电解与极化作用
电解与极化作用小结

(A)都溶解
(B)Fe(s)不溶,Cd(s)溶解
(C)都不溶解
(D)Fe(s)溶解,Cd(s)不溶
答 (B) 设构成电池 Cd(s)|Cd2+||Fe2+|Fe(s)
则 电池反应为 Cd(s) + |Fe2+ = Cd2+ + Fe(s)
E
=
EO
−
RT 2F
ln
a(Cd 2+ ) a( Fe2+ )
解:
(1)
ϕ Cd 2+/ Cd
+
RT
F
ln
a Cd
2+
= −0.403 +
RT ln 0.01 = −0.4621V 2F
ϕ Cu 2+ / Cu
=ϕO Cu 2+ / Cu
+ RT F
ln
a Cu
2+
= 0.337 +
RT ln 0.02 = 0.2868 V 2F
仍不会有 H2(g)析出,问溶液的 pH 值应控制在多少为好? 已知 H2(g)在 Zn(s)上的超电势为 0.72V,并设此值与溶液浓度无关。 (设 γ±=1)已知: ϕ O (Zn2+/Zn)=-0.7628V .
解: φ(Zn2+/Zn)= ϕ O (Zn2+/Zn) -RT/2F×ln 1/a(Zn2+) = -0.8811 V
例题 12 298K, pO 下,以 Pt 为阴极,电解含 FeCl2(0.01mol·kg-1)和 CuCl2(0.02mol·kg
-1)的水溶液。若电解过程中不断搅拌,并设超电势可略去不计,已知ϕ O (Fe2+/ Fe)
10-电解与极化作用

阳,析出 阳,可逆 阳
3、极化曲线的测定
超电势或电极电势与电流密度之间的关系曲线称
为极化曲线,极化曲线的形状和变化规律反映了电化
学过程的动力学特征。
+
测定超电势的装置
如右图所示:
A
电极1为待测电极,
测定分解电压时的电流-电压曲线
二、分解电压的测定
当外压增至2-3段,氢 气和氯气的压力等于大
气压力,呈气泡逸出,反电
动势达极大值 Eb,max。
电
E外 Eb,max IR
流 I
再增加电压,使I 迅速增 加。将直线外延至I = 0 处,
得E(分解)值,这是使电解 池不断工作所必需外加的
最小电压,称为分解电压。
(2)电化学极化
以铜电极为例: 电极反应进行缓慢
作为阴极:则由外电源输入阴 极的电子来不及消耗,即溶液 中Cu2+不能马上与电极上的电 子结合,变成Cu,结果使阴极 表面积累了多于平衡状态的电 子,导致电极电势比平衡电极 电势更小。
-
- 电源 +
e-
+
e-
Cu
Cu
CuSO4
电解池
作为阳极:类似的,作为阳极时,会使阳极表面的电 子数目小于平衡状态的电子,导致电极电势比平衡电 极电势更大。
Ag ,Ag
-
RT F
ln
1 c,e
c,e c0
阴,不可逆 阴,可逆
c'
扩散层
在浓度梯度作用下(ce’ < c0)Ag+向 电极表面的迁移
阴极浓差极化的结果是阴极电极电势比可逆时变小。
(1)浓差极化
阳极: Ag Ag++e , v扩<v反,c0 < ce`
第十章电解与极化作用

(1)浓差极化——扩散过程的迟缓性而引起的极化。
浓差极化是在电流通过时,由于电极反应的反
应物或生成物迁向或迁离电极表面的缓慢而引起的
电极电势对其平衡值的偏离。
阴极:Ag++eAg,
v扩<v反,
m,<m=m
’ Ag
/ Ag
>
RT F
ln1 m' Nhomakorabea
’
即: 可 逆 > 不 可 逆 阴极极化的结果是阴 极电极电势变得更负。
η阳 j(电流密度)
E可逆 -ΔE不可逆
η阴
E可逆
电极电势
电解池中两电极的极化曲线
原电池与电解池极化的差别
当有电流通过电解池, 电解池的端电压大于平 衡电池电动势。
即:E = E平 +ηa +ηc
