遥感影像数据融合原理与方法
遥感图像融合实验报告

遥感图像融合实验报告遥感图像融合实验报告一、引言遥感图像融合是指将多个不同传感器获得的遥感图像融合为一幅综合图像的过程。
通过融合不同传感器获取的图像,可以获得更全面、更准确的地物信息。
本实验旨在探究遥感图像融合的原理和方法,并通过实验验证其效果。
二、实验目的1. 了解遥感图像融合的原理和意义;2. 掌握常用的遥感图像融合方法;3. 进行实验验证,比较不同融合方法的效果。
三、实验步骤1. 数据准备:选择两个不同传感器获取的遥感图像,如光学图像和雷达图像;2. 图像预处理:对两幅图像进行预处理,包括辐射校正、几何校正等;3. 图像配准:通过图像配准算法将两幅图像对齐,使其具有相同的空间参考系;4. 图像融合:选择合适的融合方法,如基于像素级的融合方法或基于特征级的融合方法,对两幅图像进行融合;5. 结果评价:通过定量和定性的评价指标,对融合结果进行评估。
四、实验结果与分析经过实验,我们得到了融合后的遥感图像。
通过对比融合前后的图像,可以发现融合后的图像在空间分辨率和光谱信息上都有所提高。
融合后的图像能够更清晰地显示地物的边缘和细节,且具有更丰富的颜色信息。
在融合方法的选择上,我们尝试了基于像素级的融合方法和基于特征级的融合方法。
基于像素级的融合方法将两幅图像的像素直接进行融合,得到的结果更加保真,但可能会导致信息的混淆。
而基于特征级的融合方法则通过提取图像的特征信息,再进行融合,可以更好地保留地物的特征,但可能会引入一定的误差。
通过对比不同融合方法的结果,我们可以发现不同方法在不同场景下的效果差异。
在某些场景下,基于像素级的融合方法可能会产生较好的效果,而在其他场景下,基于特征级的融合方法可能更适用。
因此,在实际应用中,需要根据具体场景和需求选择合适的融合方法。
五、实验总结通过本次实验,我们深入了解了遥感图像融合的原理和方法,并进行了实验验证。
遥感图像融合可以提高图像的空间分辨率和光谱信息,使得地物信息更全面、更准确。
遥感图像融合实验报告

遥感图像融合实验报告遥感图像融合实验报告一、引言遥感技术在现代科学研究和应用中发挥着重要的作用。
遥感图像融合是将多个遥感图像的信息融合为一个综合图像的过程,可以提供更全面、更准确的地理信息。
本实验旨在通过遥感图像融合技术,对不同分辨率的遥感图像进行融合,以获得更高质量的图像。
二、实验方法1. 数据收集我们使用了两个不同分辨率的遥感图像,一个是高分辨率的卫星图像,另一个是低分辨率的无人机图像。
这两个图像分别代表了不同的空间分辨率。
为了保证数据的准确性,我们选择了同一地区的图像进行比较。
2. 图像预处理在进行图像融合之前,需要对图像进行预处理,以提高融合效果。
我们首先对两个图像进行边缘增强处理,以增强图像的边缘信息。
然后,对图像进行直方图均衡化,使图像的灰度分布更均匀。
最后,对图像进行尺度匹配,以确保两个图像的尺度一致。
3. 图像融合算法本实验使用了一种基于小波变换的图像融合算法。
该算法通过将两个图像的低频部分和高频部分进行融合,得到一个综合图像。
具体步骤如下:a. 对两个图像进行小波变换,得到它们的低频部分和高频部分。
b. 对两个图像的低频部分进行加权平均,得到融合后的低频部分。
c. 对两个图像的高频部分进行加权平均,得到融合后的高频部分。
d. 将融合后的低频部分和高频部分进行逆小波变换,得到最终的融合图像。
4. 实验结果分析通过对融合后的图像进行视觉和定量分析,我们可以评估融合效果。
视觉分析可以通过观察图像的细节和边缘来判断融合效果的好坏。
