高中数学《函数的基本性质》教案1新人教A版

合集下载

高中数学教案《函数的基本性质》

高中数学教案《函数的基本性质》

教学计划高:《函数的基本性质》一、教学目标1.知识与技能:学生能够理解并掌握函数单调性、奇偶性的定义及判断方法;能够运用函数图像理解并阐述这些性质;能够识别并解决与函数基本性质相关的简单问题。

2.过程与方法:通过观察、分析、比较等数学活动,引导学生发现函数的基本性质;通过小组讨论、合作探究等学习方式,培养学生团队协作和问题解决的能力;通过练习和实践,提高学生应用函数性质解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的数学审美意识和严谨的科学态度;通过探索函数性质的过程,让学生体会数学中的对称美、和谐美,增强对数学美的感受力。

二、教学重点和难点教学重点:函数单调性、奇偶性的定义、性质及判断方法;函数图像在理解函数性质中的应用。

教学难点:理解函数单调性、奇偶性的本质,能够灵活运用这些性质解决问题;通过函数图像准确判断函数的性质。

三、教学过程1. 引入新课(约5分钟)情境导入:通过生活中的实例(如气温变化、股票价格波动等)引出函数的概念,让学生感受到函数在生活中的广泛应用。

提出问题:设问“这些函数有哪些共同的特点或性质?”引导学生思考并引出函数的基本性质——单调性和奇偶性。

明确目标:介绍本节课的学习目标,即掌握函数单调性、奇偶性的定义、性质及判断方法,并能够通过函数图像理解这些性质。

2. 讲授新知(约15分钟)定义讲解:详细讲解函数单调性(增函数、减函数)和奇偶性(奇函数、偶函数)的定义,结合实例帮助学生理解。

性质阐述:阐述函数单调性和奇偶性的基本性质,如单调函数的图像特征、奇偶函数的图像对称性等。

示例分析:通过具体函数示例(如一次函数、二次函数、反比例函数等),分析它们的单调性和奇偶性,加深学生的理解。

3. 观察探究(约10分钟)图像观察:利用多媒体展示不同函数的图像,引导学生观察图像的特点,尝试从图像中判断函数的单调性和奇偶性。

小组讨论:组织学生进行小组讨论,分享各自观察到的图像特征和判断结果,相互纠正错误,共同探究函数性质的图像表示方法。

人教版高中数学《函数的基本性质》优质教案

人教版高中数学《函数的基本性质》优质教案

2.1函数的基本性质一、教学目标1.结合具体函数,了解函数单调性的含义;2.会运用函数奇偶性的定义和函数的图象理解研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、教学重点1.回顾和理解函数的三大性质单调性、奇偶性以及周期性基础知识,掌握其概念的应用,一般是判断单调性、求参数或求值;2.掌握运用基础知识处理函数性质的综合应用题的解题思路. 其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.三、教学难点掌握周期性与抽象函数结合类的题型.高考对函数周期性的考查,常与抽象函数结合,题型主要以选择题或填空的形式出现,常涉及函数求值问题,且与函数的单调性、奇偶性相结合命题.四、教学过程(一)考情解读设计意图:对2016年广东开始高考卷之后的全国卷类型题进行整合,以表格形式呈现,一目了然,分析可得函数的基本性质是高考的常考内容,题型一般为选择填空,占分一般为5-10分.紧接着分析考点内容,明确复习方向.(二)知识梳理设计意图:对函数的单调性、奇偶性、周期性的定义、图像特点等进行梳理,把重点内容标红,并进行相应讲解,为后面的题型讲解奠定知识基础.1.单调函数的定义及几何意义2.函数的最值3.函数的奇偶性4.周期性(三)典例分析题型一:函数的单调性设计意图:精选了两道单调性的题目作为例题,例1为简单地应用单调性定义及函数图像特征判断单调性的题目,通过此题老师可带领学生总结判断函数单调性的方法:定义法、图像法等;例2为已知分段函数单调性求参数范围的题目,通过此题巩固应用单调性求参数、不等式等题型.【例1】(2021·全国甲卷)下列函数中是增函数的为()A .()f x x =-B .()23x f x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x 【例2】已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( )A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭ 题型二:函数的奇偶性设计意图:精选了两道奇偶性的题目作为例题,例1为简单地应用奇偶性定义求参数的题目,通过此题老师可带领学生巩固奇偶性的定义及图像特征;例2为奇偶性与分段函数结合的题目,但只要把握奇偶性的定义,可很快解决,通过此题再次强化奇偶性相关知识.【例1】(2021·全国Ⅰ卷)已知函数()()322x x x a f x -=⋅-是偶函数,则a =______.【例2】(2019·全国Ⅰ卷)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+题型三:函数的周期性设计意图:由于周期性一般与抽象函数及奇偶性相结合,题目比较综合.这里选取了一道直接利用周期性定义进行求值的题目,教师通过此题引导学生回顾求值由内到外的原则及分段函数求值的相关知识,巩固周期性的定义,为下一题型综合题奠定基础.【例1】(2018·江苏卷)函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________. 题型四:函数性质的综合应用设计意图:精选了两道函数性质的综合应用的题型.例1为单调性与奇偶性相结合解不等式 的相关问题,教师可引导学生将此类已知单调性和奇偶性的抽象函数问题具体化画图来思考,紧紧扣住定义解题.例2为奇偶性与周期性相结合求值的题,通过此题再次巩固奇偶性和周期性的定义,将题目已知条件转化为熟悉的定义再去解题.()2017(,)(1)11(2)1A.[2,2] B.[1,1] C.[0,4] D.[1,3]f x f f x x ⋅-∞+∞ =- -- --【例1】(全国Ⅰ卷)函数在单调递减,且为奇函数,若,则满足的的取值范围是()≤≤ ()(,)(1)(1).(1)2(1)(2)(3)(502018A.50 B.0 C.2 D.0)5f x f x f f f f f f x -∞+∞ -=+=++++= ⋅-若,则…(【例2】(全国Ⅱ卷)已知是定义域为的奇函数,满足)(四)巩固练习设计意图:精选了三道题作为练习题.第一题考查单调性的判断和奇偶性定义,再次巩固函数基本性质的概念,为基础题.第二题为单调性与奇偶性相结合解不等式的相关问题,巩固数形结合思想.第三题为奇偶性和周期性相结合求值的题,为自编题,难度系数不高,巩固学生对周期性和奇偶性的概念理解,提高信心.1.(2020·全国Ⅰ卷)设函数()331f x x x =-,则()f x ( )A .是奇函数,且在()0,+∞单调递增B .是奇函数,且在()0,+∞单调递减C .是偶函数,且在()0,+∞单调递增D .是偶函数,且在()0,+∞单调递减2.(2014·全国Ⅰ卷)已知偶函数f x ()在[0,)+∞单调递减,f (2)0=.若f x >(-1)0,则x 的取值范围是__________.()()()()()3R ,R,4,22,2022=A.2022 B.2 C.2022 D.2f x x f x f x f f ∈ +=-= --.已知函数是上的奇函数对任意都有若则()(五)总结提升设计意图:制作了本节课的思维导图,引导同学们再次巩固函数基本性质高考重点考查的题型及其对应方法.五、作业设计设计意图:作业选取了两道单选题,一道多选题,四道填空题.题一考查单调性判断和奇偶性定义;题二考查奇偶性的定义,深化概念;题三考查单调性解不等式,为单调性的应用类题;题四考查奇偶性应用求解析式;题五考查偶函数的定义,跟2021出现的题目非常相像,说明研究高考题的重要性,值得深思;题六考查周期性的定义,为周期性和奇偶性的简单综合题;题七需要将题目所给等式经过化简才能变为周期性的定义的模式,进一步深化周期性与奇偶性的概念及其应用.。

