2022年全国卷1文科数学试卷及答案(最新完整版)
2022年高考全国乙卷数学(文科)真题+答案 逐题解析

2022年普通高等学校招生全国统一考试(全国乙卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号框。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合{2,4,6,8,10},{16}M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}2.设(12i)2i a b ++=,其中,a b 为实数,则()A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-3.已知向量(2,1)(2,4)==-,a b ,则||-=a b ()A .2B .3C .4D .54.分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h ),得如下茎叶图:则下列结论中错误的是()A .甲同学周课外体育运动时长的样本中位数为7.4B .乙同学周课外体育运动时长的样本平均数大于8C .甲同学周课外体育运动时长大于8的概率的估计值大于0.4D .乙同学周课外体育运动时长大于8的概率的估计值大于0.65.若x ,y 满足约束条件2,24,0,x y x y y +⎧⎪+⎨⎪⎩则2z x y =-的最大值是()6.设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若||||AF BF =,则||AB =()A .2B .C .3D .7.执行右边的程序框图,输出的n =()A .3B .4C .5D .68.右图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是()A .3231x x y x -+=+B .321x x y x -=+C .22cos 1x x y x =+D .22sin 1xy x =+9.在正方体1111ABCD A B C D -中,,E F 分别为,AB BC 的中点,则()A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BD C .平面1B EF ∥平面1A AC D .平面1B EF ∥平面11A C D10.已知等比数列{}n a 的前3项和为168,5242a a -=,则6a =()11.函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为()A .ππ22-,B .3ππ22-,C .ππ222-+,D .3ππ222-+,12.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C .33D .22二、填空题:本题共4小题,每小题5分,共20分。
(精校版)2022年新高考全国卷Ⅰ数学高考试题(含答案)

普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
2022年全国新高考I卷数学试题(打印版)

2022年普通高等学校招生全国统一考试(新高考1)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若集合{}|4M x =<,{}|31N x x =≥,则MN =( ).A {}|02x x ≤< .B 1|23x x ⎧⎫≤<⎨⎬⎩⎭ .C {}|316x x ≤< .D 1|163x x ⎧⎫≤<⎨⎬⎩⎭2.若(1)1i z -=,则z z +=( ).A 2- .B 1- .C 1 .D 23.在ABC ∆中,点D 在边AB 上,2BD DA =,记CA =m ,CD =n ,则CB =( ).A 32-m n .B 23-m +n .C 32m +n .D 23m +n4.南水北调工程缓解了一些地区水资源短缺问题,其中一部分水蓄入某水库,已知该水库水位为海拔148.5m 时,相应水面的面积为2140km ;水位为海拔157.5m 时,相应水面的面积为2180km .将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为( 2.65≈).A 931.010m ⨯ .B 931.210m ⨯ .C 931.410m ⨯ .D 931.610m ⨯ 5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ).A 16 .B 13 .C 12 .D 236.记函数()sin()4f x x b πω=++(0ω>)的最小正周期为T .若23T ππ<<,且()y f x =的函数图像关于点3(,2)2π中心对称,则()2f π=( ) .A 1 .B 32 .C 52.D 37.设0.10.1a e =,19b =,ln 0.9c =-,则( ).A a b c << .B c b a << .C c a b<< .D a c b <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上,若该球的体积为36π,且3l ≤≤锥体积的取值范围是( ).A 8118,4⎡⎤⎢⎥⎣⎦ .B 2781,44⎡⎤⎢⎥⎣⎦ .C 2764,43⎡⎤⎢⎥⎣⎦.D []18,27二、选择题:本题共4小题,每小题5分,共20分。
2022年全国新高考I卷数学试题(填空题与解答题)

代入椭圆方程 3x2 4y2 12c2 0 ,整理化简得到:13y2 6 3cy 9c2 0 ,利用弦长公式求得 c 13 , 8
得 a 2c 13 ,根据对称性将 4
ADE 的周长转化为△F2DE 的周长,利用椭圆的定义得到周长为 4a 13 .
