遥感图像处理 图象融合操作

合集下载

遥感图像融合与融合技术指南

遥感图像融合与融合技术指南

遥感图像融合与融合技术指南遥感技术的快速发展使得我们能够获取到丰富的遥感图像数据。

但是,单一图像的信息有时并不能完全满足我们对地物的准确识别和分析的需求。

因此,遥感图像融合技术应运而生。

一、遥感图像融合的定义和意义遥感图像融合是指将多幅来自不同传感器、不同波段或不同时间的遥感图像进行相互结合,形成一幅或多幅具有更全面和高质量信息的综合图像的技术。

这种综合图像可以为我们提供更准确、更全面的地物分布和特征信息。

遥感图像融合的意义在于能够弥补不同类型遥感图像的不足,提高图像质量和信息量。

例如,在高分辨率图像融合中,我们可以将高空间分辨率的光学图像与高光谱信息丰富的遥感图像融合,以获得既有高分辨率又有丰富光谱特征的图像,从而提高地物分类和识别的准确性。

二、常用的遥感图像融合方法1. 基于变换的方法基于变换的方法是指通过对原始图像进行一定的变换,将其转换为其他域中的图像,再将转换后的图像进行融合。

常见的变换包括小波变换、主成分分析、非负矩阵分解等。

这些方法通过提取图像特征或压缩信息来辅助图像融合。

2. 基于像素级的方法基于像素级的方法是指直接对原始图像进行像素级别的操作,将多幅图像的对应像素进行一定的组合,得到融合后的图像。

常见的方法有加权平均、最大像元值、高斯金字塔等。

这些方法直接对图像进行操作,简单有效。

3. 基于特征级的方法基于特征级的方法是指通过提取原始图像的特征信息,再将特征进行组合,得到融合后的图像。

常见的方法有像元级特征、纹理特征、几何特征等。

这些方法通过挖掘图像的特征信息来提高融合效果。

三、遥感图像融合的应用领域1. 地貌勘测和地质灾害监测遥感图像融合可以提供高分辨率的地表地貌信息,帮助我们更准确地了解地形变化和地质灾害的发生。

通过融合多源遥感图像,可以获得更准确的地形模型和地质信息,为地质灾害的监测和预测提供支持。

2. 农业生产和环境监测融合多源遥感图像可以提供农作物的生长情况、土地利用状况和环境污染等信息。

遥感中图像融合的名词解释

遥感中图像融合的名词解释

遥感中图像融合的名词解释遥感中的图像融合是指将多个不同波段或不同分辨率的遥感图像进行整合和融合,以获得具有更高质量和更全面信息的图像。

图像融合是一种重要的处理方法,可以提高遥感图像的空间分辨率、光谱范围和信息内容。

在本文中,将解释遥感图像融合的概念、方法和应用。

一、遥感图像融合的概念遥感图像融合是指将来自不同传感器或同一传感器的不同波段、不同角度或不同时间的图像进行处理和整合,以获得一幅更具有丰富信息和高质量的图像。

通过图像融合,我们可以充分利用各个波段或传感器的优势,提高遥感图像的空间分辨率、光谱分辨率和几何精度。

二、遥感图像融合的方法1. 基于像素级的融合方法:像素级融合是最常见的图像融合方法之一,它将不同波段或传感器的像素进行组合来生成融合图像。

常用的像素级融合方法包括加权平均法、主成分分析法和小波变换法等。

加权平均法通过对不同波段的像素进行加权平均来生成融合图像;主成分分析法通过提取不同波段的主成分,再进行重构来生成融合图像;小波变换法则将不同波段的图像进行小波变换,再进行重构得到融合图像。

2. 基于特征级的融合方法:特征级融合方法是通过提取和融合不同波段或传感器的特征来生成融合图像。

常用的特征级融合方法包括主要成分分析法、基于像元间差异的方法和基于数字摄影测量的方法等。

主要成分分析法通过提取和保留不同波段图像的主要成分,再进行重构来生成融合图像;基于像元间差异的方法则通过计算不同波段像元间的差异来决定融合结果;基于数字摄影测量的方法则利用几何建模对不同传感器的图像进行三维匹配和重构,产生高质量的融合图像。