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课复习(第2课时函数的最大值、最小值)

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课复习(第2课时函数的最大值、最小值)

x=5 时,有最大值 f(5).
栏目 导引
第三章 函数的概念与性质
x2-x(0≤x≤2),
2.已知函数 f(x)=x-2 1(x>2),
求函数 f(x)的最大值和
最小值.
解:作出 f(x)的图象如图.由图象可知,当 x=2 时,f(x)取最 大值为 2; 当 x=12时,f(x)取最小值为-14. 所以 f(x)的最大值为 2,最小值为-14.
栏目 导引
第三章 函数的概念与性质
函数 y=2x2+2,x∈N*的最小值是________. 解析:函数 y=2x2+2 在(0,+∞)上是增函数, 又因为 x∈N*,所以当 x=1 时, ymin=2×12+2=4. 答案:4
栏目 导引
第三章 函数的概念与性质
图象法求函数的最值 已知函数 f(x)=-2x,x∈(-∞,0),
本部分内容讲解结束
栏目 导引
3.2 函数的基本性质
3.2.2 奇偶性
第3课时 函数奇偶性的概念
课件
第三章 函数的概念与性质
考点
学习目标
结合具体函数,了解函数奇偶 函数奇偶性的
性的含义,掌握判断函数奇偶 判断
性的方法
奇、偶函数的 了解函数奇偶性与函数图象对
图象
称性之间的关系
奇、偶函数的 会利用函数的奇偶性解决简单
3.若函数 f(x)=1x在[1,b](b>1)上的最小值是14,则 b=________. 解析:因为 f(x)在[1,b]上是减函数, 所以 f(x)在[1,b]上的最小值为 f(b)=1b=14, 所以 b=4. 答案:4
栏目 导引
第三章 函数的概念与性质
4.已知函数 f(x)=4x2-mx+1 在(-∞,-2)上递减,在[-2, +∞)上递增,求 f(x)在[1,2]上的值域. 解:因为 f(x)在(-∞,-2)上递减,在[-2,+∞)上递增,所 以函数 f(x)=4x2-mx+1 的对称轴方程为 x=m8 =-2,即 m= -16. 又[1,2]⊆[-2,+∞),且 f(x)在[-2,+∞)上递增.