【详解】∵椭圆的离心率为 e c 1 ,∴ a 2c ,∴ b2 a2 c2 3c2 ,∴椭圆的方程为 a2
(1)能否有 99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异? (2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的
人患有该疾病”. P(B | A) 与 P(B | A) 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标, P(B | A) P(B | A)
an an1
1 3 4 n n 1 nn 1 ,
2 3 n 2 n 1 2
显然对于 n 1也成立,
∴an 的通项公式
an
nn 1
2
;
【小问 2 详解】
1 an
2
nn 1
2
1 n
n
1
1
,
∴1 1 a1 a2
1 an
2
1
1 2
1 2
1 3
1 n
1 n
1
2 1
1 n 1
8
4
∵ DE 为线段 AF2 的垂直平分线,根据对称性, AD DF2,AE EF2 ,∴ ADE 的周长等于
△F2DE 的周长,利用椭圆的定义得到△F2DE 周长为
DF2 EF2 DE DF2 EF2 DF1 EF1 DF1 DF2 EF1 EF2 2a 2a 4a 13.
(精校版)2022年新高考全国卷Ⅰ数学高考试题(含答案)

普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
2022年新高考全国Ⅰ卷数学高考真题文档版(含答案)

一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
不够良好
良好
病例组
40
60
对照组
10
90
(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
A.C的准线为 B.直线AB与C相切
C. D.
12.已知函数 及其导函数 的定义域均为 ,记 .若 , 均为偶函数,则()
A. B. C. D.
三、填空题:本题共4小题,每小题5分,共20分.
13. 的展开式中 的系数为________________(用数字作答).
14.写出与圆 和 都相切的一条直线的方程________________.
15.若曲线 有两条过坐标原点的切线,则a的取值范围是________________.
16.已知椭圆 ,C的上顶点为A,两个焦点为 , ,离心率为 .过 且垂直于 的直线与C交于D,E两点, ,则 的周长是________________.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
绝密☆启用前试卷类型:A
2022年普通高等学校招生全国统一考试(新高考全国Ⅰ卷)
数学
参考答案
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.D 2. D 3. B4. C5. D 6. A7. C8. C
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
2022年全国统一高考文科数学答案(全国甲卷)
绝密★启用前2022年普通高等学校招生全国统一考试(全国甲卷)数学(文科)参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.B3.D4.B5.C6.C7.A8.B9.D 10.C 11.B 12.A二、填空题:本题共4小题,每小题5分,共20分.13.34-##0.75-14.22(1)(1)5x y -++=15.2(满足1e <≤皆可)16.1-##-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有18.(1)证明见解析;(2)78-.19.(1)如图所示:,分别取,AB BC 的中点,M N ,连接MN ,因为,EAB FBC 为全等的正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .(220.(1)3(2)[)1,-+∞21.(1)24y x =;(2):4AB x =+.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(1)()2620y x y =-≥;(2)31,C C 的交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2,32,C C 的交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.[选修4-5:不等式选讲]23.(1)证明:由柯西不等式有()()()222222221112b c a b c ⎡⎤++++≥++⎣⎦,所以23a b c ++≤,当且仅当21a b c ===时,取等号,所以23a b c ++≤;(2)证明:因为2b c =,0a >,0b >,0c >,由(1)得243a b c a c ++=+≤,即043a c <+≤,所以1143a c ≥+,由权方和不等式知()22212111293444a c a c a c a c++=+≥=≥++,当且仅当124a c =,即1a =,12c =时取等号,所以113a c +≥.。
2022届(新高考1卷数学)(解析版)
