遥感图像光谱增强处理实验报告材料

合集下载

遥感图像增强实验报告

遥感图像增强实验报告

遥感图像增强实验报告1. 实验目的和内容实验目的:(1)遥感图像的空间域增强:通过直接改变图像中的单个像元及相邻像元的灰度值来增强图像,是图像增强技术的基本组成部分,包括点运算和邻域运算。

(2)遥感图像的频率域增强:通过对频率域的调整对遥感图像进行平滑和锐化,平滑主要是保留图像的低频部分抑制高频部分,锐化则保留图像的高频部分而削弱低频部分。

(3)遥感图像的彩色增强:将黑白图像转换成彩色图像,使地物的差别易于分辨,突出图像的有用信息,从而提高对图像的解译和分析能力。

实验内容:(1)遥感图像的空间域增强:点运算—直方图均衡化、灰度拉伸、任意拉伸,邻域运算—图像平滑、图像锐化。

(2)遥感图像的频率域增强:定义FFT,反向FFT,再进行对比。

(3)遥感图像的彩色增强:多波段影像—彩色合成、单波段影像—伪彩色增强、色彩空间变换、遥感数据融合。

2. 图像处理方法和流程A.遥感图像的空间域增强1.直方图均衡化(1)在主窗口中打开can_tmr.img文件。

(2)以gray形式显示一个波段。

(3)Display窗口>enhance>equalization2.灰度拉伸(1)Display窗口>enhance>interactive stretching(2)弹出的对话框>stretch_type>linear(3)在STRETCH对应的两个文本框中输入需要拉伸的范围,然后单击对话框上的APPLY按钮,图像显示为线性拉伸后的效果。

3.任意拉伸(1)弹出的对话框>stretch_type>Arbitary,在output histogram中单击绘制直方图,右键结束(2)点击apply,结果如图所示4.图像平滑(1)均值平滑,在主窗口中打开can_tmr.img文件。

主窗口>enhance>filter>smooth[3*3]。

结果如图所示(2)中值平滑,在主窗口中打开can_tmr.img文件。

遥感图像处理实验报告

遥感图像处理实验报告

遥感图像处理实验报告《遥感图像处理实验报告》摘要:本实验利用遥感技术获取了一幅卫星图像,通过图像处理技术对图像进行了处理和分析。

实验结果表明,遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值。

引言:遥感图像处理是利用遥感技术获取的图像进行数字化处理和分析,以获取有用的地理信息和环境数据的过程。

本实验旨在通过对遥感图像的处理和分析,探讨遥感图像处理技术在实际应用中的作用和意义。

实验方法:1. 获取卫星图像:选择一幅特定区域的卫星图像作为实验对象,确保图像质量和分辨率满足处理要求。

2. 图像预处理:对原始图像进行预处理,包括去噪、增强、几何校正等操作,以提高图像质量和准确性。

3. 图像分析:利用遥感图像处理软件对图像进行分类、特征提取、变化检测等分析,获取地理信息和环境数据。

4. 结果展示:将处理后的图像结果进行展示和分析,对图像处理技术的应用效果进行评估。

实验结果:经过处理和分析,得到了一幅清晰的遥感图像,并从中提取了有用的地理信息和环境数据。

通过图像分类和特征提取,可以准确地识别出不同地物类型,如建筑物、植被、水体等;通过变化检测,可以发现地表的变化情况,如城市扩张、土地利用变化等。

这些信息对于地理信息系统、环境监测、城市规划等领域具有重要的应用价值。

结论:遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值,通过对遥感图像的处理和分析,可以获取丰富的地理信息和环境数据,为相关领域的决策和规划提供重要的支持。

在未来的研究中,可以进一步探讨遥感图像处理技术的改进和应用,以满足不同领域的需求。

遥感图像光谱增强处理实验报告材料

遥感图像光谱增强处理实验报告材料

一、实验名称遥感图像光谱增强处理二、实验目的对图像进行主成分分析、主成分变换以及主成分百分比计算;观察图像在不同色彩空间之间相互转换的结果异同,对图像进行融合,用MODEL MAKER 建模方式进行图像处理。