新课标人教版高中数学必修一 1.3函数的基本性质 教学设计

新课标人教版高中数学必修一 1.3函数的基本性质 教学设计

1.3 函数的基本性质[教学目标]1.理解函数的单调性,初步掌握函数单调性的判别方法.2.理解函数的最大值、最小值及其几何意义.3.结合具体函数了解奇偶性的含义.4.能够运用函数图象理解和研究函数的性质.[教学要求]讨论函数的基本性质,就是要研究函数的重要特征:函数的增与减,最大值与最小值,增长率与衰减率,增长(减少)的快与慢,对称性(奇偶性),函数的零点,函数值的循环往复(周期性)等.引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.[教学重点]函数的单调性的概念;判断、证明函数的单调性;形成奇偶性的定义.[教学难点]1.函数的单调性和奇偶性定义的形式化表达.2.利用增(减)函数的定义判断函数的单调性.[教学时数]3课时[教学过程]第一课时1.3.1单调性与最大(小)值——函数的单调性新课导入一、情景问题如图为2008年北京奥运会奥林匹克公园场馆自动气象站某日一天24小时内的气温变化图(24时与0时气温相同为32︒C ),观察这张气温变化图:问:该图形是否为函数图象?定义域是什么?问:如何用数学语言来刻画温度随时间变化而变化的趋势呢?由“函数在某个区间内随着自变量的增加函数值增大或减小”引入课题——函数的单调性.二、观察函数图象,认识“上升”与 “下降”请同学们画出函数x x f =)(和2)(x x f =的图象,并观察图象的变化特征,说说自己的看法.(呈现这两个函数的图象,课本第27页图)可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.新课进展一、函数的单调性1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).(2)请你仿照增函数的定义给出函数)(x f 在区间D 上是减函数的定义.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数(decreasing function ).3.对定义要点分析问:(1)你能分析一下增函数定义的要点吗?(2)你能分析一下减函数定义的要点吗?引导学生分析增(减)函数定义的数学表述,体会定义中“区间D 上的任意两个自变量都有…”的含义.课堂例题例1 (课本第29页例1)课堂练习课本第39页习题1.3A 组第4题.课本第32页练习第1、2、3题.课堂例题例2 (课本第29页例2)课堂练习课本第32页练习第4题.4.本课小结(1)增减函数的图象有什么特点?增减函数的图象从左自右是上升的,减函数的图象从左自右是下降的.(2)用定义证明函数的单调性,需要抓住要点“在给定区间任意取两个自变量”去比较它们的函数值的大小.(3)如果函数)(x f y =在区间D 上是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做)(x f y =的单调区间.5.布置作业课本第39页习题1.3A 组第1、2、3题.课本第44页复习参考题A 组第9题.第二课时1.3.1单调性与最大(小)值——函数的最大(小)值复习导入通过提问复习上节课主要学习内容.问:如何判断函数的单调性?观察上节课例1中的图象(课本第29页),发现,函数图象在2-=x 时,其函数值最小,而在1=x 时,其函数值最大.函数2)(x x f =的图象有一个最低点)0,0(,函数2)(x x f -=的图象有一个最高点)0,0(,而函数x x f =)(的图象没有最低点,也没有最高点.新课进展二、函数的最大(小)值1.函数的最大(小)值的定义设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值(maximum value).请你仿照函数最大值的定义,给出函数)(x f y =的最小值的定义.设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≥)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最小值(minimum value).课堂例题例1 (课本第30页例3)说明:本例题是一个实际应用题,教学时应让学生体会问题的实际意义.例2 (课本第30页例4)说明:本例题表明,高一阶段利用函数的单调性求函数的最大(小)值是常用的方法.通过本例题的教学,再一次让学生体会用函数的单调性定义证明函数的单调性的方法.课堂练习课本第32页练习第5题2.函数的最大(小)值与单调性的关系从上面的例题可以看到,函数的最大(小)值与单调性有非常紧密的关系.我们再看一个例子.例3观察下图,用函数的单调性研究以下问题:(1) 若函数()y f x =的定义域为[],x b e ∈,求最大值和最小值;(2) 若函数()y f x =的定义域为[],x a e ∈,求最大值和最小值;(3) 若函数()y f x =的定义域为[),x b d ∈,求最大值和最小值;解:(1)在定义域[],b e 上,函数()y f x =在区间[],b c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f e f c <,则函数()y f x =在[],b e 上的最大值为()f c ,最小值为()f d ;(2) 在定义域[],a e 上,函数()y f x =在区间[],a c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f a f d <,则函数()y f x =在[],a e 上的最大值为()f c ,最小值为()f a ;(3) 在定义域[),b d 上,函数()y f x =在区间[],b c 上是增函数,在区间[),c d 上是减函数, 由于函数在x d =处没有定义,则函数()y f x =在[),b d 上的最大值为()f c ,没有最小值.思考:为什么要讨论)()(c f e f <?说明:从本例中可以看出,在求函数的最值时,除了注意单调区间的变化之外,还要注意定义域的区间端点的函数值.3.本课小结函数的最大(小)值是一个函数在一段区间或者整个定义域上的整体性质.一个函数可能存在最大值也可能不存在最大值,最大值具有唯一性.对于最小值也一样.我们经常利用函数的单调性求函数的最大(小)值.4.布置作业课本第39页习题1.3A 组第5题;课本第39页习题1.3B 组第1、2题第三课时1.3.2 奇偶性创设情景,导入新课从对称的角度,观察下列函数的图象: 函数2()1,().f x x g x x =+=这两个函数图象有什么共同的特征?请列出从-3到3这一段区间上,两个函数的对应值表,并思考:自变量取值互为相反数时,函数值如何变化,有怎样的等量关系?讨论结果:当自变量取值互为相反数时,函数值恰相等.反映在图象上,函数图象关于y 轴对称.新课进展三、函数的奇偶性1.偶函数如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=那么函数()f x 就叫做偶函数(even function).定义域关于坐标原点对称.请你举出偶函数的例子.2)(x x f =,21)(xx f =等等. 2.奇函数 观察函数x x f =)(和x x f 1)(=的图象,说一说这两个函数有什么共同特征?(1)图象看,它们都是关于坐标原点成中心对称;(2)从定义域看,它们的定义域都是关于坐标原点对称;(3)从函数值看,x 与x -的函数值的绝对值相等且符号相反.如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=-则函数()f x 叫做奇函数(old function).请你举出奇函数的例子.3.函数的奇偶性奇函数和偶函数的这种性质叫做函数的奇偶性.(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于y 轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于y 轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.课堂例题例1 (课本第35页例5)课堂练习课本第36页练习第1(1)——(4)、第2题.4.本课小结本节课学习了函数的奇偶性及其判断方法.我们可以把对称性和奇偶性结合起来思考. 定义域具有对称性,函数值具有对称性,图象具有对称性.由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.5.布置作业课本第39页习题1.3A 组第6题,B 组第3题.课本第44页复习参考题A 组第10题.补充:1.已知2(),f x ax bx cx =++∈R 是偶函数,那么32()g x ax bx cx =++是( ).(A)偶函数 (B)奇函数(C)既奇又偶函数 (D)非奇非偶函数 2. 已知函数1,0,()0,0,1,0.x x f x x x x +>⎧⎪==⎨⎪-<⎩试判断并证明它的奇偶性.。

《3.2 函数的基本性质》最新教研教案教学设计(统编人教A版高中必修第一册)

《3.2 函数的基本性质》最新教研教案教学设计(统编人教A版高中必修第一册)

