2020年8月江苏省盐城中学高三年级阶段性考试数学试卷(pdf解析版)

合集下载

江苏省盐城中学2020-2021学年高三上学期第二次阶段性质量检测数学试题

江苏省盐城中学2020-2021学年高三上学期第二次阶段性质量检测数学试题

高三年级盐城中学数学月考试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}10A x x =-≤,集合{}21,xB y y x R ==+∈,则A B =( )A. ()1,+∞B. [)1,+∞C. ()0,∞+D. ∅A分别求出集合,A B ,再根据交集的运算即可求出.因为{}[)101,A x x =-≤=+∞,{}{}()21,11,xB y y x R y y ==+∈=>=+∞,所以()1,A B =+∞.故选:A .本题主要考查指数函数的值域的应用以及集合的交集运算,属于容易题. 2. “2a <”是“10,x a x x∀>≤+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件A若10,x a x x ∀>≤+,则min 1()a x x ≤+,利用均值定理可得min 1()2x x+=,则2a ≤,进而判断命题之间的关系.若10,x a x x ∀>≤+,则min 1()a x x ≤+,因为12x x +≥,当且仅当1x x=时等号成立,所以2a ≤, 因为{}{2}2a a a a <⊆≤,所以“2a <”是“10,x a x x∀>≤+”的充分不必要条件,故选:A 本题考查充分条件和必要条件的判定,考查利用均值定理求最值. 3. 函数()()231ln 31xxx f x -=+的部分图象大致为( )A. B.C. D.B 【分析】先由函数的奇偶性排除部分选项,再用特殊值确定. 因为()()()()()2231ln 31ln 3131------==-=-++x xxxx x f x f x ,所以()f x 是奇函数,故排除A ,C ;因为21212131ln 21231⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎛⎫⎝⎭= ⎪⎝⎭+f ,且211221310,310,ln 02⎛⎫->+>< ⎪⎝⎭,所以102f ⎛⎫< ⎪⎝⎭,故选:B 本题主要考查函数图象的识别以及奇偶性的应用,还考查了数形结合的思想方法,属于中档题. 4. 若log 0a b <(0a >且1a ≠),221b b->,则( )A. 1a >,1b >B. 01a <<,1b >C. 1a >,01b <<D. 01a <<,01b <<B首先根据221b b->以及对数式有意义,确定1b >,再结合log 0a b <,得到01a <<,从而得到正确选项. 由221bb->,可得20b b ->,解得0b <或者1b >,因为log a b 有意义,所以0b >,所以1b >, 因为log 0a b <,所以01a <<,故选:B.该题考查的是有关求参数取值范围的问题,涉及到的知识点有指数不等式,对数不等式,属于基础题目.5. 已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( ) A. -3 B. 1 C. -1 D. 3A先解一元二次不等式得到集合A 和B ,求得交集,再利用解集求得一元二次不等式x 2+ax +b <0系数的关系,即得结果.由题意:A ={x |-1<x <3},B ={x |-3<x <2}. A ∩B ={x |-1<x <2},由根与系数的关系可知: a =-1,b =-2,∴a +b =-3.故选:A.6. 已知sin cos 33ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则cos2=α( ) A. 0 B. 1C.2D.2A 【分析】本题首先可根据两角和的正弦公式以及两角差的余弦公式对sin cos 33ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭进行化简,得出cos sin αα=,然后根据22cos 2cos sin =-ααα即可得出结果.因为sin cos 33ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭, 11sin cos 22αααα+=+,即cos sin αα=, 则22cos2cos sin 0ααα=-=,故选:A.本题考查两角和的正弦公式、两角差的余弦公式以及二倍角公式,考查计算能力,考查转化与化归思想,是简单题.7. 已知定义在R 上的函数()f x 的导函数为()'f x ,且对任意x ∈R 都有()2f x '>,(1)3f =,则不等式()210f x x -->的解集为( ) A. (,1)-∞ B. (1,)+∞C. (0,)+∞D. (,0)-∞B先构造函数()()21g x f x x =--,求导得到()g x 在R 上单调递增,根据函数的单调性可求得不等式的解集.构造函数()()21g x f x x =--,(1)3f =, (1)(1)210g f x ∴=--=.又任意x ∈R 都有()2f x '>.∴()()20g x f x '='->在R 上恒成立. ∴()g x 在R 上单调递增.∴当()(1)g x g >时,有1x >,即()210f x x -->的解集为{}|1x x >.本题主要考查利用函数的单调性解不等式,根据题目条件构造一个新函数是解决本题的关键. 8. 对于任意的实数[1,e]x ∈,总存在三个不同的实数[1,5]y ∈-,使得21ln 0y y xe ax x ---=成立,则实数a 的取值范围是( ) A. 24251(,]e e e- B. 4253[,)e eC. 425(0,]eD. 24253[,)e e e- B原方程化为21ln y x y e a x -=+,令()[]ln ,1,xf x a x e x=+∈,令()[]21,1,5y g y y e y -=∈-,可得()1,f x a a e ⎡⎤∈+⎢⎥⎣⎦,利用导数研究函数()g y 的单调性,利用数形结合可得41254,,a a e e e ⎡⎤⎡⎤+⊆⎢⎥⎢⎥⎣⎦⎣⎦,得到关于a 不等式组,解出即可.详解】0x ≠,∴原式可化为21ln y xy e a x-=+, 令()[]ln ,1,x f x a x e x =+∈时()()1ln '0,x f x f x x-=≥递增,故()1,f x a a e ⎡⎤∈+⎢⎥⎣⎦,令()[]21,1,5yg y y e y -=∈-,故()()1211'22yy y g y y ey e y y e ---=⋅-=-,故()g y 在()1,0-上递减,在()0,2上递增,在()2,5上递减,而()()()()244251,00,2,5g e g g g e e-====,要使总存在三个不同的实数[]1,5y ∈-,使得21ln 0y y xe ax x ---=成立,即41254,,a a e e e ⎡⎤⎡⎤+⊆⎢⎥⎢⎥⎣⎦⎣⎦,故42514a e a e e ⎧≥⎪⎪⎨⎪+<⎪⎩,故4253a e e ≤<,实数a 的取值范围是4253,e e ⎡⎫⎪⎢⎣⎭,故选B.本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题. 转化与划归思想解决高中数学问题的一种重要思想方法,运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.解答本题的关键是将问题转化为41254,,a a e e e ⎡⎤⎡⎤+⊆⎢⎥⎢⎥⎣⎦⎣⎦.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分.部分选对的得3分,有选错的得0分.9. 若函数3()12f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围可以是( ) A. 31k -<<- B. 1k 3<< C. 2k 2-<< D. 11k -≤≤AB求导函数得到原函数的单调区间,求得函数在2x =-取得极大值,在2x =取得极小值,函数在区间()1,1k k -+上不是单调函数,则2-在()1,1k k -+内,或2在()1,1k k -+内,列出不等式求解可得.3()12f x x x =-,2()312f x x '=-令2()3120f x x '=->解得2x > 或2x < ;3()12f x x x=-(,2),(2,)-∞+∞上单增,在(2,2)-上单减.所以函数在2x =-取得极大值,在2x =取得极小值 因为函数3()12f x x x =-在区间()1,1k k -+上不是单调函数 所以121k k -<-<+或121k k -<<+ 解得31k -<<-或13k <<故选:AB..求一个函数在闭区间上的最值和在无穷区间(或开区间)上的最值时,方法是不同的.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况得到函数的最值. 10. 若将函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度,得到函数g (x )的图象,则下列说法正确的是( ) A. g (x )的最小正周期为π B. g (x )在区间[0,2π]上单调递减 C. x =12π是函数g (x )的对称轴 D. g (x )在[﹣6π,6π]上的最小值为﹣12AD函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度后得函数g (x )的解析式,从而可求出它的最小正周期、对称轴等. 函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度后得()cos 2812g x x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦cos 23x π⎛⎫=+ ⎪⎝⎭,最小正周期为π,A 正确;222()3k x k k Z ππππ≤+≤+∈()63k x k k Z ππππ∴-≤≤+∈为g (x )的所有减区间,其中一个减区间为,63ππ⎡⎤-⎢⎥⎣⎦,故B 错; 令23x k ππ+=,得6,2kx k Z ππ=-+∈,故C 错; x ∈[﹣6π,6π],220,33x ππ⎡⎤∴+∈⎢⎥⎣⎦,1cos(2),132x π⎡⎤∴+∈-⎢⎥⎣⎦,故 D 对故选:AD 11. 已知函数()f x 是偶函数,()1f x +是奇函数,并且当[]1,2x ∈,()12f x x =--,则下列选项正确的是( ). A. ()f x 在()3,2--上为减函数B. ()f x 在()3,2--上()0f x <C. ()f x 在()3,2--上为增函数D. ()f x 在()3,2--上()0f x >CD利用()f x 是偶函数,()1f x +是奇函数可知()f x 为周期函数,且周期为4,然后根据函数()f x 在[]1,2x ∈上的性质确定在区间()3,2--上的性质. 因为()f x 是偶函数,()1f x +是奇函数,所以函数()f x 的图象关于y 轴对称,且关于点()1,0中心对称,则()f x 的周期为4, 当[]1,2x ∈时,()12121f x x x x =--=+-=-,则函数()f x 在[]1,2x ∈上递增,且()0f x >在()1,2上恒成立,故函数()f x 在()3,2--上也递增,且()0f x >,所以C 、D 正确.故选:CD. 本题考查函数的奇偶性与周期性的结合,常用结论如下:当函数()f x 的图象关于x a =对称,且关于点()(),0b a b ≠中心对称时,则函数()f x 为周期函数,且周期4T a b =-. 12. 某同学对函数()sin e ex x xf x -=-进行研究后,得出以下结论,其中正确的是( ) A. 函数()y f x =的图象关于原点对称B. 对定义域中的任意实数x 的值,恒有()1f x <成立C. 函数()y f x =的图象与x 轴有无穷多个交点,且每相邻两交点的距离相等D. 对任意常数0m >,存在常数b a m >>,使函数()y f x =在[]a b ,上单调递减 BD由函数奇偶性的定义即可判断选项A ;由函数的性质可知()sin 1x xx f x e e -=<-可得到sin x x x e e -<-,即sin 0x x e e x --->,构造函数()sin 0x x h x e e x x -=-->,求导判断单调性,进而求得最值即可判断选项B ;函数()y f x =的图象与x 轴的交点坐标为()0,πk (k Z ∈,且)0k ≠,可判断选项C ;求导分析()0f x '≤时成立的情况,即可判断选项D. 对于选项A :函数()sin e ex x xf x -=-的定义域为{}|0x x ≠,且()()sin sin x x x xx xf x f x e e e e ----===--,所以()f x 为偶函数,即函数()y f x =的图象关于y 轴对称,故A 选项错误;对于选项B :由A 选项可知()f x 为偶函数,所以当0x >时,0x x e e -->,所以()sin 1x xx f x e e -=<-,可得到sin x x x e e -<-,即sin 0x xe e x --->,可设()sin 0x x h x e e x x -=-->,,()cos x x h x e e x -'=+±,因为2x x e e -+>,所以()cos 0x x h x e e x -±'=+>,所以()h x 在()0+∞,上单调递增,所以()()00h x h >=,即()sin 1xxx f x e e-=<-恒成立,故选项B 正确;对于选项C :函数()y f x =的图象与x 轴的交点坐标为()()00k k Z k π∈≠,,且,交点()0π-,与()0π,间的距离为2π,其余任意相邻两点的距离为π,故C 选项错误; 对于选项D :()()()()2cos sin 0xx x x xxe e x e e xf x ee -----+-'=≤,可化为e x (cos x -sin x )()cos sin 0xex x --+≤,不等式两边同除以x e -得,()2cos sin cos sin x e x x x x -≤+,当()32244x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭,,cos sin 0x x -<,cos sin 0x x +>,区间长度为12π>,所以对于任意常数m >0,存在常数b >a >m ,32244a b k k ππππ⎛⎫∈++⎪⎝⎭,,, ()k Z ∈,使函数()y f x =在[]a b ,上单调递减,故D 选项正确;故选:BD思路点睛:利用导数研究函数()f x 的最值的步骤: ①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性; ③利用单调性判断极值点,比较极值和端点值得到最值即可. 三、填空题:本题共4小题,每小题5分,共20分.13. 已知函数()(21)x f x x =-,则不等式2(2)(34)0f x x f x +++≤的解集为___________[4,1]--易得()(21)x f x x =-在R 上为奇函数且为增函数,然后可解出答案. 易得()(21)x f x x =-在R 上为奇函数且为增函数所以由2(2)(34)0f x x f x +++≤可得2(2)(34)f x x f x +≤-+ 所以2(2)(34)f x x f x +≤--,所以2234x x x +≤--,解得41x --≤≤ 即不等式2(2)(34)0f x x f x +++≤的解集为[4,1]-- 故答案为:[4,1]--14. 若点()cos ,sin P αα在直线2y x =-上,则cos 23πα⎛⎫+ ⎪⎝⎭的值为________.先由题意,得到sin 2cos αα=-,即tan 2α,再由cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=⋅-⋅ ⎪⎝⎭,根据二倍角公式,以及同角三角函数基本关系,通过弦化切,即可求出结果. 因为点()cos ,sin P αα在直线2y x =-上, 所以sin 2cos αα=-,因此tan 2α,所以22cos sin cos 2cos 2cos sin 2sin cos 3332πππααααααα-⎛⎫+=⋅-⋅=- ⎪⎝⎭()222222cos sin 1tan 142(tan 1)102sin cos αααααα---===+=++故答案本题主要考查三角恒等变换求值的问题,熟记同角三角函数基本关系,以及二倍角公式,两角和的余弦公式等即可,属于常考题型. 15. 已知21(0,0)a b a b +=>>,则21b a b+的最小值等于________.2由21(0,0)a b a b +=>>,代入21b a b+变形,利用基本不等式即可得出.解:由题意得2122222222b b a b b a b a a b a b a b a b++=+=++⋅=,当且仅当1a ==时等号成立,所以21b a b+的最小值为2.