(2)抛物线y =x 2-2x 与x 轴的公共点的集合;(3)直线y =x 上去掉原点的点的集合.答案:答案见解析解析:(1)用列举法即可求得集合的元素;(2)直接用描述法表示公共点的集合;(3)用描述法即可表示.详解:(1)因为02,n n N ≤≤∈,则0,2,4x =,故用列举法表示为:P =0,2,4}.(2)直接用描述法表示为:()22{,|}0y x x x y y ⎧=-⎨=⎩. (3)描述法:(x ,y)|y =x ,x≠0}.点睛:本题考查集合的表示方法,选择适当的方法即可,属简单题.2.已知集合{|1A x x =≤-或}5x ≥,{}22B x a x a =≤≤+.(1)若1a =-,求A B 和A B ;(2)若A B B =,求实数a 的取值范围.答案:(1){}21x x -≤≤-,{|1x x ≤或}5x ≥;(2)(](),32,-∞-⋃+∞.解析:(1)先求出集合B ,再求A B 和A B 得解;(2)由题得B A ⊆,再对集合B 分两种情况讨论得解.详解:(1)若1a =-,则{}21B x x =-≤≤,{}21A B x x ∴⋂=-≤≤-,{|1A B x x ⋃=≤或}5x ≥.(2)A B B =,B A ∴⊆.①若B =∅,则22a a >+,2a ∴>;②若B ≠∅,则2,21a a ⎧⎨+-⎩或2,25,a a ⎧⎨≥⎩3a ∴≤-. 综上,实数a 的取值范围为(](),32,-∞-⋃+∞.点睛:本题主要考查集合的交集、补集运算,考查根据集合的关系求参数的范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.已知(){}2210,,A x x p x x R A R +=+++=∈⋂=∅,求实数p 的取值范围.答案:()4,-+∞详解::因为A R +⋂=∅,所以集合A 分两种情况:(1)A 为空集,即方程()2210x p x +++=无解,()2240p ∆=+-<,解得40p -<<;(2)A 非空,即方程()2210x p x +++=有两负根,()21212402010p p x x p x x ⎧∆=+≥⎪+=-+<⎨⎪⋅=>⎩,解得042p p p ≥≥-⎧⎨>-⎩或,即0p ≥, 综上,实数p 的取值范围是()4,-+∞.4.设A 为实数集,且满足条件:若a∈A,则11a-∈A(a≠1). 求证:(1)若2∈A,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.答案:(1)见解析; (2)见解析.解析:(1) 由2∈A 得到-1∈A.由-1∈A 得到12∈A.由12∈A 得到2∈A.即得证.(2)假设a =11a -,则a 2-a +1=0,方程无解,所以集合A 不可能是单元素集. 详解:(1)若a∈A,则11a -∈A. 又∵2∈A,∴112-=-1∈A. ∵-1∈A,∴()111--=12∈A.∵12∈A,∴1112-=2∈A. ∴A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11a -, 即a 2-a +1=0,方程无解. ∴a≠11a-,∴集合A 不可能是单元素集. 点睛:本题主要考查元素与集合的关系,意在考查学生对该知识的掌握水平和分析推理能力.5.用适当方法表示下列集合:(1)从1,2,3这三个数字中抽出一部分或全部数字(没有重复)所组成的自然数的集合;(2﹣2|=0的解集;(3)由二次函数y =3x 2+1图象上所有点组成的集合.答案:(1)1,2,3,12,13,21,31,23,32,123,132,213,231,321,312};(2)1,22⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭;(3)(x ,y )|y =3x 2+1,x∈R}. 解析:(1)利用列举法求解即可;(2)先解出方程的解,然后利用列举法;(3)利用描述法即可详解:解:(1)当从1,2,3这三个数字中抽出1个数字时,自然数为1,2,3;当抽出2个数字时,可组成自然数12,21,13,31,23,32;当抽出3个数字时,可组成自然数123,132,213,231,321,312.由于元素个数有限,故用列举法表示为1,2,3,12,13,21,31,23,32,123,132,213,231,321,312}.(2)由算术平方根及绝对值的意义,可知:21020x y +=⎧⎨-=⎩,解得122x y ⎧=-⎪⎨⎪=⎩, 因此该方程的解集为(﹣12,2)}.(3)首先此集合应是点集,是二次函数y=3x2+1图象上的所有点,故用描述法可表示为(x,y)|y=3x2+1,x∈R}.。

