高一数学 函数的解析式、定义域和值域

合集下载

高一数学函数解析式、定义域、值域解题方法

高一数学函数解析式、定义域、值域解题方法
2、配方法
例12. 求函数y=2x2+4x的值域。
解:y=2x2+4x=2(x2+2x+1)-2=2(x+1)2-2≥-2,故值域为{y|y≥-2}。
说明:这是一个二次函数,可通过配方的方法来求得函数的值域。类似的,对于可以化为二次函数的函数的值域也可采用此方法求解,如y=af2(x)+bf(x)+c。
解:Y=20-2X
Y>0,即20-2X>0,X<10,
两边之和大于第三边,
2X>Y,
即2X>20-2X
4X>20
X>5。
本题定义域较难,很容易忽略X>5。
∴5
4、二次函数y=x2-4x+4的定义域为[a,b](a<b),值域也是[a,b],则区间[a,b]是( )
A.[0,4]B. [1,4]C. [1,3]D. [3,4]
当x>2时,2/(2-x) 6≥2-x => x≥-4
∴定义域:[-4,2)
三. 解答题
10、求函数 的定义域。
11、已知 ,若f(a)=3,求a的值。
12、已知函数f(x)满足2f(x)-f(-x)=-x2+4x,试求f(x)的表达式。
解:2f(-x)-f(x)=-x2-4x 4f(x)-2f(-x)=-2x2+8x 相加得 f(x)=-x2+4x/3
2、构造方程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个方程,联立求解。
例2. (1)已知 ,试求 ;
(2)已知 ,试求 ;
解:(1)由条件式,以 代x,则得 ,与条件式联立,消去 ,则得: 。
(2)由条件式,以-x代x则得: ,与条件式联立,消去 ,则得: 。

高一数学函数知识点归纳总结大全

高一数学函数知识点归纳总结大全

高一数学函数知识点归纳总结大全函数是数学中非常重要的概念之一,在高一阶段的数学学习中,我们会接触到许多有关函数的知识点。

本文将对高一数学函数知识点进行归纳总结,旨在帮助同学们系统地理解和掌握这些内容。

一、函数的定义和表示方法函数是一个将一个集合中的元素(称为自变量)映射到另一个集合中的元素(称为因变量)的规则。

函数可以用各种方式来表示,常见的有解析式、图像和表格。

1. 解析式表示法:函数可以用解析式来表示,通常采用f(x)或y的形式表示。

例如:f(x) = 2x + 1,y = sin(x)。

2. 图像表示法:函数的图像是用直角坐标系上的点表示的,其中自变量通常对应横坐标,因变量对应纵坐标。

3. 表格表示法:函数可以用表格形式来表示,其中列出自变量的取值和对应的因变量的取值。

二、函数的性质了解函数的性质有助于我们更好地理解函数的特点和行为。

1. 定义域和值域:函数的定义域是指所有使得函数有意义的自变量的取值范围,而值域则是函数的所有可能的因变量的取值范围。

2. 奇偶性:如果对于函数的定义域中的任意x值,都有f(-x) =f(x)成立,则函数是偶函数;如果对于函数的定义域中的任意x值,都有f(-x) = -f(x)成立,则函数是奇函数;否则函数既不是偶函数也不是奇函数。

3. 单调性:如果函数的自变量增加时,其对应的因变量是单调递增或单调递减的,我们称这个函数是单调函数。

4. 周期性:如果函数的某个正数T满足对于函数的所有x值都有f(x+T) = f(x)成立,则称函数具有周期性,T是函数的一个周期。

三、常见函数的类型在高一阶段,我们会学习到以下几类常见的函数。

1. 一次函数:一次函数的解析式为f(x) = ax + b,其中a和b是常数,且a≠0。

一次函数的图像是一条斜率为a的直线。

2. 二次函数:二次函数的解析式为f(x) = ax^2 + bx + c,其中a、b和c是常数,且a≠0。

二次函数的图像通常是一个开口向上或向下的抛物线。

2.1函数的定义域、值域、解析式

2.1函数的定义域、值域、解析式

函数的定义域、值域、解析式一、知识点1、定义域的概念和求法2、值域的概念和求法3、映射、对应法则 区间概念设,a b R ∈且a b <(,a b 称为端点,在数轴上注意实心空心的区分) 满足a x b ≤≤的全体实数x 的集合,叫做闭区间,记作[,]a b 满足a x b <<的全体实数x 的集合,叫做开区间,记作(,)a b满足a x b ≤<或a x b <≤的全体实数x 的集合,叫做半开半闭区间,记作[,)a b 或(,]a b 分别满足,,,x a x a x a x a ≥>≤<的全体实数的集合分别记作[,),(,),(,],(,)a a a a +∞+∞-∞-∞一、定义域1、定义域的概念设集合A 是一个非空实数集,对A 内任意实数x ,按照确定的法则f ,都有唯一确定的实数值y 与它对应,则这种对应关系叫做集合A 上的一个函数,记做(),y f x x A =∈。

x 叫做自变量,自变量取值的范围所组成的集合叫做函数的定义域。

函数的定义域和值域一定表示成集合或区间的形式。

(易错点)2、函数定义域的求法(方法对接):(1)分式中的分母不为零; (2)偶次方根下的数(或式)大于或等于零; (3)a 的零次方没有意义; (后续课程会涉及的定义域:指数式的底数,对数式的底数和真数,正余切函数和反三角函数的定义域)例1、求下列函数的定义域(分母和偶次方根)1()1f x x =+ 221533x x y x --=+-练习、求下列函数的定义域:1()5f x x =- ()13f x x x =-++ ()f x x x =+- 262x y x -=+ 021(21)4111y x x x =+-+-+- 211()1x y x -=-+(选讲)复合函数的定义域:函数()f x 的定义域为(,)a b ,函数()g x 的定义域为(,)m n ,则函数[]()f g x 的定义域为()(,)(,)g x a b x m n ∈⎧⎨∈⎩,解不等式,最后结果才是。