当有电流通过原电池, 原电池的端电压小于平 衡电池电动势。 即:E = E平 -ηa-ηc
影响超电势的因素
(1) 电流密度J 一般 , J越大 , 超电势越大。不同的物质,其 增大的规律不一样。 (2)电极材料及其表面状态 以氢电极为例:
J= 100 A/m2时,
若电极材料为Ag,η= 0.13V;
若电极材料为Pt(光滑),η= 0.16V;
若电极材料为Pt(镀有铂黑),η= 0.03V。
(3)温度 温度升高,超电势减小。 一般,每增高1度,超电势减小2mV。 除了以上因素外,电解质的性质、溶液中的杂 质对超电势均有影响。所以,超电势的重现性不好。 一般说来析出金属的超电势较小,而析出气体 (特别是氢、氧)的超电势较大。
§10.2 极化作用
§10.3 电解时电极上的竞争反应 §10.4 金属的电化学腐蚀、防腐与金属的钝化 §10.5 化学电源
物理化学(第五版傅献彩)第10_电解与极化作用

无电流
ϕ可逆
= ϕy Ag+ |Ag
−
RT F
ln
1 aAg+
有电流
ϕ不可逆
= ϕy Ag+ |Ag
−
RT F
ln
1 aAg+ , e
η阴
= ϕ可逆
− ϕ不可逆
=
RT F
ln aAg+ aAg+ , e
>0
aAg+ , e < aAg+ ϕ不可逆 < ϕ可逆
阳极上的情况类似,但 ϕ不可逆 > ϕ可逆
的金属先在阴极析出,这在电镀工业上很重要 例如,利用氢的超电势,控制溶液的pH,实
现镀 Zn,Sn,Ni,Cr 等
25
阴极上发生还原反应
发生还原 (1) 金属离子 的物质: (2) 氢离子 (中性水溶液 aH+ = 10−7 ) 判断在阴极上首先析出何种物质,应把各 种可能还原的物质的电极电势求出来(气 体要考虑超电势,金属可不考虑超电势)
2H+ + 2e- = H2
ϕ可逆
=ϕΟ H+ |H2
− RT 2F
ln
pH2 / p Ο a2
H+
= −0.059pH = −0.414V
ϕ不可逆 = ϕ可逆 −η = −0.414V − 0.584V = −0.998V
Zn2+ + 2e- = Zn
ϕ可逆
=ϕΟ Zn2+ |Zn
− RT 2F
1 ln
=−
RT 2F
ln
aH2 a2
H+
−ηH2
设 pH2 = p Ο
11章电解池与极化作用全解

可逆电池:电极反应是在电流趋于零的平衡条件 下进行的,此时的电极电势为可逆电 极电势或平衡电极电势。
实际上电池对外供电或进行电解时,都有一定的电流 通过电极,使电极反应在偏离平衡态下进行而成为不 可逆过程,导致电极电势也偏离平衡电极电势。现以 电解池为例讨论这种偏离现象产生的原因及在实际中 的意义。
由于化学反应本身的迟缓性而引起的的电极极化。
电极反应总是分若干步进行,若其中一步反应速
率较慢,需要较高的活化能。为了使电极反应顺利进
行所额外施加的电压称为称为活化超电势。
例:2H+ + e– H2
e
v反应 慢,阴极积累电子e- 2H+ + 2e– H2
电化学极化使阴极电势降低,使阳极电势升高
两种极化结果均使 阴极电势降低
7
§11.2 极化作用
1. 电极的极化
定义:电流通过电极时,电极电势偏离其平衡电极 电势的现象称为电极的极化。
阳极极化: E阳 E阳, 平 使 E阳 变大(正) 阴极极化: E阴 E阴, 平 使 E阴 变小(负)
离子扩散速率慢 浓差极化 极化产生的原因:
反应速率慢 电化学极化
8
(1) 浓差极化 由于电极表面附近薄液层的浓度和本体溶液的 浓度的差异所导致的电极极化。
所以标准氢电极中的 铂电极要镀上铂黑。
影响超电势的因素很多,如电极材料、电极表面状态、电
流密度、温度、电解质的性质、浓度及溶液中的杂质等。
14