三、遥感图像融合的应用1. 地表覆盖分类:遥感图像融合能够提高遥感图像的空间分辨率和光谱范围,从而提供更全面和准确的地表覆盖分类结果。

例如,在农业领域,通过多光谱和高分辨率图像的融合,可以实现对农作物的种植、斑块的划分和生长状态的监测。

2. 地表变化检测:遥感图像融合可以提供多时相的地表图像,从而实现对地表变化的监测和检测。

遥感图像融合实验报告

遥感图像融合实验报告

遥感图像融合实验报告遥感图像融合实验报告一、引言遥感图像融合是指将多个不同传感器获得的遥感图像融合为一幅综合图像的过程。

通过融合不同传感器获取的图像,可以获得更全面、更准确的地物信息。

本实验旨在探究遥感图像融合的原理和方法,并通过实验验证其效果。

二、实验目的1. 了解遥感图像融合的原理和意义;2. 掌握常用的遥感图像融合方法;3. 进行实验验证,比较不同融合方法的效果。

三、实验步骤1. 数据准备:选择两个不同传感器获取的遥感图像,如光学图像和雷达图像;2. 图像预处理:对两幅图像进行预处理,包括辐射校正、几何校正等;3. 图像配准:通过图像配准算法将两幅图像对齐,使其具有相同的空间参考系;4. 图像融合:选择合适的融合方法,如基于像素级的融合方法或基于特征级的融合方法,对两幅图像进行融合;5. 结果评价:通过定量和定性的评价指标,对融合结果进行评估。