期末复习卷——函数定义域、值域、解析式

期末复习卷——函数定义域、值域、解析式

嘉兴一中2012学年高一数学期末复习(二)——函数的定义域、值域、解析式组题人:吴献超 审题人:胡刚知识梳理: 【考试说明】1.了解函数、映射的概念,会求一些简单的函数定义域和值域. 2.理解函数的三种表示法:解析法、图象法和列表法. 3.了解简单的分段函数,并能简单应用. 【概念梳理】函数定义:一般地,我们有:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 一个数x ,在集合B 中都有 确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ).记作: y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值, 叫做函数的值域(range ).、 与 统称为函数的三要素.映射定义:一般地,我们有:设A 、B 是非空的集合,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个映射(mapping ).区间的概念:设,a b 是两个实数,而且.a b <我们规定:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为 (2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为 (3)满足不等式a x b ≤<或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为这里的实数a 与b 都叫做相应区间的端点,其中实数a 叫做区间的左端点,实数b 叫做区间的右端点,b a -叫做区间的长度. 区间意义与使用规则:区间是集合的另外一种表示方法,在用区间表示集合时应注意区的使用规则: (1)区间的左端点必须小于其右端点;(2)区间中的元素都表示数轴上的点,可以用数字表示出来; (3)任何区间均可在数轴上表示出来;(4)以“-∞”或“+∞”为区间的一端点时,这一端必须是小括号.函数的表示方法: 、 、分段函数: 已知函数定义域被分成有限个区间,若在各个区间上表示对应规则的数学表达式一样,但单独定义各个区间公共端点处的函数值;或者在各个区间上表示对应规则的数学表达式不完全一样,则称这样的函数为分段函数. 分段函数是一个函数,而不是几个函数;分段函数的解析式不能写成几个不同的方程,而应将几种不同的表达式用一个左大括号括起来,并分别注明各部分的自变量的取值情况. 【题型与方法】1.求函数定义域的常用方法(在研究函数问题时要树立定义域优先的原则):定义域是自变量x 的取值范围,它是函数的一个不可缺少的组成部分,定义域不同而解析式相同的函数,应看作是两个不同的函数.如果没有特别说明,函数的定义域就是指能使这个式子有意义的所有实数x 的集合.在实际问题中,还必须考虑自变量所代表的具体的量的允许取值范围问题.忽视函数的定义域,我们将“寸步难行”,由此,我们也往往将函数的定义域称之为函数的“灵魂”.函数的定义域,就是使给出的解析式有意义的自变量的取值集合,具体来说有以下几种情况:(1)若()f x 是整式,则其定义域为全体实数集R ;(2)若()f x 是分式,则其定义域是使分母不为零的全体实数组成的集合;(3)若()f x 是偶次根式,则其定义域是使被开方数非负(即不小于零)的实数的取值集合; (4)如果函数是由一些基本初等函数通过四则运算结合而成的,那么它的定义域是各基本初等函数定义域的交集; (5)复合函数定义域求法:①若()f x 定义域为[,]a b ,复合函数[()]f g x 定义域由()a g x b ≤≤解出; ②若[()]f g x 定义域为[,]a b ,则()f x 定义域相当于[,]x a b ∈时()g x 的值域. (6)由实际问题列出的函数式的定义域问题,由自变量的实际意义给出.(7)分段函数定义域是各段函数定义域的并集,对数函数底数大于零不等1,真数大于零. 2.相等函数的判断:两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数),而与表示自变量和函数值的字母无关. 3.求函数值域的常用方法函数的值域是由其对应法则和定义域共同决定的.具体方法: (1)直接法:利用常见函数的值域来求一次函数y =ax +b (a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为 ,值域为 ; 二次函数)0()(2≠++=a c bx ax x f 的定义域为 , 当a >0时,值域为 ;当a <0时,值域为 .(2)配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;(3)分式转化法(或改为“分离常数法”),如求函数3243x y x +=-的值域(4)换元法(特别注意新元的范围):通过变量代换转化为能求值域的函数,化归思想;如y ax b =+±a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解.(5)判别式法(可转化为双钩函数形式)如求函数22122+-+=x x x y 的值域 (6)单调性法(7)数形结合:根据函数的几何图形,利用数型结合的方法来求值域. (8)分段函数的值域是各段函数值域的并集. 3.求函数解析式的常用方法⑴待定系数法(已知所求函数的类型);⑵代换(配凑)法;⑶方程的思想----对已知等式进行赋值,从而得到关于()f x 及另外一个函数的方程组; (4)已知函数的奇偶性和部分解析式,求函数的完整解析式;(5)赋值法(抽象函数)基础练习:1.下列对应关系是集合P 上的函数是有 .(1)*,PZ Q N ==,对应关系:f “对集合P 中的元素取绝对值与集合Q 中的元素相对应”; (2){1,1,2,2},{1,4}P Q =--=,对应关系::f x →2,,y x x P y Q =∈∈;(3){P=三角形},{|0}Q x x =>,对应关系:f “对P 中三角形求面积与集合Q 中元素对应.” 2.下列说法中正确的有 .A.()y f x =与()y f t =表示同一个函数 B. ()y f x =与(1)y f x =+不可能是同一函数 C.()1f x =与0()f x x =表示同一函数 D.定义域和值域都相同的两个函数是同一个函数3. (1)函数y =16-4x 的值域是 .(2)设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ).则f (x )的值域是 .4.函数lg 3y x =-____________5. 设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数, ()g x 是奇函数,且()1()1f xg x x +=-,则()f x =____________,()g x = . 典型例题例1.(1)已知f (x )=e(x ∈R),则f (e 2)等于( )A .e 2B .e C. eD .不确定(2) 如下图(1)(2)(3)(4)四个图象各表示两个变量,x y 的对应关系,其中表示y 是x 的函数关系的有 .(3)函数)2()21()1(22)(2≥<<--≤⎪⎩⎪⎨⎧+=x x x x x x x f ,则3()____2f -=,若21)(<a f ,则实数a 的取值范围是____ 例2.(1)若3311()f x x xx +=+,则()f x = .(2)若2(1)lg f x x+=,则()f x = . (3)若()f x 满足12()()3f x f x x+=,则()f x = .(4)已知二次函数()f x 同时满足条件:①(1)(1)f x f x +=-; ②()f x 的最大值为15;③()0f x =的两根的立方和等于17.求函数()f x 的解析式.例3. (1)求函数f (x )=12-|x |+x 2-1+(x -4)0的定义域. (2)若函数y =f (x )的定义域是[0,4],求函数g (x )=f (12x )x -1的定义域.例4.求下列函数的值域:⑴函数22211xx y +-= ⑵函数3log 3log 2x y x =++ ⑶xx y +-=112⑷y x =嘉兴一中2012学年高一数学期末练习(二)——函数的定义域、值域、解析式组题人:吴献超 审题人:胡刚班级:___________ 姓名:__________ 学号:____________一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴ 3)5)(3()(+-+=x x x x f ,5)(-=x x g ;⑵ 11)(-+=x x x f ,)1)(1()(-+=x x x g ;⑶ x x f =)(,2)(x x g =; ⑷0)(x x f =,xx x g =)(; ⑸ 2)52()(-=x x f ,52)(-=x x gA. ⑴、⑵B. ⑵、⑶ C . ⑷ D. ⑶、⑸ 2.函数2()lg(31)f x x =+的定义域是( )A. 1(,)3-∞-B.11(,)33- C .1(,1)3- D.1(,)3-+∞3.若函数[)[]⎪⎩⎪⎨⎧∈-∈=1,0,40,1,41)(x x x f x x)(,则=)3(log 4f ( ) A.31 B. 3 C. 41D. 4 4.如果函数|)|1()1()(x x x f -⋅+=的图象在x 轴上方,那么此函数的定义域为( )A. ()1,1- B. ()(),11,-∞-⋃+∞ C . ()(),11,1-∞-⋃- D. ()()1,11,-⋃+∞ 5.