Tafel 公式(Tafel’s equation)
早在1905年,Tafel 发现,对于一些常见的电 极反应,超电势与电流密度之间在一定范围内存 在如下的定量关系:
电解与极化作用

第九章 电解与极化作用前边讨论的电池与电极都是可逆的,那么应用能斯特公式来处理电化学体系时,它的前提就是该体系必须是处于热力学平衡态,但是对于一些现实的电化学过程来说一般都是不可逆过程,因此应用Nernst 公式研究电化学问题就具有很大的局限性。
事实上当原电池或电解池,只要有电流通过,就有极化作用发生,该过程就是不可逆过程。
研究不可逆电极反应及其规律性对电化学工业是十分重要的,所以我们要讨论不可逆电极过程。
在这一部分除了讨论电解池中的极化作用外,还要简单介绍一些电解在工业上的应用上及金属的防腐和化学电源等。
§9-1 电极的极化1、不可逆条件下的电极电势一个不可逆电池所具备的条件有两个:①电池反应在充电与放电时互为逆反应;②通过电池的电流I →0,即没有电流通过电池。
显然组成可逆电池的两个电极都是可逆电极,那么可逆电极的电极反应都是在可逆的条件下发生的。
这时电极所具有的电势就称为可逆电极电势。
可逆电极电势对许多电化学和热力学问题的解决是相当重要的。
但是在实践当中许多电化学过程,如进行电解和使用化学电源做电功时,并不是在可逆情况下进行的,也就是说要有电流通过电池或电解池,此时的电极反应就是不可逆的了,不可逆电极的电极电势用“I ϕ”表示,当然这个电极电势与可逆电极的电极电势r ϕ是不相同的,那么我们就把电极在有限电流通过时所表现的电极电位I ϕ与可逆电极电势产生偏差的现象叫做电极的极化。
偏差的大小(绝对值),称为“过电势”。
用“η”表示,||r I ηϕϕ=-,对于原电池,在可逆放电时,两电极的端电压是最大的,这个端电压就是电动势E ,它等于两个可逆电极的电位差。
()()()()r r r r E ϕϕϕϕ=-=-正阳阴负在不可逆条件下进行放电,两电极的端电压用E I 表示,它一定要小于原电池的电动势E ,E I <E ,E I =E-△E其电动势的降低主要是由于两个因素引起的,当有电流通过时, ①电池具有一定的内阻R 的消耗电位降IR ;②不可逆条件电极要产生极化,也会造成电动势下降,所以不可逆电池两电极的电位差通常就叫端电压。
物理化学课件6.3章电解与极化作用

实验材料
电解槽、电极、电源、电解质溶液等。
电解实验的设计与操作
实验步骤 1. 准备实验材料,配置电解质溶液。
2. 将电极插入电解槽中,连接电源。
电解实验的设计与操作
3. 观察并记录电极反应现象,测量电流和电压。 4. 分析实验数据,得出结论。
极化作用的实验研究方法
实验目的
通过实验研究,探究极化作用对电极反应的影响,理解极化作用的原理。
电解分离与提纯
总结词
电解分离和提纯是利用电解的原理将混 合物中的不同组分进行分离或提纯的方 法。
VS
详细描述
电解分离是通过电解过程中不同物质在电 极上的吸附、氧化还原反应等特性差异实 现分离。电解提纯则是利用电解过程将杂 质去除,实现物质的纯化。
05 极化作用的应用
电化学反应器
电解槽
利用电解原理进行物质转 化的设备,如氯碱工业中 的隔膜电解槽和电解水制 氢装置。
详细描述
电镀是将金属离子在电场作用下还原成金属并沉积在阴极表面,用于表面防护和装饰。电冶金则是利 用电解过程提取金属,从矿石或盐类等原料中分离和提纯金属。
电解制取气体
总结词
电解水是制取氢气和氧气的常用 方法,具有清洁、高效的特点。
详细描述
通过电解水可以将水分子分解成 氢气和氧气,分别在阴极和阳极 析出。电解水制取的气体可用于 燃料电池、医疗、潜水等领域。
电极反应的极化曲线