故答案为:2本题考查了基本不等式的应用,考查了推理能力与计算能力,属于基础题.16. 已知函数21,0,()2,0.x xe x f x e x x x ⎧+≤⎪=⎨⎪->⎩则()0f x =根为_____________;若函数(())y f f x a =-有四个零点,则实数a 的取值范围是___________.(1). 1-或2 (2). 1(1,1)e+(1)当0x ≤时,运用导数求得函数单调区间,可得min ()(1)0f x f =-=,可得一根,当0x >时,直接求解可得.(2)先运用导数求得函数单调区间,并作出函数的图象,再根据图象列出函数有4个零点所需要的条件,即可求得结果.(1)当0x ≤时,1()xf x xe e=+,所以()(1)x x x f x e xe x e '=+=+,令()0f x '=,得1x =-,并且当1x <-时,()0f x '<,当1x >-时,()0f x '>, 所以函数()f x 在(,1)-∞-上单调递减,在(1,0)-上单调递增, 所以min ()(1)0f x f =-=,故当0x ≤时,()0f x =有唯一根1-,当0x >时,()22f x x x =-,令()0f x =,解得0x =(舍去)或2,故当0x >时,()0f x =的根为2, 综上,()0f x =根为1-或2;(2)因为21,0()2,0x xe x f x e x x x ⎧+≤⎪=⎨⎪->⎩, 当0x ≤时,由(1)min ()(1)0f x f =-=,则10()f x e≤≤,当0x >时,22()2(1)1f x x x x =-=--,则函数()f x 在(0,1)上单调递减,在(1,)+∞上单调递增, 且仅当(2)0f =,且()1f x ≥-,因为当(())0y f f x a =-=时,则有()2f x a -=或()1f x a -=-, 即()2f x a =+或()1f x a =-,由图象得,要使函数(())y f f x a =-有四个零点,则12101a e a e ⎧+>⎪⎪⎨⎪<-<⎪⎩解得111a e <<+,或120110a a -<+<⎧⎨-<-<⎩,无解,综上所述,实数a 的取值范围是1(1,1)e+,故答案是:1-或2;1(1,1)e+.该题考查的是有关根据函数的零点的个数确定参数的取值范围的问题,涉及到的知识点有利用导数研究函数的单调性,结合图象确定函数的零点,以及与题意相同的对应参数所要满足的条件,属于较难题目.四、解答题:本题共6小题,17题10分,其余每小题12分共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知等比数列{}n a 的公比1q >,且1a ,3a 的等差中项为10,28a =. (1)求数列{}n a 的通项公式; (2)设n nnb a =,求数列{}n b 的前n 项和n S . (1)()1*2n n a n N +=∈;(2)1212n n n S ++=-. (1)利用已知条件求出首项与公差,然后求数列{}n a 的通项公式;(2)化简n nnb a =,利用错位相减法求数列{}n b 的前n 项和n S . (1)由题意可得:211(1)208a q a q ⎧+=⎨=⎩,22520q q ∴-+=,1q >,∴142a q =⎧⎨=⎩,∴数列{}n a 的通项公式为1*2()n n a n N +=∈.(2)12n n nb +=,∴23411232222n n n S +=+++⋯+, 3412112122222n n n n nS ++-=++⋯++, 上述两式相减 可得2341211111222222n n n nS ++=+++⋯-∴11231111111112221122222222n n n n n n n n n S ++++-+=+++⋯-=-=-.本题考查数列的递推关系式,数列求和的方法,考查逻辑推理能力、运算求解能力.18. 已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.(Ⅰ)π;1-.(Ⅰ)π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)因为π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,又π08f ⎛⎫= ⎪⎝⎭,3π8f ⎛⎫= ⎪⎝⎭3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭,故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,1-.19. 已知函数2224()(log )log 1f x a x b x =++,,a b 为常数,1()02f =,且()f x 的最小值0. (1)求()f x 的表达式;(2)若函数2()()log 21F x f x m x m =-++有两个零点,且一个在区间(11,42)上,另一个在区间(1,12)上,求实数m 的取值范围. (1)222()(log )2log 1f x x x =++;(2)11,23⎛⎫-- ⎪⎝⎭.(1)由1()02f =可得10a b -+=,由()f x 的最小值为0可得20404a a b a >⎧⎪⎨-=⎪⎩,即可解出,a b ;(2)令2log u x =,可得方程2(2)220u m u m +-++=有两个不等根,且分别在区间()2,1--、()1,0-上,利用零点存在性定理可求出.解:(1)222()(log )log 1f x a x b x =++,1()02f =,10a b ∴-+=(1), 若0a =,2()log 1f x x =+,函数无最小值,故0a ≠,又且()f x 的最小值为0,必须有20404a a b a >⎧⎪⎨-=⎪⎩(2),由(1)(2)得,1,2a b ==,从而222()(log )2log 1f x x x =++;(2)由2()()log 210F x f x m x m =-++=得,222(log )(2)log 220x m x m +-++=,令2log u x =,则方程2(2)220u m u m +-++=有两个不等根,且分别在区间()2,1--、()1,0-上, 设2()(2)22h u u m u m =+-++,所以(2)442220(1)12220(0)220h m m h m m h m -=-+++>⎧⎪-=-+++<⎨⎪=+>⎩,解得1123m -<<-,即m 的取值范围(11,23--).本题考查零点存在性定理的应用,解题的关键是得出方程2(2)220u m u m +-++=有两个不等根,且分别在区间()2,1--、()1,0-上.20. 某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A ,B 两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如下表:(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会.会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A 组,求A 组这4人中得到礼品的人数X 的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m 岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m 应取25还是35?请通过比较2K 的观测值的大小加以说明.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.(1) ①9人 ②见解析;(2) 25m =(1)①根据分层抽样要求,先求从300人中抽取60人,其中“年龄达到35岁”的人数60100300⋅,再求“年龄达到35岁” 中偶尔使用单车的人数4520100⋅; ②确定随机变量X 的取值,计算X 各个取值的概率,得分布列及数学期望.(2)对年龄m 是否达到35,m 是否达到25对数据重新整理(2⨯2联表),根据公式计算相应的2K ,比较大小确定.(1)①从300人中抽取60人,其中“年龄达到35岁”的有6010020300⨯=人,再将这20人用分层抽样法按“是否经常使用单车”进行名额划分,其中“年龄达到35岁且偶尔使用单车”的人数为45209100⨯=. ②A 组这4人中得到礼品的人数X 的可能取值为0,1,2,3,相应概率为:()35395042C P X C ===,()12453910121C C P X C ===, ()2145395214C C P X C ===,()34391321C P X C ===.故其分布列为∴()5105140123422114213E X =⨯+⨯+⨯+⨯=. (2)按“年龄是否达到35岁”对数据进行整理,得到如下列联表:35m =时,由(1)中的列联表,可求得2K 的观测值 ()22130012545755530015002520010018012020010018012016k ⨯⨯-⨯⨯===⨯⨯⨯⨯⨯⨯. 25m =时,按“年龄是否达到25岁”对数据进行整理,得到如下列联表:经常使用单车 偶尔使用单车 合计 未达到25岁 67 33 100 达到25岁 113 87 200 合计 180120300可求得2K 的观测值()22230067871133330021004920010018012020010018012016k ⨯⨯-⨯⨯===⨯⨯⨯⨯⨯⨯. ∴21k k >,欲使犯错误的概率尽可能小,需取25m =.本题考查分层抽样和独立性检验,随机变量的分布列及数学期望,考查统计知识理解掌握水平、对数据的处理能力及分析推理解决实际问题的能力.21. 如图,在平面直角坐标系xOy 中,椭圆M :22221x y a b+=(a >b >0)的左顶点为A ,过点A 的直线与椭圆M 交于x 轴上方一点B ,以AB 为边作矩形ABCD ,其中直线CD 过原点O .当点B 为椭圆M 的上顶点时,△AOB 的面积为b ,且AB =3b .(1)求椭圆M 的标准方程;(2)求矩形ABCD 面积S 的最大值; (3)矩形ABCD 能否为正方形?请说明理由.(1)22142x y +=;(2)最大值为(3)存在,理由见解析. (1)由题可得22212ab b a b c =⎪=⎨⎪=+⎪⎩,解出,a b 即可求出椭圆方程;(2)设直线AB 的方程为(2)y k x =+,联立直线与椭圆方程,表示出点B 坐标,进而得出AB ,由CD 的方程为y kx =,得出BC ,即可得出矩形ABCD 面积,求出最大值;(3)若矩形ABCD 为正方形,则AB BC =,322220k k k -+-=(0)k >,根据零点存在可得出方程有解,即可判断.解:(1)由题意:22212ab b a b c =⎪=⎨⎪=+⎪⎩,解得2,a b c ===,所以椭圆M 的标准方程为22142x y +=. (2)显然直线AB 的斜率存在,设为k 且0k >, 则直线AB 的方程为(2)y k x =+,即20kx y k -+=,联立22(2)142y k x x y =+⎧⎪⎨+=⎪⎩得2222(12)8840k x k x k +++-=,解得222412B k x k -=+,2412B k y k =+,所以212AB k ==+, 直线CD 的方程为y kx =,即0kx y,所以BC ==,所以矩形ABCD面积2288112122k S k k k k====+++所以当且仅当22k =时,矩形ABCD 面积S 的最大值为22. (3)若矩形ABCD 为正方形,则AB BC =,即222412121k kk k +=++,则322220k k k -+-=(0)k >, 令32()222(0)f k k k k k =-+->,因为(1)10,(2)80f f =-<=>,又32()222(0)f k k k k k =-+->的图象不间断, 所以32()222(0)f k k k k k =-+->有零点,所以存在矩形ABCD 为正方形.本题考查椭圆中四边形的面积问题,解题的关键是设出直线方程,表示出矩形的相邻两边边长,进而可求出最值.22. 设函数1(1)f x x=-,()1x g x ax =+(其中a R ∈,e 是自然对数的底数).(1)若函数()()()F x f x g x =-没有零点,求实数a 的取值范围;(2)若函数(),()f x g x 的图象有公共点P ,且在点P 有相同的切线,求实数a 的值; (3)若()()x f e g x ≤在x ∈[0,)+∞恒成立,求实数a 的取值范围.(1)(3,1]a ∈-;(2)3a =-;(3)1[0,]2(1)由()()()0F x f x g x =-=得2(1)(1)10a x a x ----=,显然0x =,1x a=-都不是此方程的根,当1a =时,没有实根,则1a ≠,由2(1)4(1)0a a -+-<得:31a -<<, 故当(3,1]a ∈-时,函数()()()F x f x g x =-没有零点; (2)21'()f x x =,21'()(1)g x ax =+,设它们的公共点为(,)P P P x y ,则有{()()'()'()P P P PP P y f x y g x f x g x ===即{()()'()'()P P P P f x g x f x g x ==也就是{当1P P ax x +=时111Px -=,无解;当1P P ax x +=-时111P x -=-,12P x =,3a =-; (3)由题得在[0,)+∞上恒成立,因为0x ≥,故1[0,1)x e --∈,所以110x e -≥在[0,)+∞上恒成立,故01xax ≥+在[0,)+∞上恒成立,所以,0a ≥. 解法一:不等式恒成立等价于(1)(1)0x ax e x -+--≤在[0,)+∞上恒成立,令1()(1)(1)1xx ax h x ax e x ax x e -+=+--=-+--,则1'()1x ax a h x a e -+=+-, 再设()'()m x h x =,则21'()xax a m x e -+-=,同时,,'(0)0h =,(0)0h =,①当0a =时,1'()0,x m x e=-<,则()'()m x h x =在[0,)+∞上单调递减,∴'()'(0)=0h x h ≤,∴()h x 在[0,)+∞上单减,∴即()()x f e g x ≤在[0,)+∞上恒成立,②当102a <≤时,21()'()xa a x a m x e---=,因为210a a-->,所以'()0m x <, 则()'()m x h x =在[0,)+∞上单调递减,∴'()'(0)=0h x h ≤,∴()h x 在[0,)+∞上单减, ∴即()()x f e g x ≤在[0,)+∞上恒成立,③当12a >时,21()'()xa a x a m x e ---=,210a a-> 若210a x a-<<,则'()0m x >,即()'()m x h x =在21(0,)a a -上单调递增,所以'()'(0)0h x h >= 即()h x 在21(0,)a a-上也单调递增,∴,即()()x f e g x ≥,不满足条件. 综上,()()x f e g x ≤在[0,)+∞上恒成立时,实数a 的取值范围是1[0,]2.解法二:不等式恒成立等价于(1)(1)0x x ax e e x +--≤在[0,)+∞上恒成立,设()(1)(1)=(1)(1)x x x h x ax e e x e ax x ax =+---+-+,则'()()x h x e ax x a a =-+-, 再设()'()()x m x h x e ax x a a ==-+-,则同时,'(0)21m a =-,(0)'(0)0m h ==,(0)0h =,①当1a ≥时,'(0)210m a =->,故函数)'(h x 是(0,)+∞上的增函数所以'()'(0)0h x h >=, 所以函数()h x 是(0,)+∞上的增函数,所以当(0,)x ∈+∞时,()(0)0h x h >=, 即()()x f e g x ≤,与()()x f e g x ≤在[0,)+∞上恒成立不符, ②当102a ≤≤时2101a a -≥-,21'()(1)()01x a m x a e x a -=-+<-,故函数)'(h x 是(0,)+∞上的减函数 所以'()'(0)0h x h <=,函数()h x 是(0,)+∞上的减函数,所以当(0,)x ∈+∞时,()(0)0h x h ≤=,即()()f x g x ≤在[0,)+∞上恒成立,③当112a <<时,2101a a -<-,21'()(1)()1x a m x a e x a -=-+-当21(0,)1a x a -∈--时,'()0m x >, 故函数)'(h x 是21(0,)1a a ---上的增函数所以在21(0,)1a x a -∈--上,'()'(0)0h x h >=, 所以函数()h x 是21(0,)1a a ---上的增函数,所以当21(0,)1a x a -∈--时,()(0)0h x h >=, 即()()x f e g x ≥,与()()x f e g x ≤在[0,)+∞上恒成立不符,综上可得,使()()xf eg x ≤在[0,)+∞上恒成立实数a 的取值范围是1[0,]2.。