四、实验结果与分析经过实验,我们得到了融合后的遥感图像。

通过对比融合前后的图像,可以发现融合后的图像在空间分辨率和光谱信息上都有所提高。

融合后的图像能够更清晰地显示地物的边缘和细节,且具有更丰富的颜色信息。

在融合方法的选择上,我们尝试了基于像素级的融合方法和基于特征级的融合方法。

基于像素级的融合方法将两幅图像的像素直接进行融合,得到的结果更加保真,但可能会导致信息的混淆。

而基于特征级的融合方法则通过提取图像的特征信息,再进行融合,可以更好地保留地物的特征,但可能会引入一定的误差。

通过对比不同融合方法的结果,我们可以发现不同方法在不同场景下的效果差异。

在某些场景下,基于像素级的融合方法可能会产生较好的效果,而在其他场景下,基于特征级的融合方法可能更适用。

因此,在实际应用中,需要根据具体场景和需求选择合适的融合方法。

五、实验总结通过本次实验,我们深入了解了遥感图像融合的原理和方法,并进行了实验验证。

遥感图像融合可以提高图像的空间分辨率和光谱信息,使得地物信息更全面、更准确。

遥感图像处理中的图像融合方法与精度评价

遥感图像处理中的图像融合方法与精度评价

遥感图像处理中的图像融合方法与精度评价遥感图像处理是一门研究如何获取、处理和应用遥感图像信息的学科。

遥感图像融合是其中的一个重要研究方向,它旨在通过将多个遥感图像融合为一个具有更高空间、光谱分辨率和更丰富信息量的图像,来提高遥感图像的解译和应用能力。

本文将探讨遥感图像融合的方法和精度评价。

一、遥感图像融合方法1. 传统融合方法传统的遥感图像融合方法主要包括像素级融合和特征级融合。

像素级融合是指将不同分辨率的遥感图像通过插值方法将其像素一一对应,然后对对应像素进行加权平均得到融合图像。

常用的插值方法有最邻近插值、双线性插值等。

这种方法简单易实现,但无法利用各个波段之间的相关性。

特征级融合是指通过提取多个图像的不同特征,然后将这些特征融合到同一个图像中。

常见的特征包括边缘信息、纹理信息、频谱信息等。

特征级融合方法可以更好地保留各个图像的特征,但对特征的提取和融合过程较为复杂。

2. 基于变换的融合方法基于变换的融合方法是指通过对多个遥感图像进行变换操作,然后将变换后的图像进行融合。

常见的变换包括小波变换、主成分分析、时频分析等。

小波变换是一种时频分析方法,可以将图像分解为不同频率和方向的小波系数。

通过对小波系数进行加权平均,可以实现遥感图像的融合。

小波变换融合方法能够提取图像的局部特征,能更好地保留图像的细节信息。

主成分分析是一种基于统计的方法,通过分析遥感图像的协方差矩阵,提取出图像的主要成分。

然后将这些主成分按照一定的权重进行线性组合,得到融合图像。

主成分分析融合方法可以更好地提取遥感图像的空间信息,对图像的纹理特征具有较好的保留效果。

以上只是其中的两种常见的基于变换的融合方法,实际上还有很多其他的方法,如独立分量分析、稀疏表示等。

二、图像融合精度评价图像融合精度评价是指对融合图像质量进行定量评估的方法。

常用的融合图像质量评价指标有以下几种:1.谱信息准确度谱信息准确度评价主要针对于融合图像的光谱特征,常用的指标有谱变异性、谱角等。

遥感图像融合的技术方法介绍

遥感图像融合的技术方法介绍

遥感图像融合的技术方法介绍遥感图像融合是指将来自不同传感器、分辨率和波段的遥感图像进行整合,以获取更全面和准确的地理信息。

在各个领域,遥感图像融合技术都发挥着重要的作用。

本文将介绍遥感图像融合的几种常见技术方法,并探讨它们的应用领域和优势。

1. 基于变化检测的融合方法基于变化检测的融合方法是一种常见的遥感图像融合技术。

它通过对多时相的遥感图像进行比较,识别出地物的变化信息,然后根据变化信息对图像进行融合。

这种方法在土地利用/覆盖变化监测、城市扩张分析等领域具有广泛的应用。

以土地利用/覆盖变化监测为例,该方法可以将不同时间点的遥感图像融合,获得地表的变化信息。

通过对变化信息的分析,可以揭示不同地区的土地利用/覆盖变化趋势,为城市规划和土地资源管理提供有力支持。

2. 基于分辨率的融合方法基于分辨率的融合方法是将高分辨率的遥感图像与低分辨率的遥感图像进行融合,以获取高分辨率和丰富信息的融合图像。

这种方法常用于地物识别、目标检测等领域。

地物识别是遥感图像处理中的重要任务之一。

基于分辨率的融合方法可以将高分辨率图像的细节信息与低分辨率图像的全局信息相结合,从而提高地物的识别性能。

例如,在城市建筑物提取中,通过融合高分辨率的影像与低分辨率的地物分类图,可以更准确地提取出建筑物边界和形状。

3. 基于波段的融合方法基于波段的融合方法是将不同波段的遥感图像进行融合,以提取更丰富的地物信息。

这种方法常用于植被监测、环境评估等领域。

植被监测是农业和生态环境领域的重要任务之一。