2022年普通高等学校招生全国统一考试(新高考1卷)(解析版)2022.06.09(本试卷适合地区山东、广东、湖南、河北、江苏、福建)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合 {4},31,M xxN x x ∣∣则MN =().{02}A x x ∣1.{2}3B x x ∣.{316}C x x ∣1.{16}3D x x ∣【答案】D【解析】1{4}{16},,3M xxx x N x x∣∣0∣MN 1{16},D3x x ∣2.若 11,i z 则z z ().2A .1B C.1D.2【答案】D【解析】 111,1,2,i z z i z i z z D3.在A B C 中,点D 在边AB 上,2.B D D A 记,,C A C Dm n 则C B().32Am nB .23mnC .32mnD .23mn【答案】B【解析】33332A D C D C A n m C B A B A C A D A C n m m n m B4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库。
知该水库水位为海拔148.5m 时,相应水面的面积为2140.0;km 水位为海拔157.5m 时,相应水面的面积为2180.0.km 将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为()(备注: 7 2.65 )93.1.010A m93.1.210B m93.1.410C m93.1.610D m【答案】C 【解析】931212121(),140,180,(157.5148.5)9 1.410(),C3V S S S S h S S h V m5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()1.6A 1.3B 1.2C 2.3D 【答案】D【解析】272,3,5,7,3,,5,7,8,,5,7,,,,7,83,7,,,m P n C m n第一个数为第二个为共种;第一个数为3第二个为4共4种;第一个数为4第二个为共2种;第一个数为5第二个为6,,共种;第一个数为6第二个为共1种;第一个数为7第二个为8共1种;142=D 213P ,6.记函数 si n 0)4f x x b的最小正周期为T ,若2,3T 则 y f x 的图像关于点3,22 中心对称,则2f() A.13.2B 5.2C D.3【答案】A 【解析】22=(2,3)3T,yf x的图像关于点3,22中心对称,2b33381()2si n()22,2224246k f k,552,,()si n()21,22224k f A7.设0.110.1,,ln 0.9,9a eb c则().A ab c.B cb a .C ca b.D ac b【答案】C 【解析】方法一:按计算器或数形结合即可,选C 方法二:构造函数23()(1()),2xxf x x e x x o x22330.1(0.1)0.1(10.1(10))0.1105,0.1111,ln(1)()22xaf o b x x o x2330.1cln(1.1)0.1(10)0.905(10)2o oc a b ,所以选C8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上,.若该球的体积为36 ,且333,l 则该正四棱锥体积的取值范围是()81.18,4A2781.,44B2764.,43CD.[18, 27]【答案】C【解析】方法一:记三棱锥高与侧棱夹角为 ,高为h ,底面中心到各顶点的距离为m ,2223313cos [,]6cos ,si n 6si n cos 23622l l l m l l22222112144(si n cos ),si n cos si n (1si n )33VShm h y2313(1),si n [,],22x x x x x '2''133331,[,),0;(,],02332yx x yx y当22222m axm axm i n36643127144144[()],144[(()],333224V y V C方法二:记P 在底面的射影为M ,高为h ,球心在P M 上,设34,3633O P O A R R R ,222239,,(3)9,927[,]22P Mh A M a h a h a h 223'212239(6)(6)(),()8h 2h ()33322VShhh h hh f h f h f h在[,4]上单调递增,在(4,]上单调递减2764()[,]43f h 记P 在底面的射影为M ,高为h ,球心在P M 上,设34,3633O P O A R R R ,222239,,(3)9,927[,]22P Mh A M a h a h a h 2231221(6)(6)(122)3333VSh hh h hh h h h3112264()333hh hm ax64=4,C3h 当且仅当时取等号V 直接选二、选择题:本题共4小题,每小题5分,共20分。
2022年高考真题:全国乙卷(文科)数学【含答案及解析】
1.集合 ,则 ()
A. B. C. D.
【答案】A
【解析】
【分析】根据集合的交集运算即可解出.
【详解】因为 , ,所以 .
故选:A.
2.设 ,其中 为实数,则()
A. B. C. D.
【答案】A
【解析】
22.[选修4—4:坐标系与参数方程](10分)
在直角坐标系 中,曲线C的参数方程为 (t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为 .
(1)写出l的直角坐标方程;
(2)若l与C有公共点,求m的取值范围.
23.[选修4—5:不等式选讲](10分)
已知a,b,c都是正数,且 ,证明:
【分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.
【详解】因为 R, ,所以 ,解得: .
故选:A.
3.已知向量 ,则 ()
A. 2B. 3C. 4D. 5
【答案】D
【解析】
【分析】先求得 ,然后求得 .