2020年江苏盐城高三三模数学试卷

2020年江苏盐城高三三模数学试卷

2020年江苏盐城高三三模数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合,,则与的并集 .正.2.设复数(),若,则实数的值为 .3.某电视台对一节目的喜爱程度进行网络调查,共有人参与调查,喜爱、一般、不喜爱的人分别为人、人、人,为进一步了解被调查人的具体想法,现利用分层抽样的方法抽取人,则抽取不喜爱的人数为 .4.某校志愿者小组有名男生和名女生,现从中任选人参加活动,则女生入选的概率是 .5.一个算法的伪代码如图所示,执行此算法,最后输出的的值为 .6.若双曲线的离心率为,则其两条渐近线所成的锐角为 .7.设三棱锥的体积为,点,分别满足.,记三棱锥的体积为,则 .8.在中,角,,所对的边分别为,,,若,,则.9.已知数列,满足,且数列是等差数列,若,,则数列的前项和.10.若函数关于直线对称,则的为 .最.小.正.值.11.若实数,使不等式成立,则实数的取值范围是 .存.在.12.在锐角中,已知是边上的高,且满足,则的取值范围是 .13.设函数,若函数与函数都有零点,且它们的零点完全相同,则实数的取值范围是 .14.若圆与圆相交,点为其在轴下方的交点,且,则点到直线距离的最大值为 .二、解答题(本大题共6小题,共90分)(1)(2)15.若,,设.求函数在上的单调减区间.在中,角,,所对的边分别为,,,若,,求的值.(1)(2)16.如图,在三棱柱中,,,设为与的交点,点为的中点.求证:平面.平面平面.17.如图是淋浴房示意图,它的底座是由正方形截去一角得到,这一角是一个与正方形两邻边相切的圆的圆弧(如图).现已知正方形的边长是米,设该底座的面积为平方米,周长为米(),圆的半径为米.设计的理想要求是面积尽可能大,周长尽可能小.但显然、都是关于的减函数,于是设,当的值越大,满意度就越高.试问为何值时,该淋浴房底座的满意度最高?()图图周.长.是.指.图.中.实.线.部.分.解.答.时.以.代.入.运.算.(1)(2)(3)18.如图,、为椭圆短轴的上、下顶点,为直线上一动点,连接并延长交椭圆于点,连接交椭圆于点,已知直线,的斜率之积恒为.求椭圆的标准方程.若直线与轴平行,求直线的方程.求四边形面积的最大值,并求对应的点的坐标.(1)(2)(3)19.已知数列满足.若数列的首项为,其中,且,,构成公比小于的等比数列,求的值.若是公差为的等差数列的前项和,求的值.若,,且数列单调递增,数列单调递减,求数列的通项公式.20.设函数,,其中恒不为.(1)(2)(3)设,求函数在处的切线方程.若是函数与的公共极值点,求证:存在且唯一.设,是否存在实数,,使得在上恒成立?若存在,请求出实数,满足的条件;若不存在,请说明理由.三、选做题(本大题共3小题,选做2题,共20分)21.直线经矩阵(其中)作用变换后得到直线:,若直线与垂直,求的值.22.已知在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,求直线被曲线截得的弦长.23.若正数,,满足,求的最小值.四、必做题(本大题共2小题,每小题10分,共20分)(1)(2)24.已知某高校综合评价有两步:第一步是材料初审,若材料初审不合格,则不能进入第二步面试;若材料初审合格,则进入第二步面试.只有面试合格者,才能获得该高校综合评价的录取资格.现有,,三名学生报名参加该高校的综合评价,假设,,三位学生材料初审合格的概率分别是, ,;面试合格的概率分别是,,.求,两位考生有且只有一位考生获得录取资格的概率.记随机变量为,,三位学生获得该高校综合评价录取资格的人数,求的概率分布与数学期望.(1)(2)25.设集合(其中,),将的所有元子集(含有个元素的子集)中的最小元素的和记为.求,,的值.试求的表达式.【答案】1.解析:由,得,∴,∴.故答案为:.2.解析:由,得,∴,∵,∴,∴,∵,∴.3.解析:.故答案为:.4.解析:∵从名男生和名女生中,选择人参加活动,∴所有可能发生的情况共有种,本题从反面进行考虑,排除都为男生的情况,∴全是男生的情况有种,故选中的人中有女生的概率为.故答案为:.5.解析:当时,,∴,,当时,,∴,,当时,,∴,,当时,,∴.故答案为:.6.解析:由题意得,,∵渐近线方程为,∴,∴,当时,倾斜角为,当时,倾斜角为.∴渐近线所成的锐角为.7.解析:由题意得,点为边上的三等分点,点为边上的中点,∴ ,,设三棱锥是以为底面,三棱锥是以为底面,∴,,(,分别是三棱锥以为底面的高,以三棱锥以为底面的高)∵为中点,∴,∵为边上的三等份点,∴,∴,∴.8.解析:由题意得,∴,∴,∵,∴,∴,∴ .9.解析:由题意得,是等差数列,∴,∴,即,,∴,∴是等比数列,∵,∴,∴,∴是以为首项,为公比的等比数列,∴.故答案为:.10.解析:由题意得的图象关于对称,∴或,① 当时,,∴,当时,,② 时,,∴,∴,当时,,综上得,的最小正值为.故答案为:.11.解析:由题意得:,∴,∵存在实数,使不等式成立,∴,令,,令,解得,当时,,∴在上单调递减,当时,,∴在上单调递增,∴当时,,∴,∴.12.解析:方法一:,则是上靠近的三等分点,令,则,令,,,锐角三角形,∴,即,,,,∵,∴,,.方法二:.13.解析:令的一个零点为,即,又与零点相同,∴,,∴,∴,.当时,有唯一零点,有唯一零点,满足题意;.当时,有两个零点,,,则或.而有两个根,,又与零点完全相同,∴无实根,无解,∴即,综上:.14.解析:设点坐标为,其中,则,且,由,得,即,同理可得,则,是方程的两个根,由韦达定理可得,又因为,所以,即,所以点位于以为圆心,为半径的半圆上,如图所示,(1)(2)圆心到直线的距离,,则点到直线的距离的最大值为.解析:,当时,,函数单调递减,即,,又∵,∴函数在上的减区间为.由,得,又∵,∴,∴,得,由及正弦定理得,∴,(1).(2).15.(1)(2)即,解得,又∵,得,又∵,∴.解析:∵在平行四边形中,为与的交点,∴为的中点,又∵点为的中点,∴,又∵面,面,∴面.由()得,又∵,∴,在平行四边形中,,∴平行四边形为菱形,∴,又面,面,,∴面,又∵面,∴面面.(1)证明见解析.(2)证明见解析.16.(1)(2)(3)解析:周长,面积,所以,令,则,当且仅当时,即,最大,此时,答:当时,该淋浴房底座的满意度最高.解析:由椭圆,所以,,设,则,所以,又,解得,所以椭圆的方程为.设,当时,,不符题意,所以,所以,直线的方程为:,即,代入椭圆方程得到,即,解得,,同理,因直线与轴平行,所以,解得,,所以直线的方程为.由(),解得,同理,所以四边形的面积,时,该淋浴房底座的满意度最高.17.(1)椭圆的方程为.(2)直线的方程为.(3)四边形面积的最大值为,此时点.18.(1)(2)根据对称性,不妨设,则所以,设,则,当且仅当即,所以四边形面积的最大值为,此时点.解析:因,所以,即,又,且前三项是公比小于的等比数列,所以,,即,所以,所以,解得.因是等差数列的前项和,所以,又,所以,当时,,(1).(2).(3).19.(3)(1)(2)所以,不符题意;当时,,所以,.因为数列单调递增,所以;因为数列单调递增,所以;又因为,所以,因,所以;同理,所以,又,所以,所以,,所以数列的通项公式为.解析:因为,所以,,所以,又,所以函数在处的切线方程为,即.因为,所以,又,所以,因为是函数与的公共极值点,所以,,即,,因为,所以,令,则是的零点,因为在上单调递增,所以至多有一个零点,(1).(2)证明见解析.(3)存在,且,证明见解析.20.(3)又,,且函数在上连续不间断,由零点存在性定理可知,的零点唯一存在,得证.因为,由()得,,记,,①当时,,,若,则,此时,不符题意;若,与符号相反,此时,满足题意,②当时,若,则,若,当时,则,由,得,所以,所以时,,,此时函数与,,不符题意(舍);若,则,由,得,所以,所以时,,,此时函数与,,不符题意(舍);③当时,若,则,若,则,由,得,所以,所以时,,,此时函数与,,不符题意(舍);若,当时,则,由,得,所以时,,,此时函数与,,不符题意(舍);综上所述,当且时,函数与满足在上恒成立.解析:.21.方法一:平面列向量关于原点逆时针旋转所对应的变换矩阵为,直线经矩阵作用,即顺时针旋转以后得到直线,且,,所以.方法二:在直线上任取一点,经过矩阵作用后得到点,则,又点在直线:上,所以,即,因为,所以,所以,所以,因为,所以.解析:直线的直角坐标方程为:,曲线的直角坐标方程为:,圆心为,半径,圆心到直线的距离,所以直线被曲线截得的弦长为.解析:因为正数,,满足,所以,所以,,当且仅当,,时,取最小值..22..23.(1)(2)解析:记“,两位考生有且只有一位考生获得录取资格”为事件.考生获得录取资格的概率为;考生获得录取资格的概率为;所以.答:,两位考生有且只有一位考生获得录取资格的概率为.随机变量可能的取值为:,,,,考生获得录取资格的概率为,由()得,两位考生获得录取资格的概率均为.所以,,三位考生获得高校综合评价录取资格的人数.则,,,,随机变量的概率分布表如下:数学期望为:(人).答:的数学期望为人.注:()如果随机变量的概率分布列写成:(),可酌情给分.(如果由二项分布的期望公式直接得出结果,可酌情给分.)解析:(1).(2)人.24.(1);;.(2).25.(1)(2)当时,,元子集有:,∴,当时,,元子集有:,,,,∴,当时,,元子集有:,,,,,,,,,,∴.方法一:以为最小值的元子集个数为;以为最小值的元子集个数为;以为最小值的元子集个数为,∴∵,∴,下求,记,则,记,则的展开式中项前的系数为,又,,,则的展开式中项前的系数又可以写作,∴,∴式.方法二:由,,,归纳猜想出,下用数学归纳法给出证明.①当时,,结论成立;②假设时,结论成立,即,则当时,,,所以当时,结论成立,综上:由①②可得.21。

江苏省盐城中学2020届高三年级第二次阶段性质量检测数学试卷(6页)

江苏省盐城中学2020届高三年级第二次阶段性质量检测数学试卷(6页)

江苏省盐城中学2020届高三年级第二次阶段性质量检测数学试卷数学试题一、填空题1.设集合{}{}1,,2,3,4A x B ==,若4A B =,则x 的值为2.已知复数131iz i-=+,则复数z 的虚部为 3.函数()f x =的定义域是4.设a R ∈,则“2a =”是“直线2y ax =-+与直线14ay x =-垂直”的 条件5.在平面直角坐标系xOy 中,抛物线()220x py p =>上纵坐标为1的一点到焦点的距离为3,则焦点到准线的距离为6.设函数()ln f x ax x =-的图象在点()()1,1f 处的切线斜率为2,则实数a 的值为7.已知实数x,y 满足条件2403300x y x y x -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为8.在平面直角坐标系xOy 中,已知焦距为4的双曲线()222210,0x y a b a b -=>>的右准线与它的两条渐近线分别相交于点P,Q ,其焦点为12,F F ,则四边形12PF QF 的面积的最大值 为9.在直角三角形ABC 中,∠C=90°,AB=2,AC=1,若32AD AB =,则CD CB ⋅=10.若点()cos ,sin P αα在直线2y x =-上,则cos 23πα⎛⎫+ ⎪⎝⎭的值为11.已知{}{},n n a b 均为等比数列,其前n 项和分别为,n n S T ,若对任意的*n N ∈,总有321n n n S T =+,则44a b = 12.已知函数()33,02,0x x x x f x x ⎧->⎪=⎨≤⎪⎩,若函数()()()12y f x a f x a ⎛⎫=-+- ⎪⎝⎭有5个零点,则实数a 的取值范围是13.在平面直角坐标系x O y 中,已知点A (2,2),E 、F 为圆()()22:114C x y -+-=上的两动点,且EF =,若圆C 上存在点P ,使得,0AE AF mCP m +=>,则m 的取值范围为 14.已知△ABC1,且满足431tan tan A B+=,则变AC 的最小值为 二、解答题15.已知函数()21sin 2.2f x x x = (1)求()f x 的最小正周期和最小值;(2)将函数()f x 的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数()g x 的图象.当,2x ππ⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域.16.已知△ABC 中,13tan ,tan ,45A B AB === (1)角C 的大小;(2)△ABC 中最小边的边长。