定量分析可以通过计算图像的信息熵、互信息和均方误差等指标来评估融合效果。
三、实验结果与讨论经过实验,我们得到了融合后的图像。
通过对比原始图像和融合图像,我们可以看到融合后的图像在细节和边缘方面有明显的提升。
融合后的图像更清晰、更丰富,能够提供更多有用的地理信息。
在定量分析方面,我们计算了融合图像的信息熵、互信息和均方误差。
结果显示,融合图像的信息熵和互信息较高,均方误差较低,说明融合效果较好。
如何进行遥感数据的融合与提取

如何进行遥感数据的融合与提取遥感技术是近年来发展迅猛的一项技术,通过卫星、飞机等载体对地球表面进行观测和测量,获取到的数据被广泛用于农业、环境、城市规划等领域。
然而,单一遥感数据往往无法满足实际需求,因此进行遥感数据融合与提取变得至关重要。
一、遥感数据的融合遥感数据的融合是将来自不同观测平台和传感器的数据进行综合利用,以获得更准确、全面的地球表面信息。
一种常用的数据融合方法是多源数据融合,将来自不同载体的数据进行融合,形成一幅综合图像。
这种方法既可以弥补各种载体的数据不足,又可以利用各种载体的优势,提高图像的空间分辨率和光谱分辨率。
同时,还可以通过数据融合来降低遥感图像的噪声,提高图像的质量。
二、遥感数据的提取遥感数据的提取是根据实际需求,从遥感数据中识别并提取出所关心的信息,以用于进一步的分析和应用。
常见的遥感数据提取方法包括特征提取和目标提取。
特征提取是从遥感图像中提取出与所关心的特征相关的信息,如土地利用类型、植被指数等。
目标提取是将图像中的目标物体从背景中分割出来,如建筑物、道路等。
在进行遥感数据的提取时,传统的基于像元的方法已经不再适应复杂的地物识别需求。
因此,研究人员提出了基于对象的遥感图像分析方法。
这种方法将像元视为对象的一部分,通过对对象的特征进行提取和分析,实现对遥感图像中目标的精确识别和提取。
对象级的遥感数据提取方法不仅能够提高提取结果的准确性,而且可以获取到更多的地物信息,进一步拓展遥感的应用领域。
三、遥感数据融合与提取的应用遥感数据融合与提取的应用广泛涉及到农业、环境、城市规划等领域。
以农业领域为例,通过遥感数据的融合与提取,可以实现农田土壤的养分评估、病虫害的监测、农作物的生长状况分析等。
通过获取到的精确信息,农民可以及时调整农业生产方式,提高农作物的产量和质量。
类似地,在环境领域,遥感数据的融合与提取可以用于监测大气污染、水体污染等环境问题,为环境保护与治理提供支持。
如何进行遥感影像的数据融合

如何进行遥感影像的数据融合遥感影像的数据融合是将多源的遥感信息融合在一起,以提高遥感数据的空间分辨率和地物分类精度。
在综合利用多源遥感数据的基础上,实现对地表覆盖信息的准确提取和监测。
本文将从数据源的选择、融合方法的选择和数据融合的应用领域三个方面,探讨如何进行遥感影像的数据融合。
一、数据源的选择数据源的选择是进行遥感影像的数据融合的第一步,准确选择数据源可以保证数据融合的有效性和准确性。
1. 遥感影像数据遥感影像数据是进行数据融合的基础数据,可以通过卫星、航空摄影等方式获取。
选择高质量的遥感影像数据对融合结果有重要影响,因此在选择遥感影像数据时,要考虑数据的空间分辨率、光谱分辨率和时间分辨率等因素。
同时,还要注意遥感数据的几何校正和辐射校正情况,以保证数据的一致性和准确性。
2. 地面观测数据地面观测数据是进行遥感影像数据融合的重要补充。
常见的地面观测数据包括气象站观测数据、地面遥感观测数据等。