极化曲线是描述电极电势与电流密度之间关系的曲线,可以用来研究电极反应的动 力学过程和机理。
在极化曲线上,可以根据电流密度的大小来判断电极反应的速率快慢,以及电极电 势偏离可逆电势的程度。
通过测量不同温度下的极化曲线,可以研究电极反应的热力学性质和动力学过程。
电解与极化作用

物理化学论文电解与极化作用化工093班姓名:李寒萌学号:12 号电解与极化作用一、分解电压使电能转变成化学能的装置称为电解池。
当直流电通过电解质溶液,正离子向阴极迁移,负离子向阳极迁移,并分别在电极上起还原和氧化反应,从而获得还原产物和氧化产物。
若外加一电压在一个电池上,逐渐增加电压直至使电池中的化学反应发生逆转,这就是电解。
实验表明,对任一电解槽进行电解时,随着外加电压的改变,通过该电解槽的电流亦随之变化。
例如,使用两个铂电极电解HCl 溶液时,使用图9.1 的线路装置,改变可变电阻,记录电压表和电流表的读数,则可测量电解槽两端电位差与电流强度的关系曲线。
开始时,当外加电压很小时,几乎没有电流通过电解槽;电压增加,电流略有增加;当电流增加到某一点后,电流随电压增大而急剧上升,同时电极上有连续的气泡逸出。
在两电极上的反应可表示如下:阴极2H+(a H+)+2e.→H2(g, p)阳极2Cl-.(a Cl-)→Cl2(g, p)+2e. 图9.1 分解电压的测定装置当电极上有气泡逸出时,H2和Cl2的压力等于大气压力。
电解过程分析:当开始加外电压时,还没有H2和Cl2生成,它们的压力几乎为零,稍稍增大外压,电极表面上产生了少量的H2和Cl2,压力虽小,但却构成了一个原电池(自发地进行如下反应)(-) H2(p)→2H+ (a H+)+2e-(+) Cl2(g)+2e-→2Cl-(a Cl-)此时,电极上进行反应的方向正好与电解所进行的反应的方向相反。
它产生了一个与外加电压方向相反的反电动势E b。
由于电极上的产物扩散到溶液中了,需要通过极微小的电流使电极产物得到补充。
继续增大外加电压,电极上就有H2和Cl2继续产生并向溶液中扩散,因而电流也有少许增加,相当于图9.2 中I-E 曲线上的1-2段。
此时由于p H2和p Cl2不断增加,对应于外加电压的反电动势也不断增加,直至气体压力增至等于外界大气压力时,电极上就开始有气泡逸出,此时反电动势E b达到最大值E b, max将不再继续增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章电解与极化作用
一、选择题
1. 电解金属盐的水溶液时, 在阴极上: ( )
(A) 还原电势愈正的粒子愈容易析出
(B) 还原电势与其超电势之代数和愈正的粒子愈容易析出
(C) 还原电势愈负的粒子愈容易析出
(D) 还原电势与其超电势之和愈负的粒子愈容易析出
2. 电解时, 在阳极上首先发生氧化作用而放电的是:
( )
(A) 标准还原电势最大者 (B) 标准还原电势最小者
(C) 考虑极化后,实际上的不可逆还原电势最大者
(D) 考虑极化后,实际上的不可逆还原电势最小者
3.下列关于燃料电池效率η的说法错误的是:()
(A)η小于1 (B)η可以大于1 (C)η等于1 (D)η不可能大于1
二、填空题
1.酸性介质的氢-氧燃料电池, 其正极反应为_________, 负极反应为
_________。
2.电解过程中,极化作用使消耗的电能 ________;在金属的电化学腐蚀过程中,
极化作用使腐蚀速度 ________ 。
3.从能量的利用上看,超电势的存在有其不利的方面。
但在工业及分析等方面,
超电势的现象也被广泛的应用, 试举出二个利用超电势的例子
________,________。
4. 超电势测量采用的是三电极体系, 即研究电极、辅助电极和参比电极, 其中