2020盐城三模高三调研考试数学试题含答案

2020盐城三模高三调研考试数学试题含答案

2020盐城三模盐城市2020届高三年级第三次模拟考试数学Ⅰ参考公式:一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}{}11,022<<-=<-=x x N x x x M , 则M 与N 的并集..N M = ▲ .2.设复数()0>+=a i a z ,若2=z z ,则正实数a 的值为 ▲ .3.某电视台对一节目的喜爱程度进行网络调查,共有12000人参与调查,喜爱、一般、不 喜爱的人分别为6000人、5000人、1000 人,为进一步了解被调查人的具体想法,现利 用分层抽样的方法抽取60人,则抽取不喜爱的人数为 ▲ .4.某校志愿者小组有2名男生和1名女生,现从中任选2人参加活动,则 女生入选的概率是 ▲ .5.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 ▲ .6.若双曲线()0,012222>>=-b a by a x 的离心率为2.则其两条渐近线所成的锐角为 ▲ .7.设三棱锥ABC P -的体积为1V ,点N M ,分别满足2=,NC PN =,记三棱锥BMN A -的体积为2V ,则12V V = ▲ .8.在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 若c a ca bB A 2,sin sin =+=则A cos = ▲ . 9.已知数列{}{}n n b a 、满足,log 2n n a b =且数列{}n b 是等差数列.若9,2103==b b ,则数列 {}n a 的前n 项和n S = ▲ .10.若函数()()θ+=x x f 2sin 关于直线4π=x 对称,则θ的最小正值....为 ▲ . 11.若存在..实数()4,0∈x ,使不等式01623<+-ax x 成立,则实数a 的取值范围是 ▲ . 12.在锐角ABC △中,已知AH 是BC 边上的高,且满足3231+=,则ABAC的取 值范围是 ▲ .13.设函数()xb ax x x f 222⋅+-=,若函数()x f y =与函数()()x f f y =都有零点,且它们的零点完全相同,则实数a 的取值范围是 ▲ .14.若圆()16:221=+-y m x C 与圆()16:222=+-y n x C 相交,点P 为其在x 轴下方的交点,且8-=mn ,则点P 到直线01=-+y x 距离的最大值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)若sin cos 22x x m ⎛⎫= ⎪⎝⎭,,cos 22x x n ⎛⎫= ⎪⎝⎭,设3()f x m n =⋅-. (1)求函数()f x 在[]π,0上的单调减区间;(2)在△ABC ,角A ,B ,C 的对边分别为a ,b ,c ,若)()(B f A f =,b a 2=,求B sin 的值.16.(本小题满分14分)如图,在三棱柱111C B A ABC -中,AC AA =1,11AC B A ⊥,设O 为AC 1与A 1C 的交点,点P 为BC 的中点. 求证:(1)OP ∥平面ABB 1A 1;(2)平面1ACC ⊥平面OCP .17.(本小题满分14分)如图1是淋浴房示意图,它的底座是由正方形截去一角得到,这一角是一个与正方形两邻边相切的圆的41圆弧(如图2),现已知正方形的边长是1米,设该底座的面积为S 平方米,周长为l 米(周长是指图.....2.的实线部分.....),圆的半径为r 米.设计的理想要求是面积S 尽可能大,周长l 尽可能小.但显然S 、l 都是关于r 的减函数,于是设lSr f =)(,当)(r f 的值越大,满意度就越高.试问r 为何值时,该淋浴房底座的满意度最高?(解答时...π以.3.代入运算....).18.(本小题满分16分)如图,A 、B 为椭圆C :1222=+y ax 短轴的上、下顶点,P 为直线l :2=y 上一动点,连接P A 并延长交椭圆于点M ,连接PB 交椭圆于点N .已知直线MA ,MB 的斜率之积恒为21-. (1)求椭圆C 的标准方程;(2)求直线MN 与x 轴平行,求直线MN 的方程;(3)求四边形AMBN 面积的最大值,并求对应的点P 的坐标.19.(本小题满分16分)已知数列{}n a 满足121+=-+n a a n n .(1)若数列{}n a 的首项为1a ,其中301<<a ,且1a ,2a ,3a 构成公比小于0的等比数列,求1a 的值;(2)若n a 是公差为d (d >0)的等差数列{}n b 的前n 项和,求1a 的值;(3)若1a =1,22-=a ,且数列{}1-2n a 单调递增,数列{}n a 2单调递减,求数列{}n a 的通项公式.20.(本小满分16分)设函数xe x xf )()(ϕ=,)(ln )(x xx g ϕ=,其中)(x ϕ恒不为0. (1)设2)(x x =ϕ,求函数)(x f 在1=x 处的切线方程;(2)若0x 是函数)(x f 与)(x g 的公共极值点,求证:0x 存在且唯一;(3)设b ax x +=)(ϕ,是否存在实数a ,b ,使得0)()(<'⋅'x g x f 在()∞+,0上恒成立?若存在,请求出实数a ,b 满足的条件;若不存在,请说明理由.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4—2:矩阵与变换](本小题满分10分)直线l 经矩阵M=⎢⎣⎡θθsin cos ⎥⎦⎤-θθcos sin (其中()πθ,0∈)作用变换后得到直线x y l 2:=',若直线l 与直线l '垂直,求θ的值.B.[选修4—4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,直线l的参数方程112x y t ⎧=-+⎪⎨⎪=-⎩,(t 为参数).以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=,设P 为上动点,求直线l 被曲线C 截得的弦长.C .[选修4—5:不等式选讲](本小题满分10分)若实数a b c ,,满足243a b c ++=,求111123a b c +++++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)已知某高校综合评价有两步:第一步是材料初审,若材料初审不合格,则不能进入第二步面试;若材料初审合格,则进入第二步面试.只有面试合格者,才能获得该高校综合评价的录取资格.现有A ,B ,C 三名学生报名参加该高校的综合评价,假设A ,B ,C 三位学生材料初审合格的概率分别是31,21,41;面试合格的概率分别是21,31,32. (1)求A ,B 两位考生有且只有一位考生获得录取资格的概率;(2)记随机变量X 为A ,B ,C 三位同学获得该高校综合评价录取资格的人数,求X 的概率分布与数学期望.23.(本小题满分10分)设集合{}n T n ,,3,2,1⋅⋅⋅=(其中*∈≥N n n ,3),将n T 的所有3元子集(含有3个元素的子集)中的最小元素的和记为n S . (1)求3S ,4S ,5S 的值; (2)试求n S 的表达式.江苏省盐城市2020届高三年级第三次模拟调研考试。

江苏省盐城市2020届高三数学三模试题(解析版)

江苏省盐城市2020届高三数学三模试题(解析版)