地面观测数据可以提供高时空分辨率的地表信息,与遥感影像数据融合可以提高地物识别的准确性。
二、融合方法的选择数据融合方法的选择是进行遥感影像数据融合的关键环节,不同的融合方法适用于不同的数据和应用场景。
常见的数据融合方法包括像素级融合、特征级融合和决策级融合。
1. 像素级融合像素级融合是将多源遥感影像数据的像元进行组合,生成高光谱或高光谱数据立方体。
常用的像素级融合方法有主成分分析、合成波段和带通滤波等。
像素级融合可以提高遥感影像的空间分辨率和光谱分辨率,对地物分类和变化检测具有重要意义。
2. 特征级融合特征级融合是将多源遥感影像数据的特征进行组合,提取地物的空间、光谱、纹理等特征。
常用的特征级融合方法有多特征组合、特征选择和特征转换等。
特征级融合可以提高地物分类的准确性和分类精度。
3. 决策级融合决策级融合是将多源遥感影像数据的分类结果进行组合,生成最终的分类结果。
常用的决策级融合方法有基于权重的融合、基于逻辑运算的融合和基于模型的融合等。
遥感影像数据融合原理与方法

遥感影像数据融合原理与方法遥感影像数据融合是将不同波段或不同传感器的遥感影像数据融合在一起,以获取更全面、准确、可靠的信息。
它在农业、林业、城市规划、环境监测等领域具有广泛的应用。
下面将对遥感影像数据融合的原理和方法进行详细介绍。
一、遥感影像数据融合原理遥感影像数据融合的原理是通过将多个波段或多个传感器的影像数据进行组合,以获取多波段或多传感器数据的综合信息。
融合后的影像数据能够提供更多的数据维度和更丰富的信息内容,从而增强地物辨别能力和特征提取能力。
1.时空一致性:遥感影像数据融合要求融合后的影像数据在时域和空域上具有一致的特性,即不同时间或空间的影像数据融合后要保持一致性,以便进行准确的信息提取和分析。
2.特征互补性:不同波段或传感器的影像数据通常具有不同的特征信息,例如,光学影像可以提供颜色信息,而雷达影像可以提供物体的形状和纹理信息。
融合时要充分利用不同波段和传感器的特征互补性,使融合后的影像数据包含更全面、准确的信息。
3.数据一致性:遥感影像数据融合应保持数据的一致性,即融合后的影像数据应在不改变原始数据的情况下,能够反映出原始数据的真实信息。
在融合过程中要注意去除噪声和图像畸变等因素,以保持数据的一致性。
二、遥感影像数据融合方法1.基于像素的融合方法:基于像素的融合方法是将不同波段或传感器的影像数据进行像素级别的融合。
常用的方法有像素互换法和加权平均法。
像素互换法是将一个波段或传感器的像素值替换到另一个波段或传感器的影像上,以增加信息的表达能力。
加权平均法是对不同波段或传感器的像素值进行加权平均,得到融合后的像素值。
2.基于特征的融合方法:基于特征的融合方法是针对不同波段或传感器的特征进行分析和融合。
常用的方法有主成分分析法和小波变换法。
主成分分析法是通过对不同波段或传感器的影像数据进行主成分分析,提取出影像数据中的主要特征,然后将主成分进行融合。
小波变换法是利用小波变换来分析和提取不同波段或传感器的影像数据中的特征,然后通过小波系数的线性组合对影像数据进行融合。
多源遥感数据融合理论与方法

多源遥感数据融合理论与方法多源遥感数据融合的理论基础主要包括数据融合的目标、原则和评价指标。
数据融合的目标是通过结合不同传感器的数据,减少误差并提高地物信息的提取能力。
融合原则包括互补性、一致性和一致性。
互补性要求不同传感器具有不同的观测特性和空间分辨率,以获取更全面的地物信息。
一致性要求融合后的数据在相同地理位置上具有一致的空间特征。
一致性要求融合后的数据与现实地物之间具有一致的关系。