人教A版高中数学必修一1.1 集合的概念专练(含解析)(34)

人教A版高中数学必修一1.1 集合的概念专练(含解析)(34)

1.1 集合的概念一、单选题1.已知集合M 的非空子集的个数是7,则集合M 中的元素的个数是( )A .3B .4C .2D .52.集合{,,}a b c 的真子集共有 个( )A .7B .8C .9D .103.以数集A=a ,b ,c ,d}中的四个元素为边长的四边形只能是( )A .平行四边形B .矩形C .菱形D .梯形4.设集合A =1,2,4},集合{|}B x x a b a A b A +∈∈==,,,则集合B 中的元素个数为() A .4 B .5 C .6 D .75.设,,则的元素个数是A .5B .4C .3D .无数个6.设集合{1}A x Z x =∈-,则A .A ∅∉B .C 2AD .{}2⊆A7.已知集合{}1,0,1M =-,{}0,1,2N =,则M N ⋃=A .{}1,0,1-B .{}1,0,1,2-C .{}1,0,2-D .{}0,18.集合(){},0,,x y xy x y ≤∈∈R R 是指( )A .第二象限内的所有点B .第四象限内的所有点C .第二象限和第四象限内的所有点D .不在第一、第三象限内的所有点9.下列表示正确的是( )A .所有实数}R =B .整数集ZC .{}∅=∅D .1∈有理数}10.下面说法中正确的是( ).A .集合N +中最小的数是0B .若N a +-∉,则N a +∈C .若N a +∈,N b +∈,则a b +的最小值是2D .244x x +=的解集组成的集合是{}2x =.二、填空题1.设[]x 表示不超过x 的最大整数,用数组21100⎡⎤⎢⎥⎣⎦,22100⎡⎤⎢⎥⎣⎦,23100⎡⎤⎢⎥⎣⎦,……,2100100⎡⎤⎢⎥⎣⎦组成集合A 的元素的个数是________.2.已知集合|1k M x x⎧⎫=>-⎨⎬⎩⎭,且3M -∈,则k 的取值范围是____________. 3.若a∈1,a 2﹣2a+2},则实数a 的值为___________.4.已知{}201,2x x x ∈+--,则x =_____________5.用[]M A 表示非空集合A 中的元素个数,记[][][][][][][][],,M A M B M A M B A B M B M A M A M B ⎧-≥⎪-=⎨-<⎪⎩,若{}1,2,3A =,{}2|23B x x x a =--=,且1A B -=,则实数a 的取值范围为______. 三、解答题1.已知集合2{|320,}A x ax x a R =-+=∈,若集合A 中的元素至多有一个,求a 的取值范围.2.已知集合{}22,,A x x m n m n ==-∈Z .求证:偶数()42k k -∈Z 不属于集合A .3.已知数集{}()1212,,,0,2n n A a a a a a a n =≤<<<≥具有性质P :对任意的i、()1j i j n ≤≤≤,i j a a +,与j i a a -两数中至少有一个属于A .(1)分别判断数集{}0,1,3,4与{}0,2,3,6是否具有性质P ,并说明理由;(2)证明:10a =,且()122n n na a a a =+++; (3)当5n =时,若22a =,求集合A .4.已知集合(){}2230A x x a x a =-++=,{}20B x x x =-=,是否存在实数a ,使A ,B 同时满足下列三个条件:①A B ≠;②A B B ⋃=;③()A B ∅⋂?若存在,求出a 的值;若不存在,请说明理由.5.已知集合{}213A x x =-<+<,集合B 为整数集,令C A B =.(1)求集合C ;(2)若集合1,D a ,{2,1,0,1,2}C D ,求实数a 的值.参考答案一、单选题1.A解析:由若集合M 中的元素有n 个,则非空子集有217n -=个求解.详解:设集合M 中的元素的个数是n ,则217n -=,解得3n =.