函数}3,2,1{}3,2,1{:→f 满足)())((x f x f f =,则这样的函数个数共有( )A. 1个B.4个 C .8个 D.10个 6.函数344)(23++-=ax ax x x f 的定义域为R ,那么实数a 的取值范围是( )A. (-∞,+∞)B. (0,43) C .(-43,+∞) D.)43,0[ 7.设函数2()272f x x x =-+-,对于实数(03)m m <<,若()f x 的定义域和值域分别为[,3]m 和[1,3],则m 的值为( )A. 1B.5/2 C .611 D.8118.函数()31log f x x =+的定义域是(]1,9,则函数()()()22g x f x f x =+的值域是( ) A .(]2,14 B.[)2,-+∞ C .(]2,7 D.[]2,79.设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( )A .(][)11--+ ∞,,∞B .(][)10--+ ∞,,∞C .[)0+,∞D .[)1+,∞ 二、填空题10.若()f x 是定义在R 上的函数,(0)1f =,并且对于任意实数,x y ,总有2()()(21),f x f x y x y y+=+++则()f x = . 11.如果函数f (x )=ax -1的定义域为[-21,+)∞,那么实数a 的取值范围是 .12.已知定义在R 上的函数()f x 是奇函数,当0x >时,()(1)1f x x x =-+,则()f x = 13.函数xax y 213-+=的值域为()(),22,-∞-⋃-+∞,则实数a = .14.函数x a a x y -+-=的定义域为 .15.函数)(x f =x 2+x +21的定义域是[n ,n +1](n 是自然数),则此函数值域中的整数的个数为 .16.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是 三、解答题17.对定义域分别是f D 、g D 的函数()y f x =、()y g x =,规定:函数()()()()()f g f g f gf xg x x D x Dh x f x x D x D g x x D x D ⎧⋅∈∈⎪=∈∉⎨⎪∉∈⎩当且当且当且.(1)若函数1()1f x x =-,2()g x x =,写出函数()h x 的解析式;(2)求问题(1)中函数()h x 的值域.18.求函数3512+-+=x x x y 的值域(至少两种方法).19.已知函数ϕ(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且ϕ(31)=16,ϕ(1)=8. (1)求ϕ(x)的解析式,并指出定义域;(2)求ϕ(x)的值域.20.已知函数()2x f x ax b=+(a ,b 为常数)且方程f(x)-x+12=0有两个实根为x 1=3, x 2=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x 的不等式()()12k x k f x x+-<-.21.已知二次函数()2f x ax bx =+ (),0a b a ≠是常数,且满足条件:f (2)=0,且方程f (x )=x 有两个相等实根. (1)求f (x )的解析式;(2)是否存在实数m 、n (m <n ),使f (x )的定义域和值域分别为[m ,n ]和[2m,2n ]?如存在,求出m 、n 的值;如不存在,说明理由.答案:任意,唯一,函数值的集合{f (x )| x ∈A },定义域、值域与对应关系[],;a b (,);a b [,),(,].a b a b解析法、图象法、列表法 {x |x ≠0},{y |y ≠0}; Rab ac y y 4)4(|2-≥,{ ab ac y y 4)4(|2-≤}. 基础练习:1.【研析】由于(1)中集合P 中元素0在集合Q 中没有对应元素,并且(3)中集合P 不是数集,从而知只有(2)正确.2.【研析】A 两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同. 2.(]0,3 3.()9,02,4⎛⎤-⋃+∞ ⎥⎝⎦4.[)()()0,22,33,4⋃⋃ 5.221,11xx x -- 典型例题 例1 (1)B(2)【研析】由函数定义可知,任意作一条直线x a =,则与函数的图象至多有一个交点,对于本题而言,当11a -≤≤时,直线x a =与函数的图象仅有一个交点,当1a >或1a <-时,直线x a =与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).(3)12,3(,)(2-∞- 例2 【研析】(1)∵3331111()()3()f x x x x xx x x+=+=+-+, 又1(,2][2,)x x+∈-∞-+∞ ∴3()3f x x x =-(2x ≥或2x ≤-)(2)令21t x +=(1t >),则21x t =-, ∴2()lg 1f t t =-,∴2()lg (1)1f x x x =>-(3)12()()3f x f x x+= ①,把①中的x 换成1x,得132()()ff x x x += ②, ①2⨯-②得33()6f x x x =-,∴1()2f x x x=-(4) 【研析】从所给条件知()f x 的图象关于1x =对称,且最大值为15,故设二次函数的顶点式,利用韦达定理得到关于系数a 的方程.依条件可设2()(1)15(0)f x a x a =-+<,即2()215f x ax ax a =-++,令()0f x =即22150ax ax a -++=,并设12,x x 为该方程的两个根,由韦达定理知:12122151x x x x a +=⎧⎪⎨⋅=+⎪⎩,从而3333121212121590()3()232(1)2.x x x x x x x x a a +=+-⋅+=-⨯⨯+=-90217a∴-=,故 6.a =- 所以函数()f x 的解析式为2()6129.f x x x =-++例3 (1) 解:(1)要使f (x )有意义, 则只需⎩⎪⎨⎪⎧2-|x |≠0,x 2-1≥0,x -4≠0,即⎩⎪⎨⎪⎧x ≠±2,x ≥1或x ≤-1,x ≠4,∴x ≥1且x ≠2且x ≠4或x ≤-1且x ≠-2.故函数的定义域为{x |x <-2或-2<x ≤-1或1≤x <2或2<x <4或x >4}. (2)由⎩⎪⎨⎪⎧0≤12x ≤4,x -1≠0,得⎩⎪⎨⎪⎧0≤x ≤8,x ≠1,∴0≤x ≤8且x ≠1.故定义域为[0,1)∪(1,8]. 例4 (1)1,12⎛⎤-⎥⎝⎦ (2) (][),04,-∞⋃+∞ (3) 110,,22⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭(4) 5,4⎡⎫-+∞⎪⎢⎣⎭练习卷:1-9:CCBCD DCCC10. ()21, 0421,0x f x x x x=⎧⎪=⎨++≠⎪⎩11.-212. ()221,00, 01,0x x x f x x x x x ⎧+->⎪==⎨⎪-++>⎩13.4 14. {}a 15.2n+1 16. ]310,2[ 17. 解:(1)⎪⎩⎪⎨⎧=+∞⋃-∞∈-=11),1()1,(1)(2x x x x x h(2)当.21111)(,12+-+-=-=≠x x x x x h x 时若,4)(,1≥>x h x 则其中等号当x =2时成立,若,4)(,1≤<x h x 则其中等号当x =0时成立,∴函数),4[}1{]0,()(+∞⋃⋃-∞的值域x h 18. (]1,1,13⎡⎫-∞-⋃-+∞⎪⎢⎣⎭19. 解析: (1)设f(x)=ax ,g(x)=x b ,a 、b 为比例常数,则ϕ(x)=f(x)+g(x)=ax +xb由⎪⎩⎪⎨⎧=+=+⎪⎩⎪⎨⎧==8163318)1(,16)31(b a b a 得ϕϕ,解得⎩⎨⎧==53b a ∴ϕ(x)=3x +x 5,其定义域为(-∞,0)∪(0,+∞) (2)由y =3x +x5, 得3x 2-yx +5=0(x ≠0)∵x ∈R 且x ≠0, ∴Δ=y 2-60≥0,∴y ≥215或y ≤-215[来源:学&科&网] ∴ϕ(x) 的值域为(-∞,-215]∪[215,+∞)20.解析:(1)将得(2)不等式即为即[来源:][来源:学#科#网Z#X#X#K]①当②当③.21. 解:(1)方程f (x )=x ,即ax 2+bx =x , 亦即ax 2+(b -1)x =0,由方程有两个相等实根,得Δ=(b -1)2-4a ×0=0, ∴b =1.① 由f (2)=0,得4a +2b =0②由①、②得,a =-12,b =1,故f (x )=-12x 2+x .(2)假设存在实数m 、n 满足条件,由(1)知, f (x )=-12x 2+x =-12(x -1)2+12≤12,则2n ≤12,即n ≤14.∵f (x )=-12(x -1)2+12的对称轴为x =1,∴当n ≤14时,f (x )在[m ,n ]上为增函数.于是有⎩⎪⎨⎪⎧f (m )=2m ,f (n )=2n ,即⎩⎨⎧-12m 2+m =2m ,-12n 2+n =2n ,∴⎩⎪⎨⎪⎧m =-2或m =0,n =-2或n =0.又m <n ≤14,∴⎩⎪⎨⎪⎧m =-2,n =0..故存在实数m =-2,n =0,使f (x )的定义域为[m ,n ],值域为[2m,2n ].。