评价指标主要包括融合效果、信息提取能力和数据一致性。
目前,常用的多源遥感数据融合方法主要包括无监督融合、监督融合和模型融合。
无监督融合方法主要基于统计学原理,如主成分分析(PCA)、独立成分分析(ICA)和小波变换。
这些方法不需要先验知识,对不同传感器数据的差异进行压缩和去除冗余信息。
监督融合方法基于先验信息,利用统计模型和机器学习算法,将不同传感器的数据进行匹配和组合。
常用的监督融合方法包括像元级融合(pixel-level fusion)和特征级融合(feature-level fusion)。
模型融合方法是在无监督或监督融合的基础上,建立数学模型,通过优化算法融合不同传感器的数据。
常用的模型融合方法包括卷积神经网络(CNN)和支持向量机(SVM)。
这些方法能够充分利用不同传感器的信息,提高地物分类和监测的精度。
在多源遥感数据融合中,还需要考虑传感器的定标和辐射校正、数据精度和精度、数据配准和匹配等问题。
定标和辐射校正是保证融合数据准确性的重要步骤,它们可以消除不同传感器之间的系统误差和辐射差异。
数据精度和精度是评估融合结果的关键指标,它们可以通过与地面实测数据进行验证和比较来评估。
数据配准和匹配是将不同传感器的数据统一到相同的坐标系统和空间分辨率上的重要步骤。
综上所述,多源遥感数据融合是一种有效获取地物信息的方法。
它的理论基础和常用方法为多源遥感数据融合提供了理论指导和实践方法。
然而,多源遥感数据融合仍面临着不同传感器数据格式和坐标不一致等问题,未来的研究方向应致力于提高数据融合的准确性和效率。
遥感数据融合

特征级融合是在提取 图像的特征后进行融 合,其主要是为了提 高图像的分类精度和 特征提取的自动化程 度。常用的特征级融 合方法有:基于PCA 的特征融合法、基于 ICA的特征融合法等
遥感数据融合的方法和技术
决策级融合
决策级融合是在分类或模式识别 之后进行融合,其主要目的是提 高分类或模式识别的精度和可靠 性。常用的决策级融合方法有: 基于贝叶斯定理的决策级融合法 、基于D-S证据理论的决策级融 合法等
20XX
遥感数据融合
-
遥感数据融合
PART 1
遥感数据融合的基本概念
1
遥感数据融合的基本概念
1 遥感数据融合是一种多层次的处理过程,它 将不同来源、不同类型、不同时间分辨率的 遥感数据进行综合处理,以提取更多有用的 信息,提高遥感图像的空间分辨率、时间分 辨率、光谱分辨率和辐射分辨率
2 遥感数据融合可以分为像素级融合、特征级 融合和决策级融合三种类型
数据支持
常用的遥感数据融合方法有 像素级融合、特征级融合和 决策级融合三种类型,每一 种类型都有其特定的应用场
景和优势
未来,随着遥感技术的不断 发展,遥感数据融合技术也 将不断改进和完善,为更多 的领域提供更优质的服务
-
致谢词
感谢XXX提供的学习与实践的机会 感谢团队,特别感谢XXX给予的耐心指导
5
PART 2
遥感数据融合的方法和技术
2
遥感数据融合的方法和技术
像素级融合
像素级融合是直接在 原始图像上进行融合 ,其主要目的是改善 图像的空间分辨率和 光谱分辨率。常用的 像素级融合方法有: 拉普拉斯金字塔融合 法、多波段融合法、 主成分分析法(PCA) 、独立成分分析法 (ICA)等
实验五-遥感图像的融合

实验五-遥感图像的融合实验五遥感图像的融合一、实验目的和要求1.理解遥感图像的融合处理方法和原理;2.掌握遥感图像的融合处理,即分辨率融合处理。
二、设备与数据设备:影像处理系统软件数据:TM SPOT 数据三、实验内容多光谱数据与高分辨率全色数据的融合。