所以集合M 中的元素的个数是3,故选:A2.A解析:直接根据含有n 个元素的集合,其子集个数为2n ,真子集为21n -个;详解:因为集合{,,}a b c 含有3个元素,故其真子集为3217-=个故选:A3.D解析:直接利用集合元素的特征求解.详解:由集合元素的互异性得:以数集A=a ,b ,c ,d}中的四个元素为边长的四边形只能是梯形故选:D点睛:本题主要考查集合元素的特征,还考查了理解辨析的能力,属于基础题.4.C解析:集合A =1,2,4},集合{|}B x x a b a A b A +∈∈==,,,所以{}234568B =,,,,,,共6个元素. 故选C.5.C详解: 试题分析:依题意有,代入得到,故有个元素. 考点:绝对值不等式,元素与集合的关系.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是定义域还是值域,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.6.B详解:试题分析:集合A 表示大于1-的正数,因此B 项正确考点:元素与集合的元素7.B详解:试题分析:由题意知{}1,0,1,2M N ⋃=-,故选B.【考点定位】本题考查集合的基本运算,属于容易题.8.D解析:由0xy ≤,可知00x y ≤⎧⎨≥⎩或00x y ≥⎧⎨≤⎩,进而可选出答案. 详解:因为0xy ≤,所以00x y ≤⎧⎨≥⎩或00x y ≥⎧⎨≤⎩, 故集合(){},0,,x y xy x y ≤∈∈R R 是指第二象限和第四象限内的所有点,以及在,x y 轴上的点,即不在第一、第三象限内的所有点.故选:D.点睛:本题考查集合的表示方法,属于基础题.9.D解析:本题可根据集合的性质得出结果.详解:A 项:因为符号“{}” 已包含“所有”的含义,所以不需要再加“所有”,A 不正确;B 项:Z 表示整数集,不能加“{}”,B 不正确;C 项:∅表示空集,不能加“{}”,C 不正确;D 项:1∈有理数},显然正确,D 正确,故选:D.10.C解析:根据正整数集的含义即可判断A ,B ,C 的正误,根据集合中列举法即可判断D 选项的正误.详解:A 选项,N +是正整数集,最小的正整数是1,A 错,B 选项,当0a =时,N a +-∉,且N a +∉,B 错,C 选项,若N a +∈,则a 的最小值是1,若N b +∈,则b 的最小值也是1,当a 和b 都取最小值时,a b +取最小值2,C 对,D 选项,由244x x +=的解集是{}2,D 错.故选:C .二、填空题1.76 解析:首先,令2100k k a ⎡⎤=⎢⎥⎣⎦(123100k =⋅⋅⋅,,,,),分析当22(1)1100100k k +-≥时,计算得到49.5k ≥,取50k =,即505152100a a a a ⋅⋅⋅,,,,都是集合A 的元素,即共有51个元素;另外,分析可知2110100a ⎡⎤==⎢⎥⎣⎦,24949240124100100a ==⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦=⎣⎦,故数01224⋅⋅⋅,,,,也是集合中的元素,共有25个,两种情况作和即可得到答案.详解: 令2100k k a ⎡⎤=⎢⎥⎣⎦(123100k =⋅⋅⋅,,,,), 当22(1)1100100k k +-≥时,即211100k +≥,解之得:49.5k ≥,取50k =,此时11k k a a +->,即505152100a a a a ⋅⋅⋅,,,,都是集合A 的元素,共有51个, 另外,2110100a ⎡⎤==⎢⎥⎣⎦,24949240124100100a ==⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦=⎣⎦,2505025100a ⎡⎤⎢⎥⎣⎦==, 所以数01224⋅⋅⋅,,,,也是集合中的元素,共有25个,255176+=, 所以集合A 中的元素共有76个.故答案为:76.点睛:本题主要考查了集合中元素的个数,解题关键在于根据已知条件建立不等关系式,并进行计算,考查分析能力和逻辑思维能力,属于中档题.2.(,3)-∞解析:由集合元素与几何的关系即可得到答案.详解: 因为集合|1k M x x⎧⎫=>-⎨⎬⎩⎭,且3M -∈, 所以13k >--,解得3k <, 所以k 的取值范围是(,3)-∞.