基于波段的融合方法可以将各个波段的遥感图像进行线性组合,融合出具有更丰富信息的遥感图像。

通过分析融合图像的各个波段,可以获取植被的生长状态、叶片含量和叶绿素含量等关键指标,为农作物生长监测和环境评估提供重要依据。

总结:遥感图像融合是一种重要的遥感数据处理技术,可以提高遥感图像的空间、光谱和时间分辨率,进而提供更准确、全面的地理信息。

本文介绍了基于变化检测、分辨率和波段的融合方法,并探讨了它们在不同领域的应用。

遥感图像融合实验报告

遥感图像融合实验报告

遥感图像融合实验报告遥感图像融合实验报告一、引言遥感技术在现代科学研究和应用中发挥着重要的作用。

遥感图像融合是将多个遥感图像的信息融合为一个综合图像的过程,可以提供更全面、更准确的地理信息。

本实验旨在通过遥感图像融合技术,对不同分辨率的遥感图像进行融合,以获得更高质量的图像。

二、实验方法1. 数据收集我们使用了两个不同分辨率的遥感图像,一个是高分辨率的卫星图像,另一个是低分辨率的无人机图像。

这两个图像分别代表了不同的空间分辨率。

为了保证数据的准确性,我们选择了同一地区的图像进行比较。

2. 图像预处理在进行图像融合之前,需要对图像进行预处理,以提高融合效果。

我们首先对两个图像进行边缘增强处理,以增强图像的边缘信息。

然后,对图像进行直方图均衡化,使图像的灰度分布更均匀。

最后,对图像进行尺度匹配,以确保两个图像的尺度一致。

3. 图像融合算法本实验使用了一种基于小波变换的图像融合算法。

该算法通过将两个图像的低频部分和高频部分进行融合,得到一个综合图像。

具体步骤如下:a. 对两个图像进行小波变换,得到它们的低频部分和高频部分。

b. 对两个图像的低频部分进行加权平均,得到融合后的低频部分。

c. 对两个图像的高频部分进行加权平均,得到融合后的高频部分。

d. 将融合后的低频部分和高频部分进行逆小波变换,得到最终的融合图像。

4. 实验结果分析通过对融合后的图像进行视觉和定量分析,我们可以评估融合效果。

视觉分析可以通过观察图像的细节和边缘来判断融合效果的好坏。

定量分析可以通过计算图像的信息熵、互信息和均方误差等指标来评估融合效果。

三、实验结果与讨论经过实验,我们得到了融合后的图像。

通过对比原始图像和融合图像,我们可以看到融合后的图像在细节和边缘方面有明显的提升。

融合后的图像更清晰、更丰富,能够提供更多有用的地理信息。

在定量分析方面,我们计算了融合图像的信息熵、互信息和均方误差。

结果显示,融合图像的信息熵和互信息较高,均方误差较低,说明融合效果较好。

遥感影像处理一般操作流程

遥感影像处理一般操作流程

2.影像纠正

2.1 ArcMap纠正: 2.2 Erdas纠正:
3.影像镶嵌

影像镶嵌是将两幅或多幅影像拼在一起,构成一 幅整体影像的技术过程。 由于影像纠正过程中,控制点的误差、DEM的误 差、计算过程中重采样的误差等,造成了同一地 面特征在不同影像上有不同的地面测量坐标;同 时由于成像时太阳高度角及大气环境的不同以及 成像时间的差别,使相邻影像呈现出不同的辐射 特征,因此,影像镶嵌时除了要满足在拼接线上 相邻影像的细节在几何上一一对接外,用于背景 图制作时,还要求相邻影像的色调保持一致,但 用于变化信息提取时,相邻影像的色调不允许平 滑,避免信息变异。

1.影像融合-HIS变换(即HSV变换)


HIS变换的优点:运算简单、实现容易,较 好地保留了高分辨率影像的纹理细节和多 光谱影像的彩色关系。 HIS变换的缺点:限于三个波段参加,融合 后同色系层次较少,影响地物类型的判读。
1.影像融合-HIS变换(即HSV变换)

波段组合的目标是使组合后的图像更接近自然色。 SPOT5 的多光谱有4个波段,分别为绿、红、近红、 短波红外。对于SPOT数据,我们多采用213的波 段组合方式。一般在1波段加入3波段的计算,将 颜色组合尽量接近自然色。QB的多光谱也有4个 波段,依次为红、绿、蓝、近红外。多采用321的 组合方式,一般在2波段加入4波段的计算。ETM 的多光谱有7个波段,最接近自然色的组合为321 组合,但321组合融合后绿色消失,所以可以采用 两种处理方式。一是运用小波变换融合;二是用 743波段组合,然后进行融合。
1.影像融合

多源遥感数据融合的技术关键是:(1)充分认识 研究对象的地学规律;(2)充分考虑不同遥感数 据之间波谱信息的相关性而引起的有用信息的增 加和噪声误差的增加,对多源遥感数据作出合理 的选择;(3)解决遥感影像的几何畸变问题,使 各种影像在空间位置上能精确配准起来;(4)选 择适当的融合算法,最大限度地利用多种遥感数 据中的有用信息。只有对研究对象的地学规律、 遥感影像的几何物理特性、成像机理这三者有深 刻的认识,并把它们有机结合起来,信息融合才 能达到预期的效果。