分辨率融合是遥感信息复合的一个主要方法,它使得融合后的遥感图象既具有较好的空间分辨率,又具有多光谱特征,从而达到增强图象质量的目的。
注意:在调出了分辨率融合对话框后,关键是选择融合方法,定义重采样的方法。
四、方法与步骤融合方法有很多,典型的有 HSV、Brovey、PC、CN、SFIM、Gram-Schmidt 等。
ENVI 里除了 SFIM 以外,上面列举的都有。
HSV 可进行 RGB 图像到 HSV 色度空间的变换,用高分辨率的图像代替颜色亮度值波段,自动用最近邻、双线性或三次卷积技术将色度和饱和度重采样到高分辨率像元尺寸,然后再将图像变换回 RGB 色度空间。
输出的 RGB 图像的像元将与高分辨率数据的像元大小相同。
打开ENVI,在主菜单中打开数据文件LC81200362016120LGN00_MTL选择File>data manage,任意选择3个波段组合,查看效果打开分辨率为30和15的图像下图分别是分辨率为30、15的,可以看到图像清晰度明显发生改变,分辨率越高,图像越清晰选择如下图所示的三个波段选择分辨率高的为15的点击ok,Sensor选择landsat8_oil,Resampling选择三次方的Cubic Convolution,实现融合,选择输出路径为sssrong融合之后的图像如下图,可以发现图像清晰度提高,分辨率变高,图像质量变好五、实验心得多光谱数据与高分辨率全色数据的融合可以使遥感图象既具有较好的空间分辨率,又具有多光谱特征,继而达到增强图象质量的目的,可谓是一举两得。
这次实验虽然比较简单,但是一开始的时候还比较模模糊糊,甚至于连目的都不清楚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
顾晓鹤 2003.10.17
一. 数据融合基本涵义
• 数据融合(data fusion)最早被应用于军事 领域。
• 现在数据融合的主要应用领域有:多源影 像复合、机器人和智能仪器系统、战场和无人 驾驶飞机、图像分析与理解、目标检测与跟踪、 自动目标识别等等。
• 在遥感中,数据融合属于一种属性融合, 它是将同一地区的多源遥感影像数据加以智能 化合成,产生比单一信息源更精确、更完全、 更可靠的估计和判断。
• 2.7 贝叶斯(Bayes)估计 • 2.8 D-S推理法(Dempster-Shafter) • 2.9 人工神经网络(ANN) • 2.10 专家系统
遥感数据融合存在问题及发展趋势
•
遥感影像数据融合还是一门很不成熟的技术,有待于
进一步解决的关键问题有:
• (1)空间配准模型
• (2)建立统一的数学融合模型
性,以达到去除冗余的目的。对于融合后的新图像来说
各波段的信息所作出的贡献能最大限度地表现出来。
•
PCT的优点是能够分离信息,减少相关,从而突出不
同的地物目标。另外,它对辐射差异具有自动校正的功
能,因此无须再做相对辐射校正处理。
• 2.4 K-T变换
•
即Kauth-Thomas变换,简称K-T变换,又形象地成
• 影像的空间配准时遥感影像数据融合的前提
• 空间配准一般可分为以下步骤 :
• (1)特征选择:在欲配准的两幅影像上,选择如边界、线 状物交叉点、区域轮廓线等明显的特征。
• (2)特征匹配:采用一定配准算法,找处两幅影像上对应 的明显地物点,作为控制点。
• (3)空间变化:根据控制点,建立影像间的映射关系。
环境的融合属性说明。
•
决策级融合的优点时具有很强的容错性,很好的开