故答案为:(,3)-∞点睛:本题考查集合的基本定义,属基础题.3.2解析:利用集合的互异性,分类讨论即可求解详解:因为a∈1,a 2﹣2a+2},则:a=1或a=a 2﹣2a+2,当a=1时:a 2﹣2a+2=1,与集合元素的互异性矛盾,舍去;当a≠1时:a=a 2﹣2a+2,解得:a=1(舍去)或a=2;故答案为:2点睛:本题考查集合的互异性问题,主要考查学生的分类讨论思想,属于基础题4.2解析:讨论10x +=和220x x --=两种情况,再验证得到答案.详解:{}201,2x x x ∈+--当10x +=时,1x =-,代入验证知:{}{}21,20,0x x x +--=,不满足互异性,排除;当220x x --=时,2x =或1x =-(舍去),代入验证知:{}{}21,23,0x x x +--=,满足.故答案为:2点睛:本题考查了元素和集合的关系,没有验证互异性是容易发生的错误.5.04a ≤<或4a >.解析:根据已知条件容易判断出0a =符合,0a >时,由集合B 得到两个方程,2230x x a ---=或2230x x a --+=.容易判断出B 有2个或4个元素,所以判别式()4430a ∆=--<或()4430a ∆=-->,这样即可求出a 的范围.详解:(1)若0a =,得到2230x x --=,∴集合B 有2个元素,则1A B -=,符合条件1A B -=;(2)0a >时,得到223x x a --=±,即2230x x a ---=或2230x x a --+=;对于方程2230x x a ---=,()4430a ∆=++>,即该方程有两个不同实数根; 又1A B -=,B 有2个或4个元素;()4430a ∆=--<或()4430a ∆=-->;∴4a <或4a >.综上所述04a ≤<或4a >.故答案为04a ≤<或4a >.点睛:本题考查新定义问题,考查学生的创新意识,解决问题的方法利用新定义把“新问题”转化“老问题”.三、解答题1.0a =或98a ≥解析:分情况讨论,当0a =时,符合题意;当0a ≠时,由题意可知,关于x 的一元二次方程2320ax x -+=至多有一个根,0∆≤,求解即可. 详解:当0a =时,2320ax x -+=的解23x =,A 中只有一个元素23;当0a ≠时,若使得集合A 中的元素至多有一个.则需,关于x 的一元二次方程2320ax x -+=至多有一个根. 即99808a a ∆=-≤⇒≥综上所述,0a =或98a ≥点睛:本题考查根据集合中元素个数,求参数取值范围,注意分情况讨论,属于中档题.2.证明见解析解析:分m 、n 为同奇、同偶或一奇一偶三种情况讨论,结合平方差公式推出矛盾,从而得出所证结论成立.详解:假设()42k A k Z -∈∈,则存在m 、n Z ∈,使得()()2242k m n m n m n -=-=+-. ①当m 、n 都是奇数时,设121m m =+,()11121,n n m n Z =+∈,则()()()22222211*********m n m n m n m n -=+-+=-+-为4的倍数; ②当m 、n 都是偶数时,设22m m =,()2222,n n m n Z =∈,则()2222222222444m n m n m n -=-=-为4的倍数;③当m 、n 是一奇一偶时,设m 为奇数,n 为偶数,设321m m =+,()3332,n n m n Z =∈,则()()2222223333321441m n m n m n m -=+-=-++是奇数. 假设不成立,因此,()42k A k Z -∉∈.点睛:本题考查利用元素与集合关系的证明,合理分类是解题的关键,考查推理论证能力,属于中等题.3.(1)集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明见解析. (3){0,2,4,6,8}A =.解析:(1)利用i j a a +与j i a a -两数中至少有一个属于A .即可判断出结论.(2)先由0n na a A =-∈,得出10a =,令“,1j n i =>,由“i j a a +与j i a a -两数中至少有一个属于A ”可得n i a a -属于A .令1i n =-,那么1n n a a --是集合A 中某项,1a 不符合不符合题意,2a 符合.