第2课时奇偶性的应用学习目标1.掌握用奇偶性求解析式的方法.2.理解奇偶性对单调性的影响并能用以比较大小、求最值和解不等式.(知识点一 用奇偶性求解析式如果已知函数的奇偶性和一个区间 [a ,b ]上的解析式,想求关于原点的对称区间 [-b ,-a ]上的解析式,其解决思路为:(1)“求谁设谁”,即在哪个区间上求解析式,x 就应在哪个区间上设. (2)要利用已知区间的解析式进行代入.(3)利用 f(x)的奇偶性写出-f(x)或 f(-x),从而解出 f(x).知识点二 奇偶性与单调性若函数 f(x)为奇函数,则 f(x)在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相同的单调性;若函数 f(x)为偶函数,则 f(x)在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相 反的单调性.预习小测 自我检验1.若 f(x)的定义域为 R ,且 f(x)为奇函数,则 f(0)=________.答案 02.若 f(x)为 R 上的奇函数,且在[0,+∞)上单调递减,则 f(-1)________f(1).填“>”“=” 或“<”)答案 >解析 f(x)为 R 上的奇函数,且在[0,+∞)上单调递减,∴f(x)在 R 上单调递减,∴f(-1)>f(1).3.如果奇函数 f(x)在区间[-7,-3]上是减函数,那么函数 f(x)在区间[3,7]上是________函数.答案 减解析 ∵f(x)为奇函数,∴f(x)在[3,7]上的单调性与[-7,-3]上一致,∴f(x)在[3,7]上是减函f f数.4.函数 f(x)为偶函数,若 x >0 时,f(x)=x ,则 x <0 时,f(x)=________. 答案 -x解析 方法一 令 x <0,则-x >0,∴f(-x)=-x ,又∵f(x)为偶函数,∴f(-x)=f(x),∴f(x)=-x(x<0).方法二 利用图象(图略)可得 x <0 时,f(x)=-x.一、利用函数的奇偶性求解析式命题角度 1 求对称区间上的解析式例 1 函数 f(x)是定义域为 R 的奇函数,当 x >0 时,(x)=-x +1,求当 x <0 时,(x)的解析式. 考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式解 设 x <0,则-x >0,∴f(-x)=-(-x)+1=x +1,又∵函数 f(x)是定义域为 R 的奇函数,∴当 x <0 时,f(x)=-f(-x)=-x -1.反思感悟 求给定哪个区间的解析式就设这个区间上的变量为 x ,然后把 x 转化为-x ,此时2x -1例 2 设 f(x)是偶函数,g (x)是奇函数,且 f(x)+g (x)= ,求函数 f(x),g (x)的解析式.∴f(x)-g (x)= ,②-x 成为了已知区间上的解析式中的变量,通过应用奇函数或偶函数的定义,适当推导,即可得所求区间上的解析式.跟踪训练 1 已知 f(x)是 R 上的奇函数,且当 x ∈(0,+∞)时,f(x)=x(1+x),求 f(x)的解析式.解 因为 x ∈(-∞,0)时,-x ∈(0,+∞),所以 f(-x)=-x [1+(-x)]=x(x -1).因为 f(x)是 R 上的奇函数,所以 f(x)=-f(-x)=-x(x -1),x ∈(-∞,0). f(0)=0.⎧⎪x (1+x ),x ≥0,所以 f(x)=⎨⎪⎩-x (x -1),x<0.命题角度 2 构造方程组求解析式1x -1考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式解 ∵f(x)是偶函数,g (x)是奇函数,∴f(-x)=f(x),g (-x)=-g (x),由 f(x)+g (x)= 1.①x -1用-x 代替 x ,得 f(-x)+g (-x)= 1,-x -11 -x -1(①+②)÷2,得 f(x)= 1;x 2-1x(①-②)÷2,得 g (x)= .反思感悟f(x)+g (x)= 1对定义域内任意 x 都成立,所以可以对 x 任意赋值,如 x =-x.x -1利用f(x),g(x)一奇一偶,把-x的负号或提或消,最终得到关于f(x),g(x)的二元方程组,从中解出f(x)和g(x).跟踪训练2设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x,求函数f(x),g(x)的解析式.考点函数奇偶性的应用题点利用奇偶性求函数的解析式解∵f(x)是偶函数,g(x)是奇函数,∴f(-x)=f(x),g(-x)=-g(x),由f(x)+g(x)=2x+x2.①用-x代替x,得f(-x)+g(-x)=-2x+(-x)2,∴f(x)-g(x)=-2x+x2,②(①+②)÷2,得f(x)=x2;(①-②)÷2,得g(x)=2x.二、利用函数的奇偶性与单调性比较大小例3设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)答案A解析因为函数f(x)为R上的偶函数,所以f(-3)=f(3),f(-2)=f(2).又当x∈[0,+∞)时,f(x)是增函数,且π>3>2,所以f(π)>f(3)>f(2),故f(π)>f(-3)>f(-2).反思感悟利用函数的奇偶性与单调性比较大小(1)自变量在同一单调区间上,直接利用函数的单调性比较大小;(2)自变量不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后<0 的解集为________.利用单调性比较大小.跟踪训练 3 (1)已知偶函数 f(x)在[0,+∞)上单调递减,则 f(1)和 f(-10)的大小关系为()A .f(1)>f(-10)C .f(1)=f(-10) B .f(1)<f(-10)D .f(1)和 f(-10)关系不定答案 A解析 ∵f(x)是偶函数,且在[0,+∞)上单调递减,∴f(-10)=f(10)<f(1).(2)定义在 R 上的奇函数 f(x)为增函数,偶函数 g (x)在区间[0,+∞)上的图象与 f(x)的图象重合,设 a >b >0,下列不等式中成立的有________.(填序号)①f(a)>f(-b );③g (a)>g (-b );②f(-a)>f(b );④g (-a)<g (b );⑤g (-a)>f(-a).答案 ①③⑤解析 f(x)为 R 上奇函数,增函数,且 a >b >0,∴f(a)>f(b )>f(0)=0,又-a <-b <0,∴f(-a)<f(-b )<f(0)=0,∴f(a)>f(b )>0>f(-b )>f(-a),∴①正确,②错误.x ∈[0,+∞)时,g (x)=f(x),∴g (x)在[0,+∞)上单调递增,∴g (-a)=g (a)>g (b )=g (-b ),∴③正确,④错误.