辅助电极的作用是_________, 参比电极的作用是_________。
5. 氢气在金属电极上析出时, 根据条件不同, 超电势随电流密度变化关系分别
可用η=ωj或η=a + b lg j表示, 前者适用于情况, 而后者适用于________情况。
6.为了防止金属的腐蚀,在溶液中加入阳极缓蚀剂,其作用是极极化
程度。
(填①增加②降低③阳④阴)
三、计算题
1.用Pt做电极电解SnCl
2水溶液, 在阴极上因H
2
有超电势故只析出Sn(s), 在阳
极上析出O
2
, 已知αSn2+=0.10, αH+=0.010, 氧在阳极上析出的超电势为
0.500 V,已知:φθ(Sn 2+/Sn) =-0.140 V, φ θ(O 2/H 2O) =1.23 V 。
(1) 写出电极反应, 计算实际分解电压。
(2) 若氢在阴极上析出时的超电势为0.500 V, 试问要使αSn 2+降至何值时, 才开始析出氢气? (答案(1)E 分解=1.78 V (2) α(Sn 2+) =2.9×10-14 )
2. 298 K 时,用Pb 为电极来电解0.100 mol ·dm -3 H 2SO 4(γ± =0.265)。
在电解过程中,把Pb 阴极与另一摩尔甘汞电极相联接,当Pb 阴极上氢开始析出时, 测得E 分解=1.0685 V,试求H 2在Pb 电极上的超电势(H 2SO 4只考虑一级电离),已知摩尔甘汞电极的氢标电势φ甘汞=0.2800 V 。
(答案0.6952 V)
3. 298 K ,p θ时,以 Pt 为阴极,C (石墨)阳极,电解含CdCl 2 (0.01 mol ·kg -1) 和 CuCl 2 (0.02 mol ·kg -1) 的水溶液,若电解过程中超电势可忽略不计,(设
活度系数均为1,已知φθ(Cd 2+/Cd) = -0.402 V ,φθ
(Cu 2+/Cu) = 0.337 V ,φ θ
(Cl 2/Cl -)=1.36 V ,φ θ(O 2/H 2O,H +
) = 1.229 V )(不考虑水解)试问: (1)何种金属先在阴极析出?
(2)第二种金属析出时,至少须加多少电压?
(3)当第二种金属析出时,第一种金属离子在溶液中的浓度为若干?
(4)事实上 O 2(g) 在石墨上是有超电势的,若设超电势为 0.6 V ,则阳极首先应发生什么反应? (答案(1)阴极上首先是 Cu 2+ 还原成 Cu 。
(2) E 分解
=1.6075 V (3) [Cu 2+] = 0.103×10-26 mol ·kg -1 (4) 阳极上先发生 H 2O 氧化反应 。
)
4.298 K 时, 用Pt 阳极Cu 阴极电解0.10 mol ·dm -3 CuSO 4溶液, 电极的面积为50 cm 2, 电流保持在0.040A, 并采取措施,使浓差极化极小。
若电解槽中含1dm 3溶液, 试问至少电解多少时间后, H 2才会析出?此时剩余Cu 2+的浓度为多少? 设活度系数均为1。
已知氢在铜上之η =a+blg j , a=0.80 V, b=0.115V, φθ
(Cu 2+
/Cu) =0.337 V 。
(答案[Cu 2+]=1.6×10-28 mol ·dm -3 电解需时:t =134 h )
第九章电解与极化作用参考答案
一、选择题 1B 2D 3D
一、 填空题
1.正: 2
1
O 2+2H ++2e - ─→ H 2O ,负: H 2-2e -─→ 2H +
2.增加;减少
3.极谱分析的滴汞电极,铅蓄电池的充电,氯碱工业,电镀杂质的分离等。
4.提供电流,使研究电极极化;测量超电势值。
5.低超压,高超压
6.①③。