同理可得:令1i n =-可以得到21n n a a a -=+,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,倒序相加即可.(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P,5i a a A -∈,又1i =时,51a a A -∈,可得51i a a Ai -∈=51525354550a a a a a a a a a a ->->->->-=,则515533524a a a a a a a a a -=-=-= ,又34245a a a a a +>+=,可得34a a A +∉,则43a a A -∈,则有43221a a a a a -==-.可得即12345,,,,a a a a a 是首项为0,公差为22a =等差数列是首项为0,公差为22a =等差数列.详解:解:(1)在集合{}0,1,3,4中,设{}0,1,3,4A =①011,101A A +=∈-=∈,具有性质P②033,303A A +=∈-=∈,具有性质P③044,404A A +=∈-=∈,具有性质P④134,312A A +=∈-=∉,具有性质P⑤145,413A A +=∉-=∈,具有性质P⑥347,431A A +=∉-=∈,具有性质P综上所述:集合{}0,1,3,4具有性质P ;在集合{}0,2,3,6中,设{}0,2,3,6B =,①022,202B B +=∈-=∈,具有性质P②033,303B B +=∈-=∈,具有性质P③066,606B B +=∈-=∈,具有性质P④235,321B B +=∉-=∉,不具有性质P⑤267,624B B +=∉-=∉,具有性质P⑥368,633B B +=∉-=∈,具有性质P综上所述:集合{}0,2,3,6不具有性质P .故集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明:令,1j n i =>由于120n a a a ≤<<<,则n n n a a a +>,故2n a A ∉ 则0n n a a A =-∈,即10a =i j a a +与j i a a -两数中至少有一个属于A ,i j a a ∴+不属于A ,n i a a ∴-属于A .令1i n =-,那么1n n a a --是集合A 中某项,10a =不符合题意,2a 可以.如果是3a 或者4a ,那么可知31n n a a a --=那么231n n n a a a a a -->-=,只能是等于n a ,矛盾.所以令1i n =-可以得到21n n a a a -=+,同理,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,∴倒序相加即可得到1232n n n a a a a a +++⋯+= 即()122n n na a a a a =+++⋯+(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P ,5i a a A -∈,又1i =时,51a a A -∈,51,2,3,4,5i a a Ai ∴-∈=123451234500a a a a a a a a a a =<<<<=<<<<,51525354550a a a a a a a a a a ∴->->->->-=,则515524a a a a a a -=-=,533a a a -=,从而可得245532a a a a a +==,故2432a a a +=,即433230a a a a a <-=-<,又3424534a a a a a a a A +>+=∴+∈/ ,则43a a A -∈,则有43221a a a a a -==-又54221a a a a a -==-544332212a a a a a a a a a ∴-=-=-=-=,即12345,,,,a a a a a 是首项为0,公差为22a =等差数列,{0,2,4,6,8}A ∴=点睛:(1)本问采用举反例的方法证明A 不具有P 性质;(2)采用极端值是证明这类问题的要点,一个数集满足某个性质,则数集中的特殊的元素(比如最大值、最小值)也满足这个性质;本问的第二个要点是集合的元素具有互异性,由互异性及题中给的性质P ,可得出等式;(3)利用在(2)中得到的结论得出12345,,,,a a a a a 之间的关系,再结合A 中元素所具有的P 性质即可得到结论.4.