江苏省盐城市2020届高三年级第三次模拟考试数学试题2020.5第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合M ={}220x x x -<,N ={}11x x -<<,则M 与N 的并集M N = .2.设复数z a i =+(a >0),若2zz =,则正实数a 的值为 .3.某电视台对一节目的喜爱程度进行网络调查,共有12000人参与调查,喜爱、一般、不喜爱的人分别为6000人、5000人、1000 人,为进一步了解被调查人的具体想法,现利用分层抽样的方法抽取60人,则抽取不喜爱的人数为 .4.某校志愿者小组有2名男生和1名女生,现从中任选2人参加活动, 则女生入选的概率是 .5.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .6.若双曲线22221x y a b-=(a >0,b >0)的离心率为2,则其两条渐近线所成的锐角为 . 第5题 7.设三棱锥P —ABC 的体积为V 1,点M ,N 分别满足PM 2MB =,PN NC =,记三棱锥A —BMN 的体积为V 2,则21V V = . 8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A sin B ba c=+,2a c =,则cosA = .9.已知数列{}n a 、{}n b 满足2log n n b a =,且数列{}n b 是等差数列,若32b =,109b =,则数列{}n a 的前n 项和n S = . 10.若函数()sin(2)f x x θ=+关于直线4x π=对称,则θ的最小正值为 .11.若存在实数x ∈(0,4),使不等式32160x ax -+<成立,则实数a 的取值范围是 .12.在锐角△ABC 中,已知AH 是BC 边上的高,且满足12AH AB AC 33=+,则AC AB的取值范围是 .13.设函数2()22xf x x ax b =-+⋅,若函数()y f x =与函数(())y f f x =都有零点,且它们的零点完全相同,则实数a 的取值范围是 .14.若圆C 1:22()16x m y -+=与圆C 2:22()16x n y -+=相交,点P 为其在x 轴下方的交点,且mn =﹣8,则点P 到直线x +y ﹣1=0距离的最大值为 .二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)若m =(sin2x,cos 2x ),n =(cos 2x 2x ),设3()f x m n =⋅-.(1)求函数()f x 在[0,π]上的单调减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(A)(B)f f =,2a b =,求sinB 的值.16.(本小题满分14分)如图,在三棱柱ABC —A 1B 1C 1中,AA 1=AC ,A 1B ⊥AC 1,设O 为AC 1与A 1C 的交点,点P 为BC 的中点.求证:(1)OP ∥平面ABB 1A 1; (2)平面ACC 1⊥平面OCP .17.(本小题满分14分)如图1是淋浴房示意图,它的底座是由正方形截去一角得到,这一角是一 个与正方形两邻边相切的圆的14圆弧(如图2).现已知正方形的边长是1米,设该底座的面积为S 平方米,周长为l 米(周长是指图2中实线部分),圆的半径为r 米.设计的理想要求是面积S 尽可能大,周长l 尽可能小,但显然S 、l 都是关于r 的减函数,于是设()Sf r l=,当()f r 的值越大,满意度就越高.试问r 为何值时,该淋浴房底座的满意度最高?(解答时π以3代入运算)18.(本小题满分16分)如图,A 、B 为椭圆C :2221x y a+=短轴的上、下顶点,P 为直线l :y =2上一动点,连接PA 并延长交椭圆于点M ,连接PB 交椭圆于点N ,已知直线MA ,MB 的斜率之积恒为12-.(1)求椭圆C 的标准方程;(2)若直线MN 与x 轴平行,求直线MN 的方程;(3)求四边形AMBN 面积的最大值,并求对应的点P 的坐标.19.(本小题满分16分)已知数列{}n a 满足121n n a a n +-=+.(1)若数列{}n a 的首项为1a ,其中103a <<,且1a ,2a ,3a 构成公比小于0的等比数列,求1a 的值;(2)若n a 是公差为d (d >0)的等差数列{}n b 的前n 项和,求1a 的值;(3)若11a =,22a =-,且数列{}21n a -单调递增,数列{}2n a 单调递减,求数列{}n a 的通项公式.20.(本小题满分16分)设函数()()xx f x e ϕ=,ln ()()xg x x ϕ=,其中()x ϕ恒不为0. (1)设2()x x ϕ=,求函数()f x 在x =1处的切线方程;(2)若0x 是函数()f x 与()g x 的公共极值点,求证:0x 存在且唯一;(3)设()x ax b ϕ=+,是否存在实数a ,b ,使得()()0f x g x ''⋅<在(0,+∞)上恒成立?若存在,请求出实数a ,b 满足的条件;若不存在,请说明理由.第II 卷(附加题,共40分)21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. A .选修4—2:矩阵与变换直线l 经矩阵M =cos sin sin cos θθθθ-⎡⎤⎢⎥⎣⎦(其中θ∈(0,π))作用变换后得到直线l ′:y =2x ,若直线l 与l ′垂直,求θ的值.B .选修4—4:坐标系与参数方程已知在直角坐标系xOy 中,直线l的参数方程为1212x y t ⎧=-+⎪⎪⎨⎪=-⎪⎩(t 为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=,求直线l 被曲线C 截得的弦长.C .选修4—5:不等式选讲若正数a ,b ,c 满足243a b c ++=,求111123a b c +++++的最小值.【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)已知某高校综合评价有两步:第一步是材料初审,若材料初审不合格,则不能进入第二步面试;若材料初审合格,则进入第二步面试.只有面试合格者,才能获得该高校综合评价的录取资格,现有A ,B ,C 三名学生报名参加该高校的综合评价,假设A ,B ,C 三位学生材料初审合格的概率分别是13,12,14;面试合格的概率分别是12,13,23. (1)求A ,B 两位考生有且只有一位考生获得录取资格的概率;(2)记随机变量X 为A ,B ,C 三位学生获得该高校综合评价录取资格的人数,求X 的概率分布与数学期望.23.(本小题满分10分)设集合n T ={1,2,3,…,n }(其中n ≥3,n N *∈),将n T 的所有3元子集(含有3个元素的子集)中的最小元素的和记为n S .(1)求3S ,4S ,5S 的值;(2)试求n S 的表达式.江苏省盐城市2020届高三年级第三次模拟考试数学试题解析第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合M ={}220x x x -<,N ={}11x x -<<,则M 与N 的并集M N = .答案:(﹣1,2)考点:集合并集运算解析:∵集合M ={}220x x x -<,∴M =(0,2),又∵N ={}11x x -<<,∴MN =(﹣1,2)2.设复数z a i =+(a >0),若2zz =,则正实数a 的值为 . 答案:1 考点:复数解析:∵z a i =+,∴2()()12zz a i a i a =-+=+=,又∵a >0,∴a =1.3.某电视台对一节目的喜爱程度进行网络调查,共有12000人参与调查,喜爱、一般、不喜爱的人分别为6000人、5000人、1000 人,为进一步了解被调查人的具体想法,现利用分层抽样的方法抽取60人,则抽取不喜爱的人数为 . 答案:5考点:分层抽样 解析:601000512000⨯=.4.某校志愿者小组有2名男生和1名女生,现从中任选2人参加活动,则女生入选的概率是 . 答案:23考点:随机事件的概率解析:3人中任选两人有三种情况,其中女生入选的情况有2种,故女生入选的概率是23. 5.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .答案:13 考点:伪代码解析:第一步:I =3,S =5; 第一步:I =5,S =9;第一步:I =7,S =13;此时I >6,输出S 的值为13.6.若双曲线22221x y a b-=(a >0,b >0)的离心率为2,则其两条渐近线所成的锐角为 .答案:3π 考点:双曲线的简单性质解析:∵2c a =,∴224c a =,故2224a b a +=,b a=∴两条渐近线方程为:y =, ∴两条渐近线所成的锐角为3π. 7.设三棱锥P —ABC 的体积为V 1,点M ,N 分别满足PM 2MB =,PN NC =,记三棱锥A —BMN 的体积为V 2,则21V V = .答案:16考点:三棱锥的体积 解析:首先得S △BMN =16S △PBC ,且点A 到平面BMN 与点A 到平面PBC 的距离相等, 故21V V =16. 8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A sin B ba c=+,2a c =,则cosA = .答案:4考点:正余弦定理 解析:∵sin sin A b B a c =+,∴a bb a c=+,把2a c =代入得,b =,∴222222cos 24b c a A bc +-===. 9.已知数列{}n a 、{}n b 满足2log n n b a =,且数列{}n b 是等差数列,若32b =,109b =,则数列{}n a 的前n 项和n S = . 答案:21n-考点:等差数列的通项公式,等比数列的前n 项和解析:∵{}n b 是等差数列,且32b =,109b =,∴1n b n =-, ∴12n n a -=,故{}n a 是的前n 项和212121n n n S -==--. 10.若函数()sin(2)f x x θ=+关于直线4x π=对称,则θ的最小正值为 .答案:2π 考点:三角函数的对称性解析:由题意得,242k ππθ⨯+=,k ∈Z , 则22k ππθ=-+,k ∈Z ,所以θ的最小正值为2π. 11.若存在实数x ∈(0,4),使不等式32160x ax -+<成立,则实数a 的取值范围是 . 答案:(6,+∞)考点:函数与不等式(存在性问题)解析:∵∃x ∈(0,4),是不等式32160x ax -+<成立, ∴2min 162()a x x>+, 令216()f x x x=+,则322(8)()x f x x -'=,当x ∈(0,2),()0f x '<,()f x 单调递减, 当x ∈(2,4),()0f x '>,()f x 单调递增, 故min ()(2)12f x f ==,212a >,故6a >. 12.在锐角△ABC 中,已知AH 是BC 边上的高,且满足12AH AB AC 33=+,则ACAB的取值范围是 . 答案:,1) 考点:平面向量与解三角形 解析:由题意知AH ⊥BC ,且CH =13BC , 在Rt △ACH 中,3cos 3aCH aC AC b b===,在△ABC 中,222cos 2a b c C ab +-=, 所以22223a b c a ab b +-=,化简得222330a c b =->,得1b c<,∵△ABC 是锐角三角形,∴2222233b c a c b +>=-,得2b c >,∴12b c <<,即AC AB的取值范围是(2,1). 13.设函数2()22xf x x ax b =-+⋅,若函数()y f x =与函数(())y f f x =都有零点,且它们的零点完全相同,则实数a 的取值范围是 .答案:(﹣2,0] 考点:函数与方程解析:假设0x 既是()y f x =的零点,也是(())y f f x =的零点,则0()0f x =,0(())0f f x =,即(0)0f =,则b =0,∴2()2f x x ax =-,令()0f x =,解得10x =,22x a =, ∴(())0f f x =,解得()0f x =或()2f x a =, ①当a =0时,符合题意;②当a ≠0时,方程()2f x a =无解,即方程2220x ax a --=无解, ∴244(2)0a a --<,解得20a -<<, 综上所述,﹣2<a ≤0.14.若圆C 1:22()16x m y -+=与圆C 2:22()16x n y -+=相交,点P 为其在x 轴下方的交点,且mn =﹣8,则点P 到直线x +y ﹣1=0距离的最大值为 .答案:2考点:直线与圆综合 解析:由题意可知2p m nx +=,代入圆C 1得p y ==,∵mn =﹣8,∴p y ==所以点P 在圆228x y +=上,其中0y <,求得圆心O 到直线x +y ﹣1=0的距离是2,故点P 到直线x +y ﹣1=0的距离的最大值是22=. 二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)若m =(sin2x,cos 2x ),n =(cos 2x 2x ),设3()2f x m n =⋅-.(1)求函数()f x 在[0,π]上的单调减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(A)(B)f f =,2a b =,求sinB 的值.解:(1)∵m =(sin2x,cos 2x ),n =(cos 2x 2x ),∴23()sin cos 2222x x x f x m n =⋅-=-1sin 22x =-1sin cos 22x x =+ sin coscos sin33x x ππ=+sin()3x π=+由322232k x k πππππ+≤+≤+,k ∈Z , 解得72266k x k ππππ+≤≤+,k ∈Z , 又∵x ∈[0,π],∴解得6x ππ≤≤,∴函数()f x 在[0,π]的单调减区间为[6π,π],(2)由(1)知()sin()3f x x π=+,其对称轴为6x k ππ=+,k ∈Z ,当x ∈[0,π],对称轴方程为6x π=,∵()()f A f B =,2a b =,即A B >,∴3A B π+=,sin 2sin A B =,∴sin()2sin 3B B π-=sincos cossin 2sin 33B B B ππ-=,∴1cos sin 2sin 22B B B -=, 即cosB B =,∵22sin cos 1B B +=,且B 为锐角,sin B >0解得sin B =. 