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

高一数学求函数的定义域与值域的常用法:求函数解析式 1、换元法: 例1.已知 题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。

心) X t 解:设 2 f (x ) X X X ,则1,x 1 。

x 2 X 1 x 2 ,试求 f (X )。

1 t 1,代入条件式可得: f (t )t 2 t 1,t ≠ 1。

故得: 说明:要注意转换后变量围的变化,必须确保等价变形。

2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出 另一个程,联立求解。

f (X) 例2. ( 1)已知 (2)已知 f (X) 2f(2f(1) 3X 24X 5 XX)3X 2解:(1)由条件式,以 • 1 消去 X ,则得: X 代2_ X X,则得 8 3x4X 5f(1) X X 24x 3(2) 由条件式,以一 X 代X 则得: X 24x -3。

f( 去说明: 定义域由解析式确定,不需要另外给出。

例4.求下列函数的解析式: (1) (2) (3) ,试求f (X);f(x).3厶 X试求 2f(x)5 3OX) 2f (X)3X 24X5,与条件式联立,,与条件式联立,消,则得: 本题虽然没有给出定义域,但由于变形过程一直保持等价关系, 故所求函数的 已知 已知 已知 f (X )是二次函数,且f (0) f (∙一 X 1) 心) X 3f (x ) 2, f (X 1) f(X) X 1 ,求 f(X); 2 X ,求 f (x), f (x 1), f (x 2) 1 1 亠 2 ,求 X X f (X);(4) 【题意分析】(1) 设法求出a,b,c 即可。