放性,处理时间短、数据要求低、分析能力强。而由于
对预处理及特征提取有较高要求,所以决策级融合的代
价较高。
•
决策级融合的流程:经过预处理的遥感影像数据—
—特征提取——属性说明——属性融合——融合属性说
明。
表1 三级融合层次的特点
融合 框架
• 实质: 在统一地理坐标系中将对同一目标检测 的多幅遥感图像数据采用一定的算法,生成一幅 新的、更能有效表示该目标的图像信息。
• 目的:将单一传感器的多波段信息或不同类别传 感器所提供的信息加以综合,消除多传感器信息 之间可能存在的冗余和矛盾,加以互补,改善遥 感信息提取的及时性和可靠性,提高数据的使用 效率。
• 2. 分析数据限制。为了便于像元比较,对传感器信息的配 准精度要求很高,而且要求影像来源于一组同质传感器或 同单位的。
• 3.分析能力差。不能实现对影像的有效理解和分析
• 4.纠错要求。由于底层传感器信息存在的不确定性、不完 全性或不稳定性,所以对融合过程中的纠错能力有较高要 求。
• 5.抗干扰性差。
二、数据融合原理及过程
• 一般来说,遥感影像的数据融合分为预处理和数 据融合两步
• 1.预处理:主要包括遥感影像的几何纠正、大气订正、
辐射校正及空间配准 • (1)几何纠正、大气订正及辐射校正的目的主要在于去
处透视收缩、叠掩、阴影等地形因素以及卫星扰动、天 气变化、大气散射等随机因素对成像结果一致性的影响; • (2)影像空间配准的目的在于消除由不同传感器得到的 影像在拍摄角度、时相及分辨率等方面的差异。
• 2.2 图像回归法(Image Regression)
•
图像回归法是首先假定影像的像元值是另一影像的
一个线性函数,通过最小二乘法来进行回归,然后再用
回归方程计算出的预测值来减去影像的原始像元值,从
而获得二影像的回归残差图像。经过回归处理后的遥感
数据在一定程度上类似于进行了相对辐射校正,因而能
减弱多时相影像中由于大气条件和太阳高度角的不同所 带来的影响。
•
像元级融合所包含的具体融合方法有:代数法、IHS
变换、小波变换、主成分变换(PCT)、K-T变换等
• 1.2 特征级融合
•
特征级融合是一种中等水平的融合。在这一级别中,
先是将各遥感影像数据进行特征提取,提取的特征信息应
是原始信息的充分表示量或充分统计量,然后按特征信息
对多源数据进行分类、聚集和综合,产生特征矢量,而后
为“缨帽变换”[14]。它是线性变换的一种,它能使座
标空间发生旋转,但旋转后的坐标轴不是指向主成分
的方向,而是指向另外的方向,这些方向与地面景物
有密切的关系,特别是与植物生长过程和土壤有关。
以此,这种变换着眼于农作物生长过程而区别于其他
植被覆盖,力争抓住地面景物在多光谱空间的特征。
通过这种变换,既可以实现信息压缩,又可以帮助解
决策(decision)级的融合。融合的水平依次从低到高。
• 1.1 像元级融合
•
像元级融合是一种低水平的融合。
•
像元级融合的流程为:经过预处理的遥感影像数
据——数据融合——特征提取——融合属性说明。
• 优点:保留了尽可能多的信息,具有最高精度。
• 局限性:
• 1. 效率低下。由于处理的传感器数据量大,所以处理时间 较长,实时性差。
神经网络法
可靠性理论
回归模型法 Kalman滤波法
加权平均法
Dempatershafer推理法
基于知识的融 合法
Dempatershafer推理法
• 2 数据融合方法介绍来自• 2.1 代数法•
代数法包括加权融合、单变量图像差值法、图像比
值法等。
• (1)加权融合法
• (2)单变量图象差值法