通过以上操作初步掌握图像光谱增强处理过程,进一步理解影像光谱增强中不同增强方法的原理及其增强效果的差异。

三、实验原理光谱增强是基于多光谱数据对波段进行变换达到图像增强处理,采用一系列技术去改善图象的视觉效果,或将图象转换成一种更适合于人或机器进行分析处理的形式。

有选择地突出某些对人或机器分析有意义的信息,抑制无用信息,提高图象的使用价值。

主成分分析(PCA)用多波段数据的一个线性变换,变换数据到一个新的坐标系统,以使数据的差异达到最大。

对于增强信息含量、隔离噪声、减少数据维数非常有用。

使用Color Transforms 工具可以将3-波段红、绿、蓝图像变换到一个特定的彩色空间,并且能从所选彩色空间变换回RGB。

两次变换之间,通过对比度拉伸,可以生成一个色彩增强的彩色合成图像。

图像融合是将多幅影像组合到单一合成影像的处理过程。

它一般使用高空间分辨率的全色影像或单一波段的雷达影像来增强多光谱影像的空间分辨率。

四、数据来源本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM第三波段影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:38.90407 中心经度:113.11840。

五、实验过程1.主成分分析1)打开并显示TM影像文件,从 ENVI 主菜单中,选择File → Open Image File选择影像,点击Load Band 在主窗口加载影像。

2)主菜单选择Transforms—>Principal Components—>Forward PC Rotation —>Compute New Statistics and Rotate。

遥感图像的多光谱增强实验报告

遥感图像的多光谱增强实验报告

→Principial Comp →Pincipal Components对话框,(图1.1.1)。

选择影像,忽略0值,期望输出主成分数量:7并勾选输出特征值和特征向量。

图1.1.1 主成份变换对话框选择保存路径,保存主成份变换之后的影像、后缀名为.mtx的特征向量和后缀名为.tbl的特征值。

图1.1.2 主成份变换前影像图1.1.2 主成份变换后影像②查看七个单波段主成份变换后的影像。

图1.2.1 第一波段影像图1.2.2 第二波段影像图1.2.3 第三波段影像图1.2.4 第四波段影像图1.2.5 第五波段影像图1.2.6 第六波段影像图1.2.7 第七波段影像2.①ERDAS 图标面板菜单条:Tools→Edit Txt Files,分别打开特征向量和特征值文件。

图1.2.1 主成份特征向量图1.2.2 主成份特征值②把特征值复制到ECXEL表格中计算百分比,可以看到第一主分量标准差分布最广,集中信息量最多,第二分量次之。

特征值百分比868.4795153 80.94410239149.9110022 13.972018140.51377151 3.7759680135.7131775 0.532480064.347115382 0.4051602213.125243136 0.2912791790.847535218 0.07899205合计:1072.93736 1003.主成份逆变换①进入ERDAS 图标面板菜单条:Image Interpreter→Spectral Enhancement →Principial Comp →Inverse Pincipal Components。

图2.3.1 主成份逆变换参数设置对话框②即可得到原影像。

二、缨帽变换①ERDAS 图标面板菜单条:Image Interpreter→Spectral Enhancement →Tasseled Cap →对话框(图2.1.1)图2.1.1 缨帽变换对话框②结果如图2.1.2图2.1.2 缨帽变换结果影像③查看单波段的前面三个波段,观察亮度、绿度和湿度的体现。

遥感图像频率域增强处理实验报告

遥感图像频率域增强处理实验报告

一、实验名称遥感图像频率域增强处理二、实验目的对图像数据采用各种图形增强算法,提高图像的目视效果,方便人工目视解译、图像分类中的样本选取等,方便以后的图像解译。

学会使用ENVI软件对遥感影像进行分析增强处理,初步掌握各种图像增强方法,并对其结果进行比较,观察增强效果。

三、实验原理FFT Filtering(Fast Fourier Transform Filtering 快速傅立叶变换滤波)可以将图像变换成为显示不同空间频率成分的合成输出图像。

正向的FFT 生成的图像能显示水平和垂直空间上的频率成分。

图像的平均亮度值显示在变换后图像的中心。

远离中心的像元代表图像中增加的空间频率成分。

这一滤波能被设计为消除特殊的频率成分,并能进行逆向变换。

四、数据来源本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM第三波段影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:38.90407 中心经度:113.11840。