若能将X 2 - X 适当变形,用.XX 1 设 为一个整体,不妨设为 X X , 已知 2 f ( x) X 3 ,求 f (x)。

由已知f (X)是二次函数,所以可设 f(X) ax 2 bx c(a 0),(2) (3) 1的式子表示就容易解决了。

函数定义域、值域,解析式求法总结

函数定义域、值域,解析式求法总结

函数定义域、值域,解析式求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒⎩⎨⎧≠-≥21x x 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

高中高一人教版本必修一数学函数定义域、值域、解析式题型

高中高一人教版本必修一数学函数定义域、值域、解析式题型

高一函数定义域、值域、分析式题型一、 详细函数的定义域问题1 求以下函数的定义域1( 1) yx 1 ;(2) yx 12 5x 6x xx ( 2)( 3)若函数 f ( x) mx 2 mx 1 的定义域为 R ,则实数 m 的取值范围是( )(A) 0 m 4 (B) 0 m 4 (C) m 4 (D) 0 m 4二、抽象函数的定义问题(一)已知函数 f (x) 的定义域,求函数 f [ g( x)] 的定义域2. 已知函数 f ( x) 的定义域为 [0,1] ,求函数 f (2 x 2 ) 的定义域。

(二)已知函数 f [ g( x)] 的定义域,求函数 f (x) 的定义域3. 已知函数 f (2 x 1) 的定义域为 [1,2] ,求函数 f ( x) 的定义域。

(三)已知函数 f [ g( x)] 的定义域,求函数 f [ h(x)] 的定义域4. 已知函数 f ( x 21) 的定义域为 (2,5) ,求函数 f ( 1) 的定义域。

x5.已知函数 f (x) 的定义域为 [ 1, 1] ,且函数存在,务实数 m 的取值范围。

F ( x)f (xm)f ( xm) 的定义域(一)配凑法5 .已知f (11) x2 13,求 f (x) 的分析式。

x x2 x(二)换元法6.已知f (1 2 x) 2x x ,求 f ( x) 的分析式。

(三)特别值法7 .已知对全部x, y R ,关系式 f (x y) f ( x) (2 x y 1) y 且 f (0) 1 ,求 f ( x) 。

待定系数法8.已知f (x)是二次函数,且 f ( x 1) f ( x 1) 2x2 4x 4 ,求 f ( x) 。

(四)转变法9. 设f ( x)是定义在( , ) 上的函数,对全部x R ,均有f ( x) f (x 2) 0 ,当 1 x 1 时,f ( x) 2x 1 ,求当1 x 3 时,函数 f (x)的分析式。

高一数学函数的定义域与值域(讲义)(精)

高一数学函数的定义域与值域(讲义)(精)

高一数学函数的定义域与值域一、知识归纳:(一)函数的定义域与值域的定义:函数y=f(x 中自变量x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 的值叫做函数值。

函数值的集合{f(x│x∈A}叫做函数的值域。

(二)求函数的定义域一般有3类问题:1、已知解析式求使解析式有意义的x 的集合常用依据如下: ①分式的分母不等于0; ②偶次根式被开方式大于等于0;③对数式的真数大于0,底数大于0且不等于1; ④指数为0时,底数不等于02、复合函数的定义域问题主要依据复合函数的定义,其包含两类:①已知f[g(x]的定义域为x∈(a,b )求f(x 的定义域,方法是:利用a 求得 g(x 的值域,则 g(x 的值域即是 f(x 的定义域。

②已知f(x 的定义域为x∈(a,b )求f[g(x]的定义域,方法是:由a 求得x 的范围,即为 f[g(x] 的定义域。

3、实际意义的函数的定义域,其定义域除函数有意义外,还要符合实际问题的要求。

(三)确定函数的值域的原则1、当数y=f(x 用表格给出时,函数的值域是指表格中实数y 的集合。

2、当函数y=f(x 图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合。

3、当函数y=f(x 用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定。

常见函数的值域:函数y=kx +b y=ax2+b x+cy=ax y=logax值域 R a>0a<0{y|y ∈R{y|y>R0}且y≠0}4、当函数由实际问题给出时,函数的值域由问题的实际意义确定。