• (3)图象比值法
• (4)插值:根据映射关系,对非参考影像进行重采样,获 得同参考影像配准的影像。
•
空间配准的精度一般要求在1~2个像元内。空间配准中
最关键、最困难的一步就是通过特征匹配寻找对应的明显地
物点作为控制点。
• 2.数据融合
•
根据融合目的和融合层次智能地选择合适的融合算
法,将空间配准的遥感影像数据(或提取的图像特征或
模式识别的属性说明)进行有机合成,得到目标的更准
确表示或估计 。
•
对于各种算法所获得的融合遥感信息,有时还需要
做进一步的处理,如“匹配处理”和“类型变换”等,
以便得到目标的更准确表示或估计。
三、数据融合分类及方法
• 1 数据融合方法分类
•
遥感影像的数据融合方法分为三类:基于像元
(pixel)级的融合、基于特征(feature)级的融合、基于
H,饱和度S,它们分别对应3个波段的平均辐射强度、3
个波段的数据向量和的方向及3个波段等量数据的大小。
RGB颜色空间和IHS色度空间有着精确的转换关系。
•
以TM和SAR为例,变换思路是把TM图像的3个波段合
成的RGB假彩色图像变换到IHS色度空间,然后用SAR图像 代替其中的I值,再变换到RGB颜色空间,形成新的影像。
•
相对于单源遥感影象数据,多源遥感影象数据所提
供的信息具有以下特点:
• 1.冗余性:表示多源遥感影像数据对环境或目标的表 示、描述或解译结果相同;
• 2.互补性:指信息来自不同的自由度且相互独立
• 3.合作性:不同传感器在观测和处理信息时对其它信 息有依赖关系;
• 4.信息分层的结构特性:数据融合所处理的多源遥感 信息可以在不同的信息层次上出现,这些信息抽象层次 包括像素层、特征层和决策层,分层结构和并行处理机 制还可保证系统的实时性。
采用一些基于特征级融合方法融合这些特征矢量,作出基
于融合特征矢量的属性说明。
•
特征级融合的流程为:经过预处理的遥感影像数据—
—特征提取——特征级融合——(融合)属性说明。
• 1.3 决策级融合
•
决策级融合是最高水平的融合。融合的结果为指挥、
控制、决策提供了依据。在这一级别中,首先对每一数
据进行属性说明,然后对其结果加以融合,得到目标或
• (3)提高数据预处理过程的精度
• (4)提高精确度与可信度
•
随着计算机技术、通讯技术的发展,新的理论和方法
的不断出现,遥感影像数据融合技术将日趋成熟,从理论
研究转入到实际更广泛的应用,最终必将向智能化、实时
化方向发展,并同GIS结合,实现实时动态融合用于更新
和监测。
谢谢大家
像元 级
特征 级
决策 级
信息 损失
小
中
大
实时 性 差
中
优
精度 高 中 低
容错 性 差
中
优
抗干 扰力
差
中
优
工作 量 小
中
大
融合 水平
低
中
高
表2 三级融合层次下的融合方法
像元级
特征级
决策级
代数法
熵法
专家系统
IHS变换
表决法
神经网络
小波变换
聚类分析
Bayes估计
K-T变换
Bayes估计
模糊聚类法
主成分变换
细的时域和空域步长,可以聚焦到被处理图像的任何细
节,从而被誉为“数学显微镜”。
•
小波变换常用于雷达影像SAR与TM影像的融合。它
具有在提高影像空间分辨率的同时又保持色调和饱和度
不变的优越性。
• 2.6 IHS变换
•
3个波段合成的RGB颜色空间是一个对物体颜色属
性描述系统,而IHS色度空间提取出物体的亮度I,色度
译分析农业特征,因此有很大的实际应用意义。
•
目前对这个变换在多源遥感数据融合方面的研究
应用主要集中在MSS与TM两种遥感数据的应用分析方