五、实验过程1、正向FFT滤波加载影像,在ENVI主菜单栏中选择Filters →FFT Filtering →Forward FFT。

出现Forward FFT Input File对话框,选择要进行滤波的文件,点击ok。

在Forward FFT Parameters对话框中选择输出文件名及位置。

点击ok开始FFT计算。

2、图像平滑1)定义FFT滤波器在ENVI主菜单栏中选择Filters →FFT Filtering →Filter Definition。

将出现Filter Definition选择对话框。

Filter_Yype →Circular Pass。

定义相关参数。

选择输出路径,apply构建FFT滤波器。

2)反向FFT变换选择Filter →FFT Filtering →Inverse FFT,出现Inverse FFT Input File对话框。

遥感图像增强处理

遥感图像增强处理

实验编号:02四川师大实验报告2017年4月2日地理与资源资源学院2014级3班实验名称:遥感图像的增强处理姓名:羊少超成绩:学号:2014100339指导教师:林先成老师一.实验目的:1.通过上机操作,掌握图像增强与拉伸、图像去噪、复列变换,边缘提取及主成分变化等几种遥感图像增强处理的过程和方法,加深对遥感图像增强处理的理解。

2.提升实践与动手能力,提升自身专业素养。

二.实验内容:图像的增强与拉伸、去噪与边缘提取、复列变换和主成分变换。

三.实验数据及设备:遥感图像、实验设备电脑、EARDS IMAGINE8.5软件。

四.实验步骤:首先打开ERDAS IMAGINE8.51.影像的增强处理与直方图的均衡化:灰度反转:①在工具面板中选择Image Interpreter 下的Radiometric Enhancement(辐射增强),在选择Brightness Inversion(亮度反转)。

②输入图片(input file)Tm_1.img,定义输出文件名为0111.img,其余为默认值,点击OK,保存图片到指定位置。

(对比结果图如图1)直方图的均衡化:①在工具面板中打开Viewer#1,打开图片Viewer#1。

②在Viewer#1下选择Raster 中的contrast (对比),在选择HistogramEqualize(直方图均衡化)。

打开Viewer#2,打开图片Viewer#1,进行图片对比。

(对比图如图2)③接着之前Viewer#1中完成的图像,选择Raster 中的contrast (对比),在选择Breakpoint Editor For lannir.img(断点编辑图像,如图3)从而对图像选择进行拉伸变换。

2.图像去噪与边缘提取:去除Noise:①打开画图软件,用画笔在图纸上点一些黑点作为噪声原件,保存文件到指定为主,定义文件名为noise.tif,格式为.tif②采用中值滤波器,在控制面板中选择Image Interpreter 中的SpatialEnhancement(光间增强),再选择Focal Analysis(聚焦分析),输入图片(input file)noise.tif,定义输出文件名为noise-1.img,在Function 中图1(灰度反转)图2(直方图均衡化)图3(拉伸变换)选择Median,其余为默认值,点击OK,完成去噪。

遥感图像的增强处理

遥感图像的增强处理
实验三、遥感图像的增强处理
目的:通过上机操作,掌握彩色变换增强,空间域增强,频率域增强,多光谱变换增强等几种遥感图像增强处理的过程和方法,加深对遥感图像增强处理的理解。
实验内容:彩色合成;对比度变换增强;空间滤波增强;频率域增强;图像运算;主成分变换。
一、彩色合成
根据加色法彩色合成原理,选择遥感图像的三个波段,分别赋予红、绿、蓝三种原色,然后将这三个波段叠加,构成彩色合成图像。
锐化:interpreter—spatical enhancement—convolution(索伯尔)以T1为例。 New为自己新定义一个模板,在Xsize与Ysize中定义,以默认的3为例,在窗口中的行列中输入T1(突出线状地物,为水平方向线性地物)点file中的librarian中的name中命名“suoboer”点save后close,发现自定义的suoboer已出现 在convolution窗口中的kernel下,点击suoboer,再在output file中命名。
(1)索伯尔梯度
1 2 1 -1 0 1
T1= 0 0 0 T2= -2 0 2
-1-2-1 -1 0 1
(2)拉普拉斯算法(有利于提取边缘信息)
0 1 0
T(m,n)=1-4 1(同时突出横、纵向,但边界是断断续续
标准假彩色合成:
TM2(绿波段)赋予蓝
TM3(红波段)赋予绿
TM4(近红外波段)赋予红;
步骤:配准--------合成
空间位置上配准(通过几何校正进行配准)
做一标准假彩色合成(选影像tm2、3、4)
首先将tm2、3、4打开看是否能直接合成(投影坐标是否一样,若不一样则需配准后才能合成)