又 g (-a)=g (a)=f(a)>f(-a),∴⑤正确.三、利用函数的奇偶性与单调性解不等式例 4 (1)已知 f(x)是定义在 R 上的偶函数,且在区间(-∞,0)上是增函数.若 f(-3)=0,则f (x )x答案 {x|-3<x <0 或 x>3}解析 ∵f(x)是定义在 R 上的偶函数,且在区间(-∞,0)上是增函数,∴f(x)在区间(0,+∞)上是减函数.∴f(3)=f(-3)=0.(2)已知偶函数 f(x)在区间[0,+∞)上单调递增,则满足 f(2x -1)<f ⎝3⎭的 x 的取值范围为( )A.⎝3,3⎭B.⎣3,3⎭C.⎝2,3⎭D.⎣2,3⎭解析 由于 f(x)为偶函数,且在[0,+∞)上单调递增,则不等式 f(2x -1)<f ⎝3⎭, 即-1<2x -1<1,解得1<x <2. 解得-1≤m<1.所以实数 m 的取值范围为⎡-1, ⎫.当 x >0 时,由 f(x)<0,解得 x >3;当 x <0 时,由 f(x)>0,解得-3<x<0.故所求解集为{x|-3<x <0 或 x>3}.⎛1⎫⎛1 2⎫⎛1 2⎫⎡1 2⎫⎡1 2⎫答案 A⎛1⎫3 33 3反思感悟 利用函数奇偶性与单调性解不等式,一般有两类(1)利用图象解不等式;(2)转化为简单不等式求解.①利用已知条件,结合函数的奇偶性,把已知不等式转化为 f(x 1)<f(x 2)或 f(x 1)>f(x 2)的形式;②根据奇函数在对称区间上的单调性一致,偶函数在对称区间上的单调性相反,脱掉不等式中的“f ”转化为简单不等式(组)求解.跟踪训练 4 设定义在[-2,2]上的奇函数 f(x)在区间[0,2]上是减函数,若 f(1-m )<f(m ),求实数 m 的取值范围.解 因为 f(x)是奇函数且 f(x)在[0,2]上是减函数,所以 f(x)在[-2,2]上是减函数.⎧⎪1-m>m ,所以不等式 f(1-m )<f(m )等价于⎨-2≤m ≤2,⎪⎩-2≤1-m ≤2,21 ⎣ 2⎭) 1.若函数f(x)是R上的偶函数,且在区间[0,+∞)上是增函数,则下列关系成立的是( A.f(-3)>f(0)>f(1)B.f(-3)>f(1)>f(0)C.f(1)>f(0)>f(-3)D.f(1)>f(-3)>f(0)考点抽象函数单调性与奇偶性题点抽象函数单调性与不等式结合问题答案B解析∵f(-3)=f(3),且f(x)在区间[0,+∞)上是增函数,∴f(-3)>f(1)>f(0).2.定义在R上的偶函数f(x)在[0,+∞)上是增函数,若f(a)<f(b),则一定可得() A.a<b B.a>bC.|a|<|b|D.0≤a<b或a>b≥0考点抽象函数单调性与奇偶性题点抽象函数单调性与不等式结合问题答案C3.已知函数f(x)为偶函数,且当x<0时,f(x)=x+1,则x>0时,f(x)=________.答案-x+1解析当x>0时,-x<0,∴f(-x)=-x+1,又f(x)为偶函数,∴f(x)=-x+1.4.奇函数f(x)在区间[0,+∞)上的图象如图,则函数f(x)的增区间为________.f答案(-∞,-1],[1,+∞)解析奇函数的图象关于原点对称,可知函数f(x)的增区间为(-∞,-1],[1,+∞).5.已知偶函数f(x)在[0,+∞)上单调递减,(2)=0.若f(x-1)>0,则x的取值范围是________.答案(-1,3)解析因为f(x)是偶函数,所以f(x-1)=f(|x-1|).又因为f(2)=0,所以f(x-1)>0可化为f(|x-1|)>f(2).又因为f(x)在[0,+∞)上单调递减,所以|x-1|<2,解得-2<x-1<2,所以-1<x<3.1.知识清单:(1)利用奇偶性,求函数的解析式.(2)利用奇偶性和单调性比较大小、解不等式.2.方法归纳:利用函数的奇偶性、单调性画出函数的简图,利用图象解不等式和比较大小,体现了数形结合思想和直观想象数学素养.3.常见误区:解不等式易忽视函数的定义域.⎩⎧⎪x 2+x ,x ≥0,1.设函数 f(x)=⎨且 f(x)为偶函数,则 g (-2)等于( )⎪g (x ),x <0,A .6B .-6C .2D .-2考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式答案 A解析 g (-2)=f(-2)=f(2)=22+2=6.2.如果奇函数 f(x)在区间[-3,-1]上是增函数且有最大值 5,那么函数 f(x)在区间[1,3]上是( )A .增函数且最小值为-5B .增函数且最大值为-5C .减函数且最小值为-5D .减函数且最大值为-5答案 A解析 f(x)为奇函数,∴f(x)在[1,3]上的单调性与[-3,-1]上一致且 f(1)为最小值,又已知 f(-1)=5,∴f(-1)=-f(1)=5,∴f(1)=-5,故选 A.3.已知函数 y =f(x)是 R 上的偶函数,且 f(x)在[0,+∞)上是减函数,若 f(a)≥f(-2),则 a的取值范围是()A .a ≤-2C .a ≤-2 或 a ≥2 B .a ≥2D .-2≤a ≤2答案 D解析 由 f(a)≥f(-2)得 f(|a|)≥f(2),∴|a|≤2,∴-2≤a ≤2.4.已知函数 y =f(x)是偶函数,其图象与 x 轴有 4 个交点,则方程 f(x)=0 的所有实根之和是( )A .4B .2C .1D .0答案 D解析 y =f(x)是偶函数,所以 y =f(x)的图象关于 y 轴对称,所以 f(x)=0 的所有实根之和为 0.5.设 f(x)是 R 上的偶函数,且在(0,+∞)上是减函数,若 x 1<0 且 x 1+x 2>0,则() A .f(-x 1)>f(-x 2)B .f(-x 1)=f(-x 2)C .f(-x 1)<f(-x 2)D .f(-x 1)与 f(-x 2)的大小不确定考点 抽象函数单调性与奇偶性题点 抽象函数单调性与不等式结合问题答案 A解析 ∵x 1<0,x 1+x 2>0,∴x 2>-x 1>0,又 f(x)在(0,+∞)上是减函数,∴f(x 2)<f(-x 1),∵f(x)是偶函数,∴f(-x 2)=f(x 2)<f(-x 1).6.设 f(x)是定义在 R 上的奇函数,当 x >0 时,f(x)=x 2+1,则 f(-2)+f(0)=________.答案 -5解析 由题意知 f(-2)=-f(2)=-(22+1)=-5,f(0)=0,∴f(-2)+f(0)=-5.7.已知奇函数 f(x)在区间[0,+∞)上单调递增,则满足 f(x)<f(1)的 x 的取值范围是________.考点 抽象函数单调性与奇偶性题点 抽象函数单调性与不等式结合问题答案 (-∞,1)解析 由于 f(x)在[0,+∞)上单调递增,且是奇函数,所以 f(x)在 R 上单调递增,f(x)<f(1)等价于 x<1.8.