存在实数1a =-,使得A ,B 满足条件,详见解析解析:先求出集合B ,由A B B ⋃=得A B ⊆,由()A B ∅⋂得A ≠∅,再由A B ≠得{}0A =或{}1,分别代入集合A 中求得a 的值,再验证是否满足条件得解. 详解:假设存在实数a ,使A ,B 同时满足题设①②③三个条件,易知{}0,1B =.因为A B B ⋃=,所以A B ⊆,即A B =或A B .由条件①A B ≠,知A B .又()A B ∅⋂,所以A B ⋂≠∅,所以A ≠∅,所以{}0A =或{}1.当{}0A =时,将0x =代入方程()2230x a x a -++=,得20a =,解得0a =.而当0a =时,{}0,3A =,与{}0A =矛盾,舍去.当{}1A =时,将1x =代入方程()2230x a x a -++=,得220a a --=,解得1a =-或2a =.当1a =-时,{}1A =,符合题意;当2a =时,{}1,4A =,与{}1A =矛盾,舍去.综上所述,存在实数1a =-,使得A ,B 满足条件.故得解.点睛:本题考查集合间的包含关系和集合的交、并运算,关键在于由交、并运算结果得到两集合之间的包含关系,属于基础题.5.(1){2,1,0,1}--;(2)2a =.解析:(1)首先得到{}32A x x =-<<,再求C A B =即可.(2)根据2,1,0,1,2C D 即可得到答案. 详解:(1){}{}21332A x x x x =-<+<=-<<,因为集合B 为整数集,所以{}2,1,0,1C A B -=-=.(2)因为{}2,1,0,1C -=-,1,D a ,2,1,0,1,2C D , 所以2a =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、填空题
11.已知集合 ,若 ,则 __________.
12.被3除余1的所有整数组成的集合用描述法表示为_________.
13.用描述法表示下列集合:所有被3整除的整数________.
14.已知集合 ,若 ,则 ______.
15.集合 用列举法表示为__________.
16.用列举法表示集合 =_________.
【分析】
表示出集合A中的元素,即可得出个数.
【详解】

集合A中有2个元素.
故选:B.
【点睛】
本题考查集合元素个数的求解,属于简单题.
9.D
【分析】
由 或 解出 的值,再验证集合中元素的互异性.
【详解】
当 时,可得 或 ,
若 ,则 ,不合题意;
若 ,则 , 符合题意;
当 ,可得 或 ,
若 ,则 ,不合题意;
15. .
【分析】
由集合的描述得到集合元素,应用列举法写出集合即可.
【详解】
由集合描述有: ,得 ,
∴集合为 .
故答案为: .
【点睛】
本题考查了集合的表示,由集合的描述法得到集合元素,列举法写出集合,属于简单题.
16.
【分析】
根据 ,采用列举法求解.
故选:C.
【点睛】
本题考查了元素和集合的关系,考查了 等符号的含义,考查了概念的理解记忆,属于基础题.
11.1或2;
【分析】
由 ,可得 或 ,注意要满足集合元素的互异性,即可得解.
【详解】
由 , ,
若 , , ,
此时 ,符合题意;
若 ,则 , ,
当 时, ,不符题意,
当 时, ,符合题意,
综上可得: 或 .
1.1集合的概念基础练习题
一、单选题
1.已知集合 , ,则集合 等于()
A. B.
C. D.
2.下列各组对象不能构成集合的是()
A.所有的正方形B.方程 的整数解
C.我国较长的河流D.出席十九届四中全会的全体中央委员
3.下列关系中,正确的个数为()
① ;② ;③ ;④ ;⑤ ;⑥ .
A.6B.5C.4D.3
③所有的偶数是确定的,且都不一样,故“所有偶数”可构成集合;
④著名的数学家没有明确的定义,故“全体著名的数学家”不能构成集合.
即能构成集合的只有③.
故选:A.
【点睛】
本题主要考查集合的概念,属于基础题型.
5.C
【分析】
先根据题意表示出 ,再判断集合中元素的个数即可.
【详解】
解:由题意:当 , 时, ;
参考答案
1.B
【分析】
因为 ,所以 , ,然后分别对 、 取值即可求解.
【详解】
因为 ,所以 , ,
当 时, ;
当 时, ;
当 时, ;
当 时 ,
所以 ,
故选:B
2.C
【分析】
根据集合元素的特征可得出合适的选项.