16.(本小题满分14分)如图,在三棱柱ABC —A 1B 1C 1中,AA 1=AC ,A 1B ⊥AC 1,设O 为AC 1与A 1C 的交点,点P 为BC 的中点.求证:(1)OP ∥平面ABB 1A 1; (2)平面ACC 1⊥平面OCP .解:(1)∵在三棱柱中,平面ACC 1A 1是平行四边形, ∴O 为A 1C 的中点,又∵P 为BC 的中点, ∴OP ∥A 1B ,∵A 1B ⊂平面ABB 1A 1,OP ⊄平面ABB 1A 1, ∴OP ∥平面ABB 1A 1,(2)∵平面ACC 1A 1是平行四边形,且AA 1=AC , ∴平面ACC 1A 1是菱形, ∴AC 1⊥A 1C ,即AC 1⊥OC , ∵A 1B ⊥AC 1,且OP ∥A 1B ,∴AC 1⊥OP ,又AC 1⊥OC ,OP OC =O ,∴AC 1⊥平面OCP , ∵AC 1⊂平面ACC 1,∴平面ACC 1⊥平面OCP .17.(本小题满分14分)如图1是淋浴房示意图,它的底座是由正方形截去一角得到,这一角是一 个与正方形两邻边相切的圆的14圆弧(如图2).现已知正方形的边长是1米,设该底座的面积为S 平方米,周长为l 米(周长是指图2中实线部分),圆的半径为r 米.设计的理想要求是面积S 尽可能大,周长l 尽可能小,但显然S 、l 都是关于r 的减函数,于是设()Sf r l=,当()f r 的值越大,满意度就越高.试问r 为何值时,该淋浴房底座的满意度最高?(解答时π以3代入运算)解:44244222rrl r r ππ-=-+=-=-, 222241()11444r r S r r ππ-=--=-=-,所以22144()16242r r f r r r --==--,(0,1]r ∈, 22164()2(8)r r f r r -+'=-,令()0f r '=,解得8r =-(0,1]故8r =-时,()f r 取得最大值.答:当8r =-时,该淋浴房底座的满意度最高. 18.(本小题满分16分)如图,A 、B 为椭圆C :2221x y a+=短轴的上、下顶点,P 为直线l :y =2上一动点,连接PA 并延长交椭圆于点M ,连接PB 交椭圆于点N ,已知直线MA ,MB 的斜率之积恒为12-. (1)求椭圆C 的标准方程;(2)若直线MN 与x 轴平行,求直线MN 的方程;(3)求四边形AMBN 面积的最大值,并求对应的点P 的坐标.解:(1)A(0,1),B(0,﹣1),设M(x ,y),则2221x y a=-2222(1)(1)1112MA MBy y y k k x x a -+-⋅===-=-,22a = 因此,椭圆C 的标准方程为:2212x y +=; (2)设M(m ,n),则N(﹣m ,n),((0,2)m ∈(1)11122(1)1p m AM x y n y n m n BN x y n ⎧=-⎪⎪-⇒==⇒=⎨-⎪=+⎪+⎩::,故直线MN 的方程为:12y =;(3)设P(t ,2),t ≠022110122AP y x x t y x y ⎧=+=⎧⎪⇒⎨⎨=-⎩⎪+=⎩:或2222224422(,)2222t x t t t M t t t y t -⎧=⎪-+⎪+⇒⎨+++⎪=⎪+⎩22310122BP y x x t y x y ⎧=-=⎧⎪⇒⎨⎨=-⎩⎪+=⎩:或22222212121818(,)18181818t x t t t N t t t y t ⎧=⎪-+⎪+⇒⎨++-+⎪=⎪+⎩22222261412412()1636221821820AMBNt t t t t t S AB t t t t t t+-=⋅+=+=++++++四边形令6)t x t +=∈+∞,则216()8AMBN x S f x x ==+四边形,)x ∈+∞ 22216(8)()0(8)x f x x -'=<+,故()f x在)+∞上递减,故x =6t t=,即t =max ()f x = 即AMBN S 四边形因此,四边形AMBN,对应的点P 的坐标为(,2). 19.(本小题满分16分)已知数列{}n a 满足121n n a a n +-=+.(1)若数列{}n a 的首项为1a ,其中103a <<,且1a ,2a ,3a 构成公比小于0的等比数列,求1a 的值;(2)若n a 是公差为d (d >0)的等差数列{}n b 的前n 项和,求1a 的值;(3)若11a =,22a =-,且数列{}21n a -单调递增,数列{}2n a 单调递减,求数列{}n a 的通项公式.解:(1)由题意知:2132122133958a a a a a a a a ⎧-=-⎪-=⇒=⎨⎪=⎩;(2)由题意知:11b a =,1(1)n b a n d =+-11121n n n a a b a dn n ++-==+=+对任意n N *∈均成立,其中d >0,111132512370d a d a a d d a d ⎧+=⎪+==⎧⎪⇒⎨⎨=+=⎩⎪⎪>⎩此时,11121n n n a a b a dn n ++-==+=+对任意n N *∈均成立,故11a =;(3)由题意知:135211n a a a a -=<<<<<,24622n a a a a =->>>>>故21n k =-时,1121241n n n n k k a a a a a a k ++--=-=-=- 2n k =时,121241n n k k a a a a k ++-=-=+ 则:21212k k a a +--=,故21131532123()()()21k k k a a a a a a a a k ---=+-+-++-=-即n 为奇数时,n a n =,又n 为奇数时,11211n n n a a n a n ++-=+⇒=-- 即n 为偶数时,n a n =- 综上,1(1)n n a n -=-⋅.20.(本小题满分16分)设函数()()xx f x e ϕ=,ln ()()xg x x ϕ=,其中()x ϕ恒不为0. (1)设2()x x ϕ=,求函数()f x 在x =1处的切线方程;(2)若0x 是函数()f x 与()g x 的公共极值点,求证:0x 存在且唯一;(3)设()x ax b ϕ=+,是否存在实数a ,b ,使得()()0f x g x ''⋅<在(0,+∞)上恒成立?若存在,请求出实数a ,b 满足的条件;若不存在,请说明理由.解:(1)2()x x f x e =,1(1)f e =,22()x x x f x e -'=,1(1)f e'=故在x =1处的切线方程为:0x ey -=;(2)()()()xx x f x eϕϕ'-'=,2()()ln ()()x x xxg x x ϕϕϕ'-'=由题意知0000()0ln 10()0f x x xg x '=⎧⇒-=⎨'=⎩:令()ln 1h x x x =-,x >0,()ln 1h x x '=+1(0,)x e -∈时,()0h x '<;1(,)x e -∈+∞时,()0h x '>故()h x 在1(0,)e -递减,1(,)e -+∞递增又(0,1)x ∈时,()1h x <-,故()h x 在(0,1)上无零点 (1)10h =-<,()10h e e =->,故(1)()0h g e <又()h x 在[1,)+∞递增,因此,()h x 在(1,e)上存在唯一零点 ∴0x 存在且唯一;(3)由题意知:()x ax b ϕ=+在(0,)+∞上无零点当a =0时,则b ≠0,11()()0x xb f x g x e bx xe -''=⋅=-<,符合题意; 又1(1)(1)0b f g e a b-''=⋅<+,则b(a +b)>0,故b ≠0 当a ≠0时,要使()x ax b ϕ=+在(0,)+∞上无零点,显然ab >02ln ()()0()x ba a xa axb x f x g x e ax b +---''=⋅<+在(0,)+∞上恒成立即()(ln )0bax b a a x a x+---<在(0,)+∞上恒成立 令()F x ax b a =+-,(0,)x ∈+∞,()ln bG x a x a x=--,(0,)x ∈+∞ ,0a b >①时,max{0,1}b x a>-时,()0F x >11max{,}ax b e+>时,ln 1a x a ->,1bx->-,故()0G x >因此,11max{1,,}a bx b e a+>-时,()()0F x G x >与题意不符,舍去;,0a b <②时,max{0,1}b x a>-时,()0F x <11max{,}ax b e->-时,ln 1a x a -<-,1bx-<,故()0G x < 因此,11max{1,,}a bx b e a->--时,()()0F x G x >与题意不符,舍去; 综上,存在a =0,b ≠0符合题意.第II 卷(附加题,共40分)21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. A .选修4—2:矩阵与变换直线l 经矩阵M =cos sin sin cos θθθθ-⎡⎤⎢⎥⎣⎦(其中θ∈(0,π))作用变换后得到直线l ′:y =2x ,若直线l 与l ′垂直,求θ的值.解:在l 上任取一点P(x ,y),设P 经矩阵M 变换后得到点P′(x′,y′)故cos sin sin cos x x y y x y θθθθ'=-⎧⎨'=+⎩,又P′在直线l ′:y =2x 上,即y′=2x′则sin cos 2cos 2sin x y x y θθθθ+=-即直线l :(sin 2cos )(2sin cos )0x y θθθθ-++=因为l 与l ′垂直,故sin 2cos 1=cos 02sin cos 2θθθθθ-⇒=+又(0,)θπ∈,故2πθ=.B .选修4—4:坐标系与参数方程已知在直角坐标系xOy 中,直线l的参数方程为112x y t ⎧=-+⎪⎪⎨⎪=-⎪⎩(t 为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=,求直线l 被曲线C 截得的弦长.解:直线l的直角坐标方程为:10x ++=,曲线C 的直角坐标方程为:222x y +=,圆心为C(0,0),半径r, 圆心C 到直线l的距离12d ==所以直线l 被曲线C截得的弦长为=C .选修4—5:不等式选讲若正数a ,b ,c 满足243a b c ++=,求111123a b c +++++的最小值. 解:因为正数a ,b ,c 满足243a b c ++=,所以2(1)4(2)(3)16a b c +++++=,所以1111111[2(1)4(2)(3)]()12316123a b c a b c a b c ++=+++++⋅++++++++,211121)1616+≥+=当且仅当237a =,107b -=,277c -=时,取最小值1116+.【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)已知某高校综合评价有两步:第一步是材料初审,若材料初审不合格,则不能进入第二步面试;若材料初审合格,则进入第二步面试.只有面试合格者,才能获得该高校综合评价的录取资格,现有A ,B ,C 三名学生报名参加该高校的综合评价,假设A ,B ,C 三位学生材料初审合格的概率分别是13,12,14;面试合格的概率分别是12,13,23.(1)求A ,B 两位考生有且只有一位考生获得录取资格的概率;(2)记随机变量X 为A ,B ,C 三位学生获得该高校综合评价录取资格的人数,求X 的概率分布与数学期望.解:(1)记“A ,B 两位考生有且只有一位考生获得录取资格”为事件MA 考生获得录取资格的概率为111326⨯=;B 考生获得录取资格的概率为111236⨯=; 所以15515()666618P M =⨯+⨯= 答:A ,B 两位考生有且只有一位考生获得录取资格的概率为518; (2)随机变量X 可能的取值为:0,1,2,3C 考生获得录取资格的概率为121436⨯=,由(1)得A ,B 两位考生获得录取资格的概率均为16, 所以A ,B ,C 三位考生获得高校综合评价录取资格的人数X ~ B(3,16), 则0335125(0)()6216P X C ===,1235175(1)()()66216P X C ===, 2235115(2)()()66216P X C ===,33311(3)()6216P X C ===, 随机变量X 的概率分布表如下:数学期望为:125751511()01232162162162162E X =⨯+⨯+⨯+⨯=(人) 答:X 的数学期望为12人.23.(本小题满分10分)设集合n T ={1,2,3,…,n }(其中n ≥3,n N *∈),将n T 的所有3元子集(含有3个元素的子集)中的最小元素的和记为n S .(1)求3S ,4S ,5S 的值;(2)试求n S 的表达式.解:(1)3{1,2,3}T =,其所有三元子集为{1,2,3},故31S =;4{1,2,3,4}T =,其所有三元子集为{1,2,3},{1,2,4},{1,3,4},{2,3,4},故45S =;5{1,2,3,4,5}T =,,其所有三元子集为{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},故515S =;(2){1,2,3,,}n T n =的所有三元子集中:最小元素为1的三元子集个数为21n C -最小元素为2的三元子集个数为22n C - 最小元素为3的三元子集个数为23n C - ……最小元素为n ﹣2的三元子集个数为22C 222222234321(2)(3)(4)32n n n n S n C n C n C C C C ---=-+-+-++++ 23222222334321(3)()(4)32n n n C n C C n C C C C ---=+-++-++++ 232222244321(3)(4)32n n n C n C n C C C C ---=+-+-++++ 23322222444321(4)()32n n n C C n C C C C C ---=++-+++++ 233222245321(4)32n n n C C n C C C C ---=++-++++ ……4333445n C C C C =++++ 43355n C C C =+++41n C +=.。