若 f(x)=(m -1)x 2+6mx +2 是偶函数,则 f(0),f(1),f(-2)从小到大的排列是________.答案 f(-2)<f(1)<f(0)解析 ∵f(x)是偶函数,∴f(-x)=f(x)恒成立,即(m -1)x 2-6mx +2=(m -1)x 2+6mx +2 恒成立,∴m =0,即 f(x)=-x 2+2.∵f(x)的图象开口向下,对称轴为 y 轴,在[0,+∞)上单调递减,∴f(2)<f(1)<f(0),即 f(-2)<f(1)<f(0).9.已知函数 y =f(x)的图象关于原点对称,且当 x >0 时,f(x)=x 2-2x +3.(1)试求 f(x)在 R 上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.考点 单调性与奇偶性的综合应用题点 求奇偶函数的单调区间解 (1)因为函数 f(x)的图象关于原点对称,所以 f(x)为奇函数,则 f(0)=0.设 x <0,则-x >0,⎧⎪x -2x +3,x >0,10.已知函数 f(x)=ax + +c(a ,b ,c 是常数)是奇函数,且满足 f(1)= ,f(2)= . (2)试判断函数 f(x)在区间⎝0,2⎭上的单调性并证明. ∴-ax - +c =-ax - -c , ∴c =0,∴f(x)=ax + . 因为当 x >0 时,f(x)=x 2-2x +3.所以当 x <0 时,f(x)=-f(-x)=-(x 2+2x +3)=-x 2-2x -3.2 于是有 f(x)=⎨0,x =0,⎪⎩-x 2-2x -3,x<0.(2)先画出函数在 y 轴右侧的图象,再根据对称性画出 y 轴左侧的图象,如图.由图象可知函数 f(x)的单调递增区间是(-∞,-1],[1,+∞),单调递减区间是(-1,0),(0,1). b 5 17 x 24(1)求 a ,b ,c 的值;⎛ 1⎫考点 单调性与奇偶性的综合应用题点 判断或证明奇偶函数在某区间上的单调性解 (1)∵f(x)为奇函数,∴f(-x)=-f(x),b b x xb x又∵f(1)=5,f(2)=17, 2 4⎧ 5a +b = ,∴a =2,b = . (2)由(1)可知 f(x)=2x + .0, ⎫上为减函数.函数 f(x)在区间⎛1任取 0<x <x < , 1 1则 f(x )-f(x )=2x + -2x - 2-=(x -x )⎛2x1x 2 1 2=(x -x ) . 0, 上为减函数.∴f(x)在⎝ 2⎭∴⎨2x 1 2x 21 2 ⎝ 2x x ⎭ ∵0<x 1<x 2< ,2 2 42 ⎩2a +b =17. 1 2综上,a =2,b =1,c =0. 21 2x1 ⎝ 2⎭证明如下:1 2 21 21 2 1 ⎫ 1 24x x -1 1 21∴x 1-x 2<0,2x 1x 2>0,4x 1x 2-1<0.∴f(x 1)-f(x 2)>0,即 f(x 1)>f(x 2).⎛ 1⎫即f (x )<0, 综上使f (x )<0 的解集为(-∞,-1)∪(1,+∞).11.设奇函数 f(x)在(0,+∞)上为减函数,且 f(1)=0,则不等式f (x )-f (-x)解析 ∵f(x)为奇函数,f (x )-f (-x )x <0 的解集为(A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)答案 Cx <0,x∵f(x)在(0,+∞)上为减函数且 f(1)=0,∴当 x >1 时,f(x)<0.∵奇函数图象关于原点对称,∴在(-∞,0)上 f(x)为减函数且 f(-1)=0,即 x <-1 时,f(x)>0.x12.已知 f(x +y)=f(x)+f(y)对任意实数 x ,y 都成立,则函数 f(x)是( )A .奇函数B .偶函数C .既是奇函数,也是偶函数 )f D .既不是奇函数,也不是偶函数答案 A解析 令 x =y =0,所以 f(0)=f(0)+f(0),所以 f(0)=0.又因为 f(x -x)=f(x)+f(-x)=0,所以 f(-x)=-f(x),所以 f(x)是奇函数,故选 A.13.已知 y =f(x)+x 2 是奇函数且 f(1)=1,若 g (x)=f(x)+2,则 g (-1)=________.考点 函数奇偶性的应用题点 利用奇偶性求函数值答案 -1解析 ∵y =f(x)+x 2 是奇函数,∴f(-x)+(-x)2=-[f(x)+x 2],∴f(x)+f(-x)+2x 2=0,∴f(1)+f(-1)+2=0.∵f(1)=1,∴f(-1)=-3.∵g (x)=f(x)+2,∴g (-1)=f(-1)+2=-3+2=-1.14.已知定义在 R 上的函数 f(x)满足 f(1-x)=f(1+x),且 f(x)在[1,+∞)上为单调减函数,则当 x =________时,(x)取得最大值;若不等式 f(0)<f(m )成立,则 m 的取值范围是________.答案 1 (0,2)解析 由 f(1-x)=f(1+x)知,f(x)的图象关于直线 x =1 对称,又 f(x)在(1,+∞)上单调递减,则 f(x)在(-∞,1]上单调递增,所以当 x =1 时 f(x)取到最大值.由对称性可知 f(0)=f(2),所 以 f(0)<f(m ),得 0<m <2,即 m 的取值范围为(0,2).a +b15.已知 f(x),g (x)分别是定义在 R 上的偶函数和奇函数,且 f(x)-g (x)=x 3+x 2+1,则 f(1)+g (1)等于( )A .-3B .-1C .1D .3考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式答案 C解析 ∵f(x)-g (x)=x 3+x 2+1,∴f(-x)-g (-x)=-x 3+x 2+1.∵f(x)是偶函数,g (x)是奇函数,∴f(-x)=f(x),g (-x)=-g (x).∴f(x)+g (x)=-x 3+x 2+1.∴f(1)+g (1)=-1+1+1=1.f (a )+f (b ) 16.设 f(x)是定义在 R 上的奇函数,且对任意 a ,b ∈R ,当 a +b ≠0 时,都有 >0.(1)若 a >b ,试比较 f(a)与 f(b )的大小关系;(2)若 f(1+m )+f(3-2m )≥0,求实数 m 的取值范围.解 (1)因为 a >b ,所以 a -b >0,f (a )+f (-b ) 由题意得 >0, a -b所以 f(a)+f(-b )>0.又f(x)是定义在R上的奇函数,所以f(-b)=-f(b),所以f(a)-f(b)>0,即f(a)>f(b).(2)由(1)知f(x)为R上的单调递增函数,因为f(1+m)+f(3-2m)≥0,所以f(1+m)≥-f(3-2m),即f(1+m)≥f(2m-3),所以1+m≥2m-3,所以m≤4.所以实数m的取值范围为(-∞,4].。