遥感图像增强处理(免费)

遥感图像增强处理(免费)

(c) 偏 亮
(d) 亮度过于集中
感影像的三个波段,分别赋予红、绿、蓝三
种原色,然后将这三个波段叠加,构成彩色
合成图像。 • 步骤:配准 合成
二、空间域增强
在图像处理中,空间域指图像平面所在的二
维空间,描述图像的灰度分布。空间域增强, 就是应用某种数学模型,通过改变图像的灰度 成分,实现图像质量改善的图像处理方法。
方式:


对比度变换增强
Fourier/Analysis/ Fourier Transform,打开Fourier Transform对话框 ,确定要进行傅立叶变换的图像, 及变换后的傅立叶图名称。
(2)修改频率成分
在ERDAS图标面板菜单条单击Main/Image Interpreter命令,或在ERDAS图标面板工具条单击
从物理效果来看,傅立叶变换就是将图像从空 间域转换成频率域,其逆变换是将图像从频率域转 换到空间域。
2. 频域增强处理的方法
频域滤波增强 高通滤波
低通滤波
带阻滤波
带通滤波
高通滤波,采用“低阻滤波器”,抑制图像 频谱的低频信号而保留高频信号的一种模型。
效果:突出物体的边缘,锐化图像
立叶图像,及变换后的图像名称。
平滑
锐化
五、主成分变换
将图像所有波段的数据量集中到前几个波 段上,以实现数据压缩和图像增强。
以对TM1~5和TM7,6个波段数据的主成分变换为例
步骤:叠加TM的这6个波段,使之合成为一幅图像
主成分变换
合成
类似于彩色合成的操作。在ERDAS图标面
板菜单条单击Main/Image Interpreter命令,或 在ERDAS图标面板工具条单击图标 在Image Interpreter 下拉菜单中单击 Utilities/Layers Stack,打开Layer Selection and Stacking对话框 ,减TM1~5和TM7的6个波段 全部叠加。 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验名称
遥感图像光谱增强处理
二、实验目的
对图像进行主成分分析、主成分变换以及主成分百分比计算;观察图像在不同色彩空间之间相互转换的结果异同,对图像进行融合,用MODEL MAKER 建模方式进行图像处理。

通过以上操作初步掌握图像光谱增强处理过程,进一步理解影像光谱增强中不同增强方法的原理及其增强效果的差异。

三、实验原理
光谱增强是基于多光谱数据对波段进行变换达到图像增强处理,采用一系列技术去改善图象的视觉效果,或将图象转换成一种更适合于人或机器进行分析处理的形式。

有选择地突出某些对人或机器分析有意义的信息,抑制无用信息,提高图象的使用价值。

主成分分析(PCA)用多波段数据的一个线性变换,变换数据到一个新的坐标系统,以使数据的差异达到最大。

对于增强信息含量、隔离噪声、减少数据维数非常有用。

使用Color Transforms 工具可以将3-波段红、绿、蓝图像变换到一个特定的彩色空间,并且能从所选彩色空间变换回RGB。

两次变换之间,通过对比度拉伸,可以生成一个色彩增强的彩色合成图像。

图像融合是将多幅影像组合到单一合成影像的处理过程。

它一般使用高空间分辨率的全色影像或单一波段的雷达影像来增强多光谱影像的空间分辨率。

四、数据来源
本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM第三波段影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:38.90407 中心经度:113.11840。

五、实验过程
1.主成分分析
1)打开并显示TM影像文件,从 ENVI 主菜单中,选择File → Open Image File选择影像,点击Load Band 在主窗口加载影像。

2)主菜单选择Transforms—>Principal Components—>Forward PC Rotation —>Compute New Statistics and Rotate。

在弹出的Principal Components Input File 对话框中,选择图像。

3)在Forward PC Rotation Parameters对话框中在输入统计系数,选择计算矩阵(选择协方差矩阵),输出统计文件及路线,统计波段数等相关参数的设置,单击Ok。

4)出现PC Eigen Values窗口,查看个波段数据方差百分比。

5)主成分信息统计,主菜单中选择Basic Tools—>Statistics—>View Statistics File,打开主第二步中主成分分析统计文件,得到各波段基本信息。