【详解】因为 ,所以 .
故选:D
4.分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:
(1)证明:平面 平面ACD;
(2)设 ,点F在BD上,当 的面积最小时,求三棱锥 的体积.
19.(12分)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位: )和材积量(单位: ),得到如下数据:
样本号i
1
2
【解析】
【分析】根据奇函数的定义即可求出.
2022高考数学全国卷(含答案)
2022年普通高等学校招生全国统一考试数学一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若集合M={x|√x<4),N={x|3x≥1},则M∩N=A. {x|0≤x<2}B. {x|:≤x<2}3C. {x|3≤x<16)D. {x≤x<16}32. 若i(1-z)=1,则z+z=A.-2B.-1C. 1D.23. 在△ABC中,点D在边AB上,BD=2DA,记CA=m,CD=n,则CB=A.3m-2nB.-2m+3nC. 3m+2nD. 2m+3n4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库,已知该水库水位为海拔148.5m时,相应水面的面积为140.0km²;水位为海拔157.5m时,相应水面的面积为180.0km²,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(√7≈2.65)A. 1.0×109m³B. 1.2×109m³C. 1.4×109m³D. 1.6×109m³5. 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为A.16B.13C.12D.236. 记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T,若2π3<T<π,且y=f(x)的图像关于点(3π2,2)中心对称,则f (π2)=A.1B. 32C. 52D. 37. 设a=0.1e 0.1,b=19,c=-In0.9,则A. a<b<cB.e<b<aC. e<a<bD. a<c<b8. 已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上,若该球的体积为36π,且3≤1≤3√3,则该正四棱锥体积的取值范围是 A. [18, 814]B. [274, 814]C. [274, 643] D. [18,27]二、选择题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022年普通高等学校招生全国统一考试文科数学考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|2x x <,{}|320x x ->,则A .3|2x x ⎧⎫<⎨⎬⎩⎭B .=∅C .3|2x x ⎧⎫=<⎨⎬⎩⎭D .2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:)分别为x 1,x 2,…,,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,的平均数B.x1,x2,…,的标准差C.x1,x2,…,的最大值D.x1,x2,…,的中位数3.下列各式的运算结果为纯虚数的是A.i(1)2B.i2(1) C.(1)2D.i(1) 4.如图,正方形内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π45.已知F是双曲线C:x223y1的右焦点,P是C上一点,且与x 轴垂直,点A的坐标是(1,3).则△的面积为A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接与平面不平行的是7.设x ,y满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则的最大值为A .0B .1C .2D .3 8..函数sin21cos xy x =-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()f x 的图像关于直线1对称D .()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入A .A >1000和1B .A >1000和2C .A ≤1000和1D .A ≤1000和211.△的内角A 、B 、C 的对边分别为a 、b 、c 。
已知sin sin (sin cos )0B A C C +-=,22A .π12B .π6C .π4D .π3 12.设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠120°,则m 的取值范围是A .(0,1][9,)+∞B .3][9,)+∞C .(0,1][4,)+∞D .3][4,)+∞二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量(–1,2),(m ,1).若向量与a 垂直,则. 14.曲线21y x x =+在点(1,2)处的切线方程为.15.已知π(0)2a ∈,α=2,则πcos ()4α-。
16.已知三棱锥的所有顶点都在球O 的球面上,是球O 的直径。
若平面⊥平面,,,三棱锥的体积为9,则球O 的表面积为。
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分)记为等比数列{}n a 的前n 项和,已知S 2=2,S 36. (1)求{}n a 的通项公式;(2)求,并判断1,,2是否成等差数列。