高一数学必修1《函数的基本性质》教案

高一数学必修1《函数的基本性质》教案

高一数学必修1《函数的基本性质》教案教学目标:1. 理解函数以及函数的各种表达方式。

2. 掌握函数的基本性质,包括单调性、奇偶性、周期性和零点。

3. 实现函数的简单变换,例如平移、伸缩和反转等。

4. 能够应用函数的基本性质,解决实际问题。

教学重点:1. 理解函数的概念以及函数的各种表达方式。

2. 掌握函数的基本性质,实现函数的简单变换。

3. 能够应用函数的基本性质,解决实际问题。

教学难点:1. 如何理解函数的概念以及函数的各种表达方式。

2. 如何应用函数的基本性质,解决实际问题。

教学方法:一、讲授法。

二、探究法。

三、案例分析法。

教学过程:一. 引入新知识(5分钟):教师简单介绍函数的概念和历史背景,引导学生关注函数在实际生活中的应用,引出本节课的学习目标,激发学生的学习兴趣。

二. 讲解函数的概念(10分钟):1. 函数的定义:任何能够使$x$值唯一对应一个$y$值的规律都称为函数,可以表示为$y=f(x)$。

$x$为自变量,$y$为因变量,函数$f(x)$表示$y$与$x$之间的关系。

2. 函数的图像:函数可以通过绘制它们的图像进行可视化。

函数的图像是平面直角坐标系上的一条曲线。

3. 函数的表示方法:函数可以用表格、图像、公式等多种方式表示。

例如$f(x)=x^2$就是一种表示方式。

三. 掌握函数的基本性质(30分钟):1. 单调性:单调递增和单调递减;2. 奇偶性:奇函数、偶函数和常函数;3. 周期性:周期函数和非周期函数;4. 零点:零点定义以及求零点的方法。

四. 实现函数的简单变换(10分钟):1. 平移变换:表示为$f(x-a)$或$f(x)+b$,注意$a$和$b$的正负性;2. 伸缩变换:表示为$f(kx)$或$f(x)/k$,注意$k$的正负性;3. 反转变换:表示为$f(-x)$或$f(-y)$,注意反转后的坐标轴位置变化。

五. 应用函数的基本性质(10分钟):1. 求函数的最值。

(完整word版)人教版_数学_必修1函数的基本性质_教案

(完整word版)人教版_数学_必修1函数的基本性质_教案

31-ξ函数的基本性质1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。

(2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.(3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。

(1)判断或证明函数的单调性;(2)奇偶性概念的形成与函数奇偶性的判断。

一、 函数的单调性 1.单调函数的定义(1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。

(2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。

(3)单调性:如果函数()y f x =在某个区间是增函数或减函数。

那么就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。

2、单调性的判定方法 (1)定义法:判断下列函数的单调区间:21xy =(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。