(四)求函数值域的方法:1、观察法,2、配方法,3、判别式法,4、反函数法,5、换元法,6、图象法等二、例题讲解:【例1】求下列函数的定义域(1)(2)(3y=lg(a x-kb x (a,b>0且a,b≠1,k∈R[解析](1)依题有∴函数的定义域为(2依题意有∴函数的定义域为(3)要使函数有意义,则a x-kb x>0,即①当k≤0时,定义域为R②当k>0时,(Ⅰ)若a>b>0,则定义域为{x|}(Ⅱ若0 ,则,定义域为 {x| }(Ⅲ若a=b>0,则当0 时定义域为 R ;当k ≥ 1 时,定义域为空集[评析]把求定义域的问题等价转化为关于x的不等式(组)的求解问题,其关键是列全限制条件(组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的解析式、定义域和值域一、知识梳理1.函数的概念设集合A 是一个非空的数集,对A 中的任意数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作 )(x f y =,A x ∈.函数的本质含义是定义域内任一x 值,必须有且仅有惟一的y 值与之对应.函数的定义域与值域:函数的定义中,自变量x 取值的范围叫做这个函数的定义域;所有函数值构成的集合{}A x x f y y ∈=),(叫做这个函数的值域.确定一个函数的两个要素:定义域,对应法则.函数好比数的加工厂,定义域是加工范围,值域是产品系列,f 是加工手段. 2.函数的表示法:列表法,图象法,解析法. 图象法和解析法是考查的重点. 3.映射的概念设A ,B 是两个非空的集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在B 中有一个且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射.这时,称y 是x 在映射f 作用下的象,记作)(x f ,于是y =)(x f ,x 称作 y 的原象. 映射f 也可记为 B A f →: )(x f x →其中A 叫做映射f 的定义域,由所有象)(x f 构成的集合叫做映射f 的值域.二、方法归纳求函数的解析式的一般方法:配凑法、换元法、待定系数法、特殊值法等等.求函数的定义域的一般原则:分母不为零,偶次根下的式子不负,零的零次幂没意义,零和负数无对数,等等.求函数的值域的常见方法:直接法、配方法、换元法、判别式法、数形结合法、反函数法、单调性法等等.判断某“对应法则”是否为A→B 的映射,主要表现为“一对一”及“多对一”的两种特殊对应;应特别注意:①A 中任一元素在B 中应有象,且象唯一;②B 中可以有空闲元素,即B 中可以有元素没有原象.三、典型例题精讲【例1】如果45)1(2+-=+x x x f ,那么)(x f = .解析:方法一(配凑法)∵45)1(2+-=+x x x f =4)11(5)11(2+-+--+x x ,∴)(x f =4)1(5)1(2+---x x =1072+-x x .方法二(换元法) 设t x =+1,则1-=t x ,于是4)1(5)1()(2+---=t t t f =1072+-t t ,即)(x f =1072+-x x .技巧提示:(1)凑配法:若已知))((x g f 的表达式,需求)(x f 的表达式,可把)(x g 看成一个整体,把右边变为由)(x g 组成的式子,再将)(x g 统一换为x ,求出)(x f 的表达式.(2)换元法:已知))((x g f 的表达式,需求)(x f ,我们常设)(x g t =,从而求得)(1t g x -=,然后代入))((x g f 的表达式,从而得到)(t f 的表达式,即为)(x f 的表达式.用凑配法和换元法求)(x f 的解析式时,不单是关注对应法则的变化,还需要考虑定义域的变化. 又例:已知14)12(+=-x x f ,31≤<x ,求函数)(x f .错解分析:∵14)12(+=-x x f =3)12(2+-x ,∴)(x f =32+x ,31≤<x .定义域是函数的一个要素,没有考虑定义域的变化,所求函数出错.解析:∵14)12(+=-x x f =3)12(2+-x ,又∵31≤<x ,有5121≤-<x ,∴)(x f =32+x ,51≤<x . 再例:已知函数)(x f 满足)(log x f a =)1(12x x a a -- (a >0,a ≠1,x >0),求)(x f 的表达式. 错解分析:令x t a log =,于是a >1,t >0;10<<a ,t <0.将t a x =代入,得)(t f =)(12tt a a a a ---, ∴)(x f =)(12x x a a a a--- (a >1,x >0;10<<a ,x <0). 在a >0,a ≠1,x >0的条件下,R t x a ∈=log .解析:令x t a log =,R t ∈, 将t a x = 代入,得)(t f =)(12tt a a a a --- ∴)(x f =)(12x x a a a a--- (a >0,0≠a ,x R ∈).【例2】已知二次函数)(x f =c bx ax ++2满足1)0()1()1(==-=f f f ,求)(x f 的表达式解析:由c b a f ++=)1(,c b a f +-=-)1(,c f =)0(.得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=)0()]1()1([21)0()]1()1([21f c f f b f f f a 并且)1(f ,)1(-f ,)0(f 不能同时等于1或-1,所以所求函数为:)(x f =122-x 或)(x f =122+-x 或)(x f =12+--x x 或)(x f =12--x x 或)(x f =12++-x x 或)(x f =12-+x x .技巧提示:待定系数法:若已知)(x f 的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得)(x f 的表达式.又例:已知一次函数)(x f 满足)1(3+x f )1(2--x f =172+x ,求)(x f 的表达式. 解析:设)(x f =b kx +,则)1(3+x f =b k kx 333++,)1(2-x f =b k kx 222+-,由)1(3+x f )1(2--x f =172+x ,得1725+=++x b k kx .比较系数及常数项,得⎩⎨⎧=+=1752b k k ,∴2=k ,7=b .∴)(x f =72+x .再例:如果函数∈-+=c b c bx ax x f ,()(2N +)满足)0(f =0,)2(f =2,且)2(-f <21-.求函数)(x f 的解析式.解析:依题意,得 ⎪⎩⎪⎨⎧=-+=2240cb a a ,即⎩⎨⎧=-=220c b a .∴22)(2+-=b bx x x f .