江苏省盐城市第八中学2020年高三数学文月考试题含解析

江苏省盐城市第八中学2020年高三数学文月考试题含解析

江苏省盐城市第八中学2020年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数,则“”是“函数的最小正周期为”的()A.必要不充分条件 B.充要不必要条件 C.充要条件 D.既不充分又不必要条件参考答案:B2. 已知变量x,y满足约束条件则z=2x+y的最大值为()A.1 B.2 C.3 D.4参考答案:B【考点】简单线性规划.【专题】数形结合.分析:先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.解:作图易知可行域为一个三角形,其三个顶点为(0,1),(1,0),(﹣1,﹣2),验证知在点(1,0)时取得最大值2当直线z=2x+y过点A(1,0)时,z最大是2,故选B.【点评】本小题是考查线性规划问题,本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.3. 已知某算法的流程图如图所示,若输入的有序数对为,则输出的有序数对为 ( )A.B. C.D.参考答案:B4. 若复数(a∈R)为纯虚数,其中i为虚数单位,则a=()A.﹣3 B.﹣2 C.2 D.3参考答案:B【考点】复数代数形式的乘除运算.【分析】由复数代数形式的乘除运算化简复数,又根据复数(a∈R)为纯虚数,列出方程组,求解即可得答案.【解答】解: ==,∵复数(a∈R)为纯虚数,∴,解得:a=﹣2.故选:B.5. 如下图,网格纸上小正方形的边长为1,粗实线画出的是某组合体的三视图,则该组合体的体积为()A.B. C. D.参考答案:A6. 若执行如图所示的程序框图,其中rand[0,1]表示区间[0,1]上任意一个实数,则输出数对(x,y)的概率为()A.B. C. D.参考答案:C概率为几何概型,测度为面积,概率为选C.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.7. 已知函数,若则实数的取值范围是()A B C D参考答案:8. 函数f(x)=lnx+x2﹣bx+a(b>0,a∈R)的图象在点(b,f(b))处的切线斜率的最小值是()A.2B.C.1 D.2参考答案:D【考点】利用导数研究曲线上某点切线方程.【分析】求出原函数的导函数,得到函数在x=b时的导数值,利用基本不等式求最值得答案.【解答】解:由f(x)=lnx+x2﹣bx+a,得f′(x)=+2x﹣b(x>0),∴f′(b)=+b(b>0)∴f′(b)=+b≥2,当且仅当b=,即b=1时上式取“=”,切线斜率的最小值是2.故选:D.9. 已知集合,则()A. B.C. D.参考答案:B试题分析:因,则,故应选B.考点:不等式的解法与集合的运算.10. 如图,南北方向的公路l,A地在公路正东2km处,B地在A东偏北300方向2 km 处,河流沿岸曲线PQ上任意一点到公路l和到A地距离相等.现要在曲线PQ上一处建一座码头,向A、B两地运货物,经测算,从M到A、到B修建费用都为a万元/km,那么,修建这条公路的总费用最低是()万元.A.(2+)a B.2(+1)a C.5a D.6a参考答案:C【考点】抛物线的应用.【分析】依题意知曲线PQ是以A为焦点、l为准线的抛物线,欲求从M到A,B修建公路的费用最低,只须求出B到直线l距离即可.【解答】解:依题意知曲线PQ是以A为焦点、l为准线的抛物线,根据抛物线的定义知:欲求从M到A,B修建公路的费用最低,只须求出B到直线l距离即可.因B地在A地东偏北300方向km处,∴B到点A的水平距离为3(km),∴B到直线l距离为:3+2=5(km),那么修建这两条公路的总费用最低为:5a(万元).故选C.二、填空题:本大题共7小题,每小题4分,共28分11. 把正整数排列成如图甲的三角形数阵,然后擦去第偶数行中的奇数和第奇数行的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若则n= 。

江苏省盐城中学2020届高三第一次阶段性质量检测数学试题(PDF版)