3 遥感图像处理--数据融合、影像镶嵌

3 遥感图像处理--数据融合、影像镶嵌
3)在打开的ROI Tool中设置和绘制
ENVI中的图像剪裁—不规则剪裁
3)在打开的ROI Tool中设置和绘制
ENVI中的图像剪裁—不规则剪裁
4)可通过以下菜单进行剪裁
ENVI中的图像剪裁—不规则剪裁
4)也可通过以下菜单进行剪裁
ENVI中的图像剪裁—不规则剪裁
5)剪裁时参数设置和结果
ENVI中的图像镶嵌
也可以在图像窗口中,点击并按住鼠标左键,拖曳所选图像到所需的位置, 然后松开鼠标左键就可以放置该图像了。
如果镶嵌区域大小不合适,选择Option->Change Mosaic Size,重新设置镶 嵌区域大小。 4)其他步骤和有地理参考的图像镶嵌类似。
作业
1)手动HSV变换: 数据在“手动HSV变换”目录中,是SPOT(像
ENVI提供的融合方法---自动HSV变换
1)打开图像
注:有地理参考 SPOT:1071x1390 TM:467x533
实验数据---自动HSV变换目录 中的SPOT和TM数据
ENVI提供的融合方法---自动HSV变换
2)HSV变换
ENVI提供的融合方法---自动HSV变换
2)HSV变换
ENVI提供的融合方法---自动HSV变换
2)HSV变换
ENVI提供的融合方法---自动HSV变换
3)结果
ENVI提供的融合方法---手动HSV变换
1)将低空间分辨率的图像采样成与高空间分辨率图像的 大小相同。
Basic Tools-> Resize data
2)将调整过大小的图像从RGB转换成HSV颜色空间 Thansform->Color Thansforms->RGB to HSV
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图象融合
图象的分辨率融合是对不同空间分辨率遥感图象的融合处理,使处理后的遥感图象既具有较好的空间分辨率,又具有多光谱特性,从而达到图象增强的目的。

2原图,其中高分辨率的黑白图的分辨率是另一图的4倍
原图:
高分辨率黑白图
低分辨率彩色图
一由于两副原图太大,我们先各对相对应的部分进行截图,这里的操作是图象的规则分幅裁剪。

我选择的是两图左上角的部分
截取后处理的高分辨率黑白图
截取后处理的低分辨率彩色图
二再对处理过的截图进行图象几何校正
彩色图为需要校正的图象,黑白图作为地理参考的校正过SPOT图象
进行控制点的采集
得到校正后的彩色图象
三进行分辨率融合
确定高分辨率输入文件为黑白图
确定多光谱输入文件为校正后的彩色图定义输出文件
选择融合的方法和重采样的方法
不同的融合方法得出不同的融合结果图象
1主成分变换法(principle component),它是建立在图象统计特征上的多维线性变换,具有方差信息浓缩和数据压缩的作用,可以更准确地揭示多波段数据结构部的遥感信息,常常以高分辨率数据替代多波段数据变换以后的第一组成分来达到融合目的。

具体过程:(1)对输入的多波段遥感数据进行主成分变换;(2)以高空间分辨率遥感数据替代变换以后的第一组成分;(3)进行主成分逆变换,生成具有高空间分辨率的多波段融合图象。

(主成分变换融合法得到得融合图象)
2乘积方法(mutiplicative),它是应用最基本的乘积组合算法直接对两种空间分辨率的遥感数据,即把多波段图象中的任意一个波段值与高分辨遥感数据的乘积赋给融合以后的波段数值。

(乘积方法得到得融合图象)
3比值方法(brovey transform),是把多波段图象中的红、蓝、绿波段的数值占三波段和的比率与高分辨率遥感数据的乘积各赋给融合后波段图象的红、蓝、绿波段数值上。

(比值方法得到得融合图象)
四融合前后比较和不同融合法之间比较截图并放大各图同一部位方便观察
黑白高分辨率图
彩色低分辨率图
主成分变换法得到得融合图象
乘积方法得到得融合图象
比值方法得到得融合图象
评价:
主成分变换法的效果最差,乘积方法和比值方法效果相对较好;
颜色上主成分变换法都变浅色了很多;乘积方法的颜色基本与原彩色图颜色一致;比值方法在颜色上虽然不明显,但是仔细看对比起原彩色图,颜色深的地方变浅了,颜色浅的地方变深了,有一种颜色调和、中和的感觉。

相关文档
最新文档