【详解】
对于A选项,“所有的正方形”对象是明确的,故能构成集合;
对于B选项,“方程 的整数解”的对象是明确的,故能构成集合;
当 , 时, ;
当 , 时, ;
当 , 时, ;
当 , 时, ;
当 , 时, ;
当 , 时, ;
当 , 时, ;
当 , 时, ,
所以 ,有8个元素,
故选:C.
【点睛】
本题考查由新定义确定集合中的元素、集合中元素的互异性,是基础题.
6.B
【分析】
解方程 即可得正确答案.
【详解】
由 得: 或
所以方程 的所有实数根组成的集合为
4.下列各组对象中:①高一个子高的学生;②《高中数学》(必修)中的所有难题;③所有偶数;④全体著名的数学家.其中能构成集合的有()
A.1组B.2组C.3组D.4组
5.设P,Q为两个非空实数集合,定义集合 ,若 , ,则A中元素的个数是()
A.4B.6C.8D.9
6.方程 的所有实数根组成的集合为()
故答案为:1或2.
12.
【分析】
被 除余 的整数可表示为: ,由此直接写出描述法下对应的集合.
【详解】
因为被 除余 的整数可表示为: ,
所以用描述法表示为集合中条件,由描述法,可直接得出结果.
【详解】
用描述法表示集合“所有被3整除的整数”,为 .
故答案为: .
对于C选项,“较长”不是一个确定的范围,“我国较长的河流”的对象不明确,故不能构成集合;
对于D选项,“出席十九届四中全会的全体中央委员”的对象是明确的,故能构成集合.
故选:C.
3.D
【分析】
利用元素与集合的关系及实数集、有理数集、自然数集的性质直接求解.
【详解】
由元素与集合的关系,得:在①中, ,故①正确;
A. B. C. D.{ }
7.下列式子表示正确的有()
① ;② ;③ ;④
A.4个B.3个C.2个D.1个
8.集合 中的元素个数为()
A.1B.2C.3D.4
9.设集合 , ,已知 且 ,则实数 的取值集合为()
A. B. C. D.
10.已知四个关系式: , , , ,其中正确的个数( )
A. 个B. 个C. 个D. 个
【点睛】
本题主要考查集合的描述法,属于基础题型.
14.2
【分析】
根据元素与集合关系,可解得 的值,注意集合元素互异性原则的应用.
【详解】
依题意 或 ,
解得 或 ;
由集合中元素的互异性可知当 时,集合的两个元素相等,不合题意;
所以 .
故答案为:2.
【点睛】
本题考查了元素与集合的关系,集合元素互异性原则的应用,属于基础题.
在②中, ,故②正确;在③中, ,故③错误;在④中, ,故④错误;
在⑤中, ,故⑤错误;在⑥中, ,故⑥正确.
故选:D.
【点睛】
本题考查了元素和集合的关系,属于简单题.
4.A
【分析】
根据集合的概念,逐项判断,即可得出结果.
【详解】
①因为个子高没有明确的定义,故“高一个子高的学生”不能构成集合;
②因为难题没有明确的定义,故“《高中数学》(必修)中的所有难题”不能构成集合;
故选:B
【点睛】
本题主要考查了列举法表示集合,涉及解一元二次方程,属于基础题.
7.C
【分析】
根据集合 的意义即可做出判断.
【详解】
因为 是无理数,所以①错误;
因为集合Z中有负数,N中没有负数,所以②错误;
③ 正确;
因为 是无理数,所以④正确,
故选C.
【点睛】
本题考查常用数集及其关系,属基础题.
8.B
若 ,则 ,不合题意.
综上所述: .
故选:D.
【点睛】
本题考查了集合中元素的互异性,考查了分类讨论思想,属于基础题.
10.C
【分析】
根据关系式,逐个判断相关元素是否属于相应的集合,即可得解.
【详解】
对 , 满足 ,正确;
对 , 是有理数,故错误;
对 , 是自然数,正确;
对 ,空集中没有元素,错误.
所以有两个正确,
相关文档
最新文档