江苏省盐城中学2020届高三第一次阶段性质量检测数学试题(PDF版)

16. ABC 中,角 A, B, C 所对边分别是 a, b, c ,且 cos A 1 . 3
(1)求 sin 2 B C cos 2 A 的值; 2
(2)若 a 3 ,求 ABC 面积的最大值.
17.如图,在 ABC 中, BAC 1200 , AB 2 , AC 1, D 是边 BC 上一点, | DC | 2 | BD |. (1)求 AD BC 的值;(2)若 ( AB tCD) CD 0 ,求实数 t 的值.
角 A 为锐角,则 m 的取值范围是
.( 6 , 2) 2
14.已知函数 f (x) 2tx ln(x n 2) , g(x) 1 t ,若函数 h(x) 4 x3 nx 2 (1 n)x n 8 在
x
3
(,) 上是增函数,且 f (x)g(x) 0 在定义域上恒成立,则实数 t 的取值范围是 (, 1 ] {e2} 2e

f f
(1) 1 a (2) 4 2a
4 4
0
0
,解得
a

0
16. ABC 中,角 A, B, C 所对边分别是 a, b, c ,且 cos A 1 . 3
(1)求 sin 2 B C cos 2 A 的值; 2
(2)若 a 3 ,求 ABC 面积的最大值.
(1)求数列{an }的通项公式;
(2)若 bn

an 1 S 2n1 S 2n1
,数列{bn } 的前 n 项和为 Tn ,求 Tn 的取值范围;
(3)若 cn


1 2
(a
n
2
n 2
,

2020届江苏省盐城中学高三下学期阶段检测数学试卷及解析

2020届江苏省盐城中学高三下学期阶段检测数学试卷及解析

2020届江苏省盐城中学高三下学期阶段检测数学试卷★祝考试顺利★(解析版)一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上.1.已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________ 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.点睛:(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.若复数z 满足()1234z i i +=-+(i 是虚数单位),则复数z 的实部是______.【答案】1【解析】通过复数方程,两边同乘1-2i ,然后求出复数z 即可.【详解】因复数z 满足(1+2i )z =−3+4i ,所以(1−2i )(1+2i )z =(−3+4i )(1−2i ),即5z =5+10i ,所以z =1+2i ,实部为1.故答案为:1.3.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.【答案】8分析:先判断6I <是否成立,若成立,再计算I S ,,若不成立,结束循环,输出结果.详解:由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S =4.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为______.【答案】345 【解析】根据茎叶图中的数据求出甲、乙二人的平均数,再根据方差的定义得出乙的方差较小,求出乙的方差即可.【详解】解:根据茎叶图中的数据,计算甲的平均数为11(7791418)115x =⨯++++=, 乙的平均数为21(89101315)115x =⨯++++=;根据茎叶图中的数据知乙的成绩波动性小,较为稳定(方差较小), 计算乙成绩的方差为:222222134[(811)(911)(1011)(1311)(1511)]55s =⨯-+-+-+-+-=. 故答案为:345. 5.从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中无重复的个数为______________.【答案】30.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 当
x
1
0 时,
f
x
1
0
,即
x
1
x0,
x 1 1
综上: x , 0 1 , 2 .故本题选 C.
8.已知点 P m, n 是函数 y x2 2x 图像上的动点,则 4m 3n 21 的最小值是( )
A.25
B.21
C.20
D.4
【答案】C
解: y x2 2x 0 , y2 x2 2x x 12 y2 1 Pm , n 在 x 12 y2 1y 0 半圆上,圆心为 1, 0 ,半径为1
9.已知数列 an 的前 n 项和为 Sn 2an 2 .若存在两项 am , an ,使得 aman 64 ,则下列结论正确的是( ) A.数列an 为等比数列 B.数列an 为等差数列
C. m n 为定值
D.设数列bn 的前
n 项和为 Tn
, bn
log 2
an
,则数列
Tn
n
为等差数列
间的人数约为( )
A.150
B.200
C.300
D.400
【答案】C
解: PX 120 1 , PX 90 1 ,即 P90 X 105 1 1 3 ,数学考试成绩在 90 分到 105
5
5
2 5 10
分之间的人数约为 3 1000 300 .故本题选 C. 10
的是精品果的数量,求 X 的分布列及数学期望 EX .
21.已知椭圆 C :
x2 a2
y2 b2
1 a
b
0 的离心率为 1
2
,其左右顶点分别为
A1, A2 ,上下顶点分别为 B2 , B1 ,
四边形 A1B1A2B2 的面积为 4 3 ,直线 m : x 4 .
(1)求椭圆 C 的方程;
(2)设直线 n 与椭圆 C 只有一个公共点 P ,直线 n 与直线 m 相交于点 Q ,在平面内是否存在定点T ,使得 PTQ 恒成立?若存在,求出该点坐标;若不存在,说明理由.
2
22.已知函数 f x x2 a ln x 1 , a R
2
2
(1)若 f x 0 在 1, 上恒成立,求实数 a 的取值范围;
(2)若函数
gx
f
x 2ax 有两个极值点 x1, x2 ,当 g x1
g x2
2e
1 e
a
时,求实数 a 的取值范
围.
江苏省盐城中学高三年级阶段性考试 数学试卷(2020.8)
PF2
6a ,且
PF1F2 的最小内角为 30 ,则 C 的离心率为( )
A.6
B. 6
C.3
D. 3
7.已知函数 f x 是偶函数定义域为 R ,单调增区间为0, ,且 f 1 0 ,则 x 1 f x 1 0 的解
集为( )
A. 2, 0
B. 1,1
C. ,01, 2
D. , 10,1
C.300
D.400
5.在 ABC 中, BD DC , AP PD ,且 BP AB AC ,则 ( )
A.1
C. 1 2
B. 1 2
D. 1 3
6.设
F1,
F2
是双曲线
C
:
x2 a2
y2 b2
1a 0,b 0 的两个焦点, P 是 C 上一点若
PF1
C.36 种
D.48 种
4.某校有 1000 人参加某次模拟考试,其中数学考试成绩近似服从正态分布 N 105, 2 0 .试卷满分 150
分,统计结果显示数学成绩优秀(高于 120 分)的人数占总人数的 1 .则此次数学考试成绩在 90 分到 105 分之 5
间的人数约为( )
A.150
B.200

D. 2 1 i 55
【答案】B
解: 1 i i 1 i2 i i 2 3i 1 i 1 3i i 1 2i a bi
2i
5
5
55 55
a 1 , b 2 . a bi 1 2 i . 故本题选 B.
5
5
55
3.将 4 名教师分配到 3 所中学任教,每所中学至少 1 名教师,则不同的分配方案共有( )
一、单项选择题:本题共 8 小题.每小题 5 分.共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求
的.
1.设集合 A x x2 x , B x 1 1 ,则 A B ( x
A. 0,1
B. 0,1
C. ,1

D. ,0 0,1
【答案】A
解: x2 x , x2 x 0 xx 1 0 0 x 1, A x 0 x 1.
D. ,0 0,1
2.已知
i
为虚数单位
a,
b
R
.复数
1 i 2i
i
a
bi
.则
a
bi

A. 1 2 i 55
B. 1 2 i 55
C. 2 1 i 55

D. 2 1 i 55
3.将 4 名教师分配到 3 所中学任教,每所中学至少 1 名教师,则不同的分配方案共有( )
A.12 种
B.24 种
A.12 种
B.24 种
C.36 种
D.48 种
【答案】C
解: C42 A33 6 6 36 ,故本题选 C.
4.某校有 1000 人参加某次模拟考试,其中数学考试成绩近似服从正态分布 N 105, 2 0 .试卷满分 150
分,统计结果显示数学成绩优秀(高于 120 分)的人数占总人数的 1 .则此次数学考试成绩在 90 分到 105 分之 5
四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.
17.在① a sin C 3c cos B cos C 3b cos 2 C ;② 5c cos B 4b 5a ;③ 2b a cos C c cos A 这三个
条件中任选一个,补充在下面问题中,然后解答补充完整的题目
10.将函数
f
x
sin
2
x
3
的图象向右平移
2
个单位长度得到
g
x 图象.则下列判断正确的是(

A.函数
g
x
在区间
12
,
2
上单调递增
B.函数 g x 图象关于直线 x 7 对称
12
C.函数
g
x
在区间
6
,
3
上单调递减
D.函数
g
x
图象关于点
3
,
0
对称
11.如图,在正方体 ABCD A1B1C1D1 中, E , F 分别是 AB1 , BC1 的中点,下列结论中正确的是( )
在 ABC 中,内角 A , B , C 所对的边分别为 a , b , c .且满足________. (1)求 sin C ; (2)已知 a b 5 , ABC 的外接圆半径为 4 3 ,求 ABC 的边 AB 上的高 h
3
注:如果选择多个条件分别解答,按第一个解答计分.
18.已知数列an 的前 n 项和为 Sn ,且 Sn 2an 1 n (1)求证:数列an 1 为等比数列; (2)设 bn n an 1 ,求数列bn 的 n 项和Tn .
B.双曲线的渐近线为 y 4 x 5
C. PF1F2 的面积为 36 D.点 P 到该双曲线左焦点的距离是 18
三、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.已知 x 1 10 a1 a2 x a3x2 a11x10 ,若数列 a1, a2, a3,, ak 1 k 11, k Z 是一个单调递增
江苏省盐城中学高三年级阶段性考试 数学试卷(2020.8)
一、单项选择题:本题共 8 小题.每小题 5 分.共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求
的.
1.设集合 A x x2 x , B x 1 1 ,则 A B ( ) x
A. 0,1
B. 0,1
C. ,1
A. EF 与 BB1 垂直
B. EF 与平面 BCC1B1 垂直
C. EF 与 C1D 所成的角为 45
D. EF 平面 ABCD
12.已知 P 是双曲线上
x2 25
y2 16
1 上右支上一点, F1 是双曲线的左焦点, O 为原点,若
OP OF1
8 ,则
下列结论正确的是( )
A.双曲线的离心率为 5 3
4
4
则 3 1 1 .故本题选 C. 44 2
6.设
F1,
F2
是双曲线
C
:
x2 a2
y2 b2
1a 0,b 0 的两个焦点, P 是 C 上一点若
PF1
PF2
6a ,且
PF1F2 的最小内角为 30 ,则 C 的离心率为( )
A.6
B. 6
C.3
D. 3
【答案】D
解:
PF1
(2)用样本估计总体,果园老板提出两种购销方案给采购商参考
方案 1:不分类卖出,单价为 20 元/个.
方案 2:分类卖出,分类后的水果售价如下:
等级
标准果
优质果
精品果
礼品果
售价(元/个)
16
18
22
24
采购商的角度考虑,应该采用哪种方案?
(3)用分层抽样的方法从这 100 个水果中抽取 10 个,再从抽取的 10 个水果中随机地抽取 3 个,X 表示抽取
8.已知点 P m, n 是函数 y x2 2x 图像上的动点,则 4m 3n 21 的最小值是( )
相关文档
最新文档