2.主成分逆变换
1)从 ENVI 主菜单栏中,选择选择Transforms—Principal Components—Inverse PC Rotation。

在弹出的Principal Components Input File中选择变换影像。

并且输入上一步实验中的.sta统计文件。

2)在弹出的Inverse PC Pavameters中选择变换矩阵(与正向PC变换相同即协方差矩阵),选择输出路径,输出文件类型,点击ok完成逆变换。

3.色彩空间变换
1)RGB TO HSV (使用RGB to HSV 选项可以将一幅RGB 图像变换到HSV(色度、饱和度、颜色亮度值)彩色空间。

)
选择Transforms--Color Transforms--RGB to HSV 在出现的RGB to HSV Input 对话框时,从一个显示的彩色图像或可用波段列表中选择三个波段进行变换。

选择输出到“File”或“Memory”。

点击“OK”开始处理。

2)RGB TO HLS (使用RGB to HLS 选项可以将RGB 图像变换到HLS(色度,亮度,饱和度)彩色空间)
选择Transforms--Color Transforms--RGB to HLS 在出现的RGB to HLS Input 对话框时,从一个显示的彩色图像或可用波段列表中选择三个波段进行变换。

选择输出到“File”或“Memory”。

点击“OK”开始处理。

3)RGB TO U SGSMunsell HSV (使用USGS Munsell RGB to HSV 选项可以将RGB 图像变换到USGS Munsell HSV 彩色空间。


选择Transforms--Color Transforms--RGB to HLS 在出现的RGB to HLS Input 对话框时,从一个显示的彩色图像或可用波段列表中选择三个波段进行变换。

选择输出到“File”或“Memory”。

点击“OK”开始处理。

4)其他彩色空间到RGB的变换
同理,选择Transforms > Color Transforms > # to RGB。

可完成与上述实验相反的结果即将一幅其他色彩空间的图像换回到RGB色彩空间。

4.图像融合
图像融合的方法有多种,本次实验报告只介绍对TM和SPOT数据进行HSV融合。

由于本次实验所用数据两幅影像大小相同,且含有坐标信息,故不需要改变影像大小及对影像进行配准。

1)分别加载要进行融合的两幅影像。

2)在 ENVI 的主菜单选择Transform → Image Sharpening → HSV。

3)在select Iput RGB中选择TM影像窗口。

4)在弹出的High Resolution Input File 对话框中选择SPOT 影像,点击OK。

5)在HSV Sharpening Parameters 对话框中选择输出路径文件名及重采样方法,点ok。

6)显示结果,进行比较。

六、实验结果与分析
1、实验结果如图:
1)PC正向变换即主成分分析结果
321波段图像显示及其波段信息统计
第7波段变换前后对比及波段信息统计。

2)色彩空间变换结果
RGB TO HSV如图:
RGB TO HLS如图
RGB TO U SGSMunsell HSV如图:
标准文档
3)图像融合结果及对比
2、结果分析
在主成分分析相关实验中,可以得到第一主成分包含最大的数据方差百分比,第二主成分包含第二大的方差,以此类推,最后的主成分波段由于包含很小的方差(大多数由原始波谱的噪声引起),因此显示为噪声。

由于数据的不相关,主成分波段可以生成更多种颜色的彩色合成图像。

在色彩空间变换实验中,通过使用Color Transforms 工具可以将3-波段红、绿、蓝图像变换到一个特定的彩色空间,得到相应的彩色增强后的图像,从而我们可根据不同的地物特征,研究对象等,选择不同的色彩空间及波段组合。

通过观察图像融合的实验结果,可发现经过图像融合后的影响,具有更高的分辨率,从而很好地弥补了高光谱影像低分辨率的缺点,方便对目标地物进行解译。

七、实验心得与体会
通过本次实验初步掌握了遥感图像光谱增强的部分内容,对于相应的理论知识有了进一步的理解,主成分分析中对于处理波段的选择需要注意,色彩变换部分如何根据研究目的的不同选择相应的色彩空间以及色彩空间的特点等要掌握,在图像融合中,本次只用到了HSV 中的自动变换,还有HSV手动融合方法,及其他的融合方法需在以后的学习中逐渐掌握。

实用文案。

相关文档
最新文档