18.(12分)如图,在四棱锥中,,且90BAP CDP∠=∠=(1)证明:平面⊥平面;(2)若,90APD∠=,且四棱锥的体积为83,求该四棱锥的侧面积.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 从该生产线上随机抽取一个零件,并测量其尺寸(单位:).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 12345678零件尺寸 9.9510.129.969.9610.019.929.9810.04抽取次序 910 11 12 13 14 15 16 零件尺寸 10.269.9110.13 10.029.2210.04 10.059.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i ii i s x x x x ===-=-≈∑∑1621(8.5)18.439i i =-≈∑,161()(8.5) 2.78ii x x i =--=-∑,其中ix 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑0.0080.09≈.20.(12分)设A ,B 为曲线C :24x 上两点,A 与B 的横坐标之和为4.(1)求直线的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线平行,且⊥,求直线的方程.21.(12分)已知函数()f x(﹣a)﹣a2x.(1)讨论()f x的单调性;(2)若()0f x ,求a的取值范围.(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4―4:坐标系与参数方程](10分)在直角坐标系中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若−1,求C 与l 的交点坐标; (2)若C 上的点到l 17a .23.[选修4—5:不等式选讲](10分)已知函数f(x)=–x24,g(x)=│1│+│x–1│.(1)当1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a 的取值范围.2021年高考全国卷1文数答案1234 5 6 7 8 9 10 11 12 13.7 14. 1y x =+31016.36π17.(12分)【解析】(1)设{}n a 的公比为q .由题设可得121(1)2(1)6a q a q q +=⎧⎨++=-⎩ ,解得2q =-,12a =-.故{}n a 的通项公式为(2)nn a =-.(2)由(1)可得1 1(1)22()1331n nnna qSq+-==--+-.由于3212142222()2[()]2313313n n nn nn n nS S S+++++-+=--++=-=-,故1n S+,n S,2n S+成等差数列.18. (12分)【解析】(1)由已知90BAP CDP==︒∠∠,得AB AP⊥,CD PD⊥.由于AB CD∥,故AB PD⊥,从而AB⊥平面PAD.又AB⊂平面PAB,所以平面PAB⊥平面PAD.(2)在平面PAD内作PE AD⊥,垂足为E.由(1)知,AB⊥平面PAD,故AB PE⊥,可得PE⊥平面ABCD.设AB x=,则由已知可得2AD x=,22PE x=.故四棱锥P ABCD-的体积31133P ABCDV AB AD PE x-=⋅⋅=.由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==. 可得四棱锥P ABCD -的侧面积为21111sin 606232222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+19. (12分)【解析】(1)由样本数据得(,)(1,2,,16)i x i i =的相关系数为16116162211()(8.5)0.180.2121618.439()(8.5)ii ii i x x i r x x i ===--==≈-⨯⨯--∑∑∑.由于||0.25r <,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.()剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,这条生产线当天生产的零件尺寸的标准差的估计值为0.0080.09≈.20.(12分)解:(1)设A (x 1,y 1),B (x 2,y 2),则12x x ≠,2114x y =,2224x y =,x 12=4,于是直线的斜率12121214y y x x k x x -+===-.(2)由24x y =,得2x y'=.设M (x 3,y 3),由题设知312x =,解得32x =,于是M (2,1).设直线的方程为y x m =+,故线段的中点为N (2,2),1|.将y x m =+代入24x y =得2440xx m --=.当16(1)0m ∆=+>,即1m >-时,1,221x m =±+从而12||=2|42(1)AB x x m -=+.由题设知||2||AB MN =,即2(1)2(1)m m ++,解得7m =.所以直线的方程为7y x =+.21. (12分)(1)函数()f x 的定义域为(,)-∞+∞,22()2(2)()x x x x f x e ae a e a e a '=--=+-,①若0a =,则2()xf x e =,在(,)-∞+∞单调递增.②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2ax =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2ax ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增.(2)①若0a =,则2()xf x e =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2ax =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.22.[选修4-4:坐标系与参数方程](10分)解:(1)曲线C 的普通方程为2219x y +=.当1a =-时,直线l 的普通方程为430x y +-=. 由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩. 从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为17d =.当4a ≥-时,d 171717=8a =;当4a <-时,d 171717=所以16a =-.综上,8a =或16a =-.、23.[选修4-5:不等式选讲](10分)解:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤.所以()()f x g x ≥的解集为117{|1}x x -+-<≤.(2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥. 又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤.所以a 的取值范围为[1,1]-.。