又由21)2(-<-f ,得21244-<+-b . ∵b ∈N +,∴012>-b ,25<b .∴b =1 或 b =2. 又c b -2=2,故当b =1时, c =0,不符合题意;当b =2时,c =2.∴ )1(22)(2≠-=x x x x f .【例3】 已知)(x f 满足对任意R x ∈,0≠x ,有x xf x f 2)1()(2=+.求)(x f .解析:∵x xf x f 2)1()(2=+ ……①将x 用x 1代之,得xx f x f 2)()1(2=+……② 由①,②得xx x x x f 3234324)(-=-=. 技巧提示:若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法.又例:设)(x f 满足)0(f =1,并且)12()()(+--=-y x y x f y x f 对任意实数x 、y 都成立,求)(x f 的解析式.解析:方法一 :由)0(f =1,)12()()(+--=-y x y x f y x f令x =y ,得x x x f x x x x f f --=+--=2)()12()()0(,∴)(x f =12++x x .方法二:令x =0,得1)()(1)1()0()(22+-+-=-+=+--=-y y y y y y f y f ,∴)(x f =12++x x .技巧提示:赋值法:在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式. 【例4】求函数29)1ln(1x x y -+-=的定义域.解析:这个函数是两项之和,由第一项有:⎩⎨⎧≠->-1101x x ⇒⎩⎨⎧≠>21x x , 由第二项有:092≥-x ,33≤≤-⇒x ,取两者之交集,得所求函数的定义域为]3,2()2,1(Y .技巧提示:求函数的定义域就是要使函数有意义,目前我们知道:分母为零无意义,负数开偶次方无意义,零的零次幂没意义,零和负数的对数无意义等等.求函数的定义域往往需要解不等式或不等式组;使函数有意义就要使函数的每一部分都要有意义,所以通常需要求数集的交集.又例:(1)函数()()1log 143++--=x x xx f 的定义域是 . (2)函数)23(log 32-=x y 的定义域是.解析:(1)要使函数)(x f 有意义,必须有⎪⎩⎪⎨⎧>+≠-≥-010104x x x ,即⎪⎩⎪⎨⎧->≠≤114x x x .应填:]4,1()1,1(Y -.(2)要使函数有意义,必须有)23(log 32-x ≥0,∴1230≤-<x ,即132≤<x .应填:]1,32(. 再例:函数1002≤<≤⎩⎨⎧=x x xe y x的定义域是 .解析:这是分段函数,其定义域应是各段函数定义域的并集,应填:]1,(-∞. 【例5】 若)(x f y =的定义域为[]2,0,则)(ln x f 的定义域是 .解析: 由2ln 0≤≤x , 有20e x e ≤≤得)(ln x f 的定义域为 ],1[2e .应填:],1[2e .技巧提示:函数)(x f y =的定义域为[]2,0,意思是f 只能对[]2,0中的数作用,也就是对[]2,0中的数f 才有意义.函数)(ln x f 要有意义,必须f 对x ln 能作用,所以必须2ln 0≤≤x .又例:已知函数1)(2++=mx mx x f 的定义域是全体实数,则m 的取值范围是( )A .0<m ≤4B .0≤m ≤1C .m ≥4D .0≤m ≤4 错解分析:由12++mx mx ≥0对全体实数都成立,得⎩⎨⎧≤∆>00m ,即⎩⎨⎧≤->0402m m m . ∴m 的取值范围是0<m ≤4.故选A .解析:由12++mx mx ≥0对全体实数都成立,得当m =0时,1≥0,对全体实数都成立; 当m ≠0时,⎩⎨⎧≤∆>00m ,即 ⎩⎨⎧≤->0402m m m .∴m 的取值范围是0≤m ≤4.故选B .技巧提示:这是求函数的定义域的逆问题,即给定函数的定义域,求参数的取值范围.此问题转化为不等式恒成立问题,但要注意二次函数的二次项系数为字母时的分类讨论.再例:已知函数12)1()1()(22++-+-=a x a x a x f 的定义域为R ,求实数a 的取值范围. 解析:由题意知R x ∈时,012)1()1(22≥++-+-a x a x a 恒成立. (1)当012=-a 且01≠+a 时,有a =1,此时)(x f =1,显然对R x ∈时,012)1()1(22≥++-+-a x a x a 恒成立. (2)当012≠-a 时,有⎪⎩⎪⎨⎧≤+⋅---=∆>-012)1(4)1(01222a a a a ,解不等式组得91≤<a . 综上知,当R x ∈时,使得)(x f 有意义的a 的取值范围是[1,9].【例6】 求函数x x y 422+--=的值域.解析:本题中含有二次函数可利用配方法求解,为便于计算不妨设)0)((4)(2≥+-=x f x x x f ,配方得][)4,0(4)2()(2∈+--=x x x f .利用二次函数的相关知识得][4,0)(∈x f ,从而得出所求函数的值域为 ]0,2y ⎡∈⎣.技巧提示:配方法能解决与二次函数有关的函数的值域问题.本题可以直接配方,得x x y 422+--==2)2(42---x ,然后经分析得所求函数的值域为]0,2y ⎡∈⎣,因此,有时直接分析也能得到函数的值域. 又例:求242-+-=x y 的值域.解析:由绝对值知识及二次函数值域的求法易得)[∞+∈+-,042x ,∴)[∞+-∈-+-,2242x ,∴)[∞+-∈,2y .再例:求函数122+--=x x xx y 的值域.解析:观察分子、分母中均含有x x -2项,可先变形后再采取分析法.43)21(11111122222+--=+--+-=+--=x x x x x x x x x y .由2)21(-x ≥0,有43)21(2+-x ≥43, 0<43)21(12+-x ≤34,-34≤-43)21(12+-x <0,-31≤1-43)21(12+-x <1,∴ 所求函数的值域为 )1,31⎢⎣⎡-∈y .技巧提示:配方法、分析法、配方分析法都是解决含2x 项的函数值域问题的重要方法.本题亦可采用判别式法:将122+--=x x x x y 重新整理为关于x 的二次方程,得0)1()1(2=+---y x y x y ,这个关于x 的二次方程有解,∴1≠y 且判别式△≥0, 由△≥0,得y y y )1(4)1(2---≥0, ∴131≤≤-y . ∴ 所求函数的值域为 )1,31⎢⎣⎡-∈y .【例7】已知函数1222+++=x bax x y 的值域为[1,3],求a 、b 的值. 解析:由题意知R x ∈,把原函数变形为0)2(2=-+--b y ax x y当02=-y 时,满足题意;当02≠-y 时,因R x ∈,所以0))(2(42≥---=∆b y y a ,即08)2(4422≤-++-a b y b y .