(3)复合函数的单调性的判断: 设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在],[b a 上也是单调函数.①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。

②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同. 即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的 单调性相反时则复合函数为增减函数。

高中数学必修一《函数的基本性质》优质教案

高中数学必修一《函数的基本性质》优质教案

高中数学必修一《函数的基本性质》优质教案教材分析《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.教学目标与素养课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。

重难点重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程一、 情景导入前面我们用符号语言准确地描述了函数图象在定义域的某个区间上“上升”(或“下降”)的性质.下面继续研究函数的其他性质.画出并观察函数的图像,你能发现这两个函数图像有什么共同特征码?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、 预习课本,引入新课阅读课本82-84页,思考并完成以下问题1.偶函数、奇函数的概念是什么?2.奇偶函数各自的特点是?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、 新知探究1.奇函数、偶函数(1)偶函数(even function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数(odd function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.2、奇偶函数的特点(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.因此定义域关于原点对称是函数存在奇偶性的一个必要条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§1.3.1函数的单调性及最大、小值
⑵学会运用函数图象理解和研究函数的性质; ⑶够熟练应用定义判断数在某区间上的的单调性. ⑷理解函数的最大(小)值及其几何意义; ⑸学会运用函数图象理解和研究函数的性质;
函数的单调性及其几何意义.函数的最大(小)值及其几何意义.
利用函数的单调性定义判断、证明函数的单调性.利用函数的单调性求函数的
最大(小)值.
⑴观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:
①随x 的增大,y 的值有什么变化?②能否看出函数的最大(小)值?③函数图象是否具有某种对称性?
⑵画出下列函数的图象,观察其变化规律:
①f(x) = x

1 从左至右图象上升还是下降 ______? ○
2 在区间 ____________ 上,随着x 的增
大,f(x)的值随着 ________ . ②f(x) = -2x+1

1 从左至右图象上升还是下降 ______? ○
2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .
③f(x) = x 2

1在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .

2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .
⑴设函数)(x f y =的定义域是I,区间I D ⊆,D x x ∈21,,当21x x <时,都有
)()(21x f x f < 成立,则称)(x f 在区间D 上是增函数...
,如图⑴ ⑵设函数)(x f y =的定义域是I,区间I D ⊆,D x x ∈21,,当21x x <时,都有
)()(21x f x f >成立,则称)(x f 在区间D 上是减函数...
,如图⑵
①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ②必须是对于区间D 内的任意..两个自变量x 1,x 2;当x 1<x 2时,总有..f(x 1)<f(x 2)
二、函数的单调性定义及判断步骤
⑴单调区间:函数)(x f 在区间D 上是增函数或减函数,我们就称函数)(x f 在这个区间D 具有(严格的)单调性,区间D 是这个函数的单调区间。

⑵判断函数单调性的方法步骤
利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤:
①假设取值 x 1,x 2∈D ,且x 1<x 2; ②作差变形f(x 1)-f(x 2);(通常是因式分解和配方); ③判断符号(即判断差f(x 1)-f(x 2)的正负);
④下定结论(即指出函数f(x)在给定的区间D 上的单调性). 三、单调性典型例题
例1.(教材P 32例1)根据函数图象说明函数的单调性. 解:(略)
巩固练习:课本P 36练习第1、2题 例2.(教材P 32例2)根据函数单调性定义证明函数的单调性. 解:(略)
巩固练习:①课本P 36练习第3题; ②证明函数x
x y 1
+
=在(1,+∞)上为增函数. [附加]借助计算机作出函数y =-x 2
+2 | x | + 3的图象并指出它的的单调区间. 解:(略) 思考:画出反比例函数x
y 1
=
的图象. ①这个函数的定义域是什么?
②它在定义域I 上的单调性怎样?证明你的结论. 四、函数的最大、最小值
指出图象的最高点或最低点,并说明它能体现函数的什么特征?
(1)32)(+-=x x f (2)32)(+-=x x f ]2,1[-∈x
(3)12)(2
++=x x x f
(4)12)(2
++=x x x f ]2,2[-∈x
一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足: ⑴对于任意的x ∈I ,都有f(x)≤M ; ⑵存在x 0∈I ,使得f(x 0) = M
那么,称M 是函数y=f(x)的最大值.
①函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ;
②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ).
y=f(x)的最小值的定义.(学生活动)
五、利用函数单调性的判断函数的最大(小)值的方法 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值
利用函数单调性的判断函数的最大(小)值
如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);
如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);
六、最大(小)值典型例题
例3.(教材P 34例3)利用二次函数的性质确定函数的最大(小)值. 解:(略) [附加题]
旅 馆 定 价
一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:
解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.
设y 为旅馆一天的客房总收入,x 为与房价160相比降低的房价,因此当房价为
)160(x -元时,住房率为)%102055(⋅+
x
,于是得 y =150·)160(x -·)%1020
55(⋅+x

由于)%1020
55(⋅+x
≤1,可知0≤x ≤90.
因此问题转化为:当0≤x ≤90时,求y 的最大值的问题.
将y 的两边同除以一个常数0.75,得y 1=-x 2
+50x +17600.
由于二次函数y 1在x =25时取得最大值,可知y 也在x =25时取得最大值,此时房
价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).
所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的) 例4.(教材P 35例4)求函数1
2
-=x y 在区间[2,6]上的最大值和最小值. 解:(略) 巩固练习:(教材P 36练习5)
再利用定义证明.求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分四步:①假设取值②作差变形③判断符号④下定结论
P 43 习题1.3(A 组) 第1-2题.
提高作业:设f(x)是定义在R 上的增函数,f(xy)=f(x)+f(y),
⑴求f(0)、f(1)的值;
⑵若f(3)=1,求不等式f(x)+f(x-2)>1的解集.。

相关文档
最新文档