∵31≤≤y ,∴1和3是方程08)2(4422=-++-a b y b y 的两个实根, 由韦达定理解得22=±=b a ,.技巧提示:这是求函数的值域的逆问题,即在给定函数值域的条件下求参数的值.解决此问题的关键在于把求值域的问题和解一元二次不等式的问题联系起来,最后通过比较同解不等式的系数,列方程求出参数的值.又例:已知)(x f =[)+∞∈++,1,22x xax x . (1)当a =21时,求函数)(x f 的最小值; (2)若对任意x [)+∞∈,1,)(x f >0恒成立,试求实数a 的取值范围.解析:(1)当a =21时,)(x f =x a x x ++22=221++x x =22)21(2++-xx , ∵函数xx 21-在[)+∞∈,1x 上是增函数,∴xx 21-≥211->0,∴2)21(xx -在[)+∞∈,1x 上是增函数,于是2)21(xx -≥2)211(-≥223- ∴)(x f =22)21(2++-xx ≥22223++-=27, 所以)(x f 的最小值为27. (2))(x f >0即为2++xax >0,又[)+∞∈,1x ,∴ a >x x 22--恒成立. 而当[)+∞∈,1x 时,22)1(12+-=--x x x ≤-3,∴a >-3.四、课后训练1.已知x x f 26log )(=,则=)8(f ( ) A .34 B . 8 C .18 D .212.已知函数)(n f =⎩⎨⎧<+≥-),10)](5([),10(3n n f f n n 其中n ∈N ,则)8(f 等于( )A .2B .4C .6D .7 3.若函数)(x f =34-x mx (x ≠43)在定义域内恒有))((x f f =x ,则m =( )A.3B. 23C.-23 D. -34.(1)已知)(x f 的定义域为[]2,2-,求)1(2-x f 的定义域;(2)已知)(x f 的定义域为[]0,1,求函数)()()(a x f a x f x F -++=的定义域.5.已知函数347)(2+++=kx kx kx x f 的定义域是R ,求实数k 的取值范围. 6.已知函数)(x f =xx-+11log 2. (1)求证:)1()()(212121x x x x f x f x f ++=+;(2)若)1(ab b a f ++=1,21)(=-b f ,求)(a f 的值. 7.求函数3274222++-+=x x x x y 的值域.8.求函数x x y 41332-+-=的值域.9.求函数y =112+++x x ax (x >-1且a >0)的最小值.10.求函数y=x x -+1的最大值和最小值.五、参考答案1.答案:D解析:由x x f 26log )(=,知0>x ,令86=x ,得212=x ,∴=)8(f 21log 2=x ,故选D . 2.答案:D解析:)8(f =))13((f f =)10(f =7,故选D . 3.答案: A解析: ∵ )(x f =34-x mx .∴ ))((x f f =334434--⋅-⋅x mx x mxm =x ,整理比较系数得m =3. 4.解析:(1)令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而33≤≤-x ,故函数的定义域是}3x 3|x {≤≤-.(2)因为)(x f 的定义域为[]0,1,即10≤≤x .故函数)(x F 的定义域为下列不等式组的解集,⎩⎨⎧≤-≤≤+≤1010a x a x ,即⎩⎨⎧+≤≤-≤≤-a x a a x a 11. 即两个区间[],1a a --与[],1a a +的交集,比较两个区间左、右端点,知(i )当021≤≤-a 时,)(x F 的定义域为}1|{a x a x +≤≤-; (ii )当210≤≤a 时,)(x F 的定义域为}1|{a x a x -≤≤; (iii )当21>a 或21-<a 时,上述两区间的交集为空集,此时)(x F 不能构成函数. 5.解析:要使函数有意义,则必须342++kx kx ≠0恒成立,因为)(x f 的定义域为R ,即方程0342=++kx kx 无实根.①当k ≠0时,需034162<⨯-=∆k k 恒成立,解得430<<k ; ②当k =0时,方程变为3=0恒无实根.综上k 的取值范围是430<≤k .6.解析:(1)证明:Θ221122111log 11log )()(x x x x x f x f -++-+=+=)11(log 212121212x x x x x x x x +--+++; 又 =++-+++=++)1111(log )1(2121212122121x x x x x x x x x x x x f )11(log 212121212x x x x x x x x +--+++. ∴ =+)()(21x f x f )1(2121x x x x f ++. (2)∵)1(abb a f ++=)(a f +)(b f =1, 又∵)(b f -=b b +-11log 2=12)11(log --+b b =bb -+-11log 2=)(b f -. ∴ )(a f =1-)(b f =1+)(b f -=23. 7.解析:方法一: 由于本题的分子、分母均为关于x 的二次形式,因此可以考虑使用判别式法.将原函数变形为 7423222-+=++x x y xy y x ,整理得073)2(2)2(2=++-+-y x y x y ,显然2≠y ,上式可以看成关于x 的二次方程,该方程的x 范围应该满足032)(2≠++=x x x f即R x ∈此时方程有实根即△0≥,△[]2,29[0)73)(2(4)]2(22-∈⇒≥+---=y y y y , ∴ 函数3274222++-+=x x x x y 的值域为)2,29[-. 方法二: 将函数式变形为3274222++-+=x x x x y =2)1(1322++-x . ∵2)1(2++x ≥2, 0<2)1(132++x ≤213, ∴ 29-≤2)1(1322++-x <2.∴ 函数3274222++-+=x x x x y 的值域为)2,29[-. 8.解析:由于题中含有x 413-不便于计算,但如果令:x t 413-=注意0≥t从而得:)0(321341322≥+--=∴-=t t t y t x 变形得)0(8)1(22≥+--=t t y , 即:]4,(-∞∈y .9.解析:∵y =112+++x x ax =a x +1+x a +1-a =a (x +1)+1+x a +1-2a =1)11)1((2++-+x x a ≥1.∴ 当 x =0时等号成立,min y =1.10.解析:令u x =,]1,0[∈u ,[]1,0,1∈=-v v x ,于是,有 122=+v u (0≥u ,)0≥v ,且v u y +=,即y u v +-=,由直线方程斜截式纵截距的几何意义, 1min =y ,2max =y .。

相关文档
最新文档