4.电容式电压互感器绝缘介损测试方法研究详解
电容式电压互感器介损测试方法

测试仪器高压线接中压电容器尾N(N要悬空独立),测量线接上段,低压输出线接da,dn;低压输出电压为2Kv,可以测出C1和C2电容值,根据C=C1*C2/(C1+C2)算出总电容(串联后)
测量二节电容式电压互感器接线采用自激法:
1、最上节电容器测量
反接法:最上节电容器上段接地,测试仪器高压线接上节电容器下段,二次接线盒内打开下节电容器尾和中间变压器一次尾与地的连接片后将两点短接接高压线的屏蔽线,试验电压加2KV
2、最下节电容器测量
方法与测量一节电容器自激法一样
测量C电容
仪器高压线接下节套管顶部
CX线接二次接线盒N(二次接线盒N、XL和接地端子连接片打开,XL 悬空)
短接1a、1n
正接线方式加压10Kv
测试仪器高压线接中压电容器尾N(N要悬空独立),测量线接上段,低压输出线接da,dn;低压输出电压为2Kv,可以测出C1和C2电容值,根据C=C1*C2/(C1+C2)算出总电容(串联后)
1:单位换算1F=1000mf=1000uf=1000nf
2测量C电容
仪器高压线接下节套管顶部
CX线接二次接线盒N(二次接线盒N、XL和接地端子连接片打开,XL 悬空)
短接1a、1n
正接线方式加压10Kv。
电容式电压互感器电容和介损试验的研究

电容式电压互感器电容和介损试验的研究张连恺雷瀚宇国网福州供电公司350000摘要:随着我国社会经济水平的不断提高,人们的生活质量与物质基础都得到了很大的改善,对于国家电网的现代化建设与发展提出了更高的要求与标准。
近些年来,随着国内电网规模的不断壮大与发展,电容式的电压互感器得到了广泛的推广与应用。
作为一种继电保护与表计的一种电压互感器,电容式电压互感器不仅能够有效防止因电压互感器铁芯饱和引起的铁磁谐振,借助于载波频率耦合到输电线中,有效完成长途通信、远程测量、有选择性的进行线路高频保护以及遥控、电传打字等功能,与常规的电磁式电压互感器相比较在经济与安全等方面都具有良好的优越性。
文章针对电容式电压互感器电容与介损试验展开深入的研究。
关键词:电容式电压;互感器;电容;介损试验;探究与分析引言:社会新环境下,我国经济水平的不断稳定与发展有效推动了国内电网地迅速发展与壮大,电容式电压互感器能否在稳定、可靠的环境下安全运行是尤为重要的,对于平衡整个电力系统的运行状况发挥着极为重要的作用。
因此,想要实现电系系统的整体运行状况处于良好的状态,需要对电容式电压互感器电容与介损进行试验,通过分析、对比与探究,为相关的专业技术人员的检测人员提供一些建议与参考依据,为今后更好的测试电容与介损做好充分的准备工作。
一、不同连接、不同介质处于并联与串联状态下的电容量与介损在对电容式的电压互感器电容与介损进行试验研究时,需要在试验开始前充分的了解与分析相关的电压互感器实验规定与试验要求,对中间变压器与分压器电容量进行一一测量。
由于每一节的电容器的电容量与电磁单元两者之间在测量过程中并没有引出端子,形成了一种死连接[1]。
因此,想要做到对每一个部件的具体参数进行测量具有一定的难度。
接下来针对电容式互感器实验展开分析与研究。
当电容量与介损两层介质处于并联状态时,电容量与介质对于整个电网的运行影响程度各不相同。
但是,电容量较小的那一层介质对于整体的影响程度最小。
浅论电容式电压互感器的介损测量方法 黄浩光

浅论电容式电压互感器的介损测量方法黄浩光摘要:电力设备的预防性试验,对于评价设备的绝缘状况具有重要意义。
本文以电容式电压互感器为例,简要论述了电容式电压互感器预试中介质损耗因数测量的三种常见方法。
关键词:电容式电压互感器;预防性试验;介质损耗;试验方法一、电力系统中的电压互感器在电力系统中,常见的电压互感器根据结构不同可分为电磁式和电容式两种。
电磁式电压互感器具有测量线性好,精度高的优点,但由于电磁元件的作用,在运行中易引发谐振,威胁设备的安全。
因此,在110kV及以上电压等级的电力系统中,多采用电容式电压互感器,简称CVT,其具有体积小、防谐振、承受冲击电压能力强等优点,本文主要讨论该种电压互感器介损测量的方法。
二、电容式电压互感器介质损耗因数的常见测量方法通常CVT的一次部分主要由若干节电容串联组成,本文根据西林电桥原理,主要阐述CVT分压电容介损测量的三种主要方法。
(一)正接法当可通过简单的拆线,使试品有一端对地有可靠绝缘时,通常采用正接法。
桥体E端接地,在需要屏蔽的场合,E端也可用于屏蔽。
此时桥体处于地电位,R3和C4可安全调节。
1、实物接线图2、试验步骤:a.准备工作包括收集厂家数据,抄写铭牌包括电容量;b.打开CVT本体二次端子箱盖,短接所有二次绕组并接地;c.仪器高压芯线(通常为红色)一端接仪器的高压接口位置,另一端接被试电容的顶部位置(通常为运行中的高压端,即靠近母线或线路的一端);d.仪器Cx芯线(通常为黑色)一端接仪器的Cx接口位置,另一端接被试电容的另一端(通常为运行中的低压端);e.检查接线无误后,启动仪器,用10kV电压测量,即可得出被试电容的电容量和介损因数;f.将测得的电容量和介损因数与铭牌值或历史数据进行对比,确认变动范围是否超出规程。
(二)反接法在现场运行的电气设备的外壳通常是固定接地的,特别是一些大型设备,要拆除接地点有种种不便,采用正接法的测量是较不现实的。
电容式电压互感器介损测试方法分析

电容式电压互感器介损测试方法分析摘要:随着电容式电压互感器(CVT)在电力系统中的广泛应用,其检测手段也有多种。
本文主要结合实际介绍了电容式电压互感器的电容量及介损测试的方法及要点,根据不同的实际情况,采用不同的接线方法,通过分析各种方法的特点,结合实际测试,得出一些结论,为电容式电压互感器介损测试提供参考。
关键词:电容式电压互感器;介损;测试引言介质损耗是测量CVT绝缘好坏手段,CVT绝缘受潮,老化内部损伤都可以通过tanN值反应,测量同时可测出电容值并反应CVT内串联电容器组及连接部位是否牢固有无击穿,损坏及放电现象。
CVT分为单元式结构和整体式结构,其中整体式结构有整体封闭式和瓷套上引出分压电容抽头两种类型,本文将针对不同结构CVT介绍正接线,反接线和自激法,对测量结果做出分析。
电容式电压互感器CVT主要由电容部分和电磁部分组成,电容部分由主电容器组(C1)和分压电容器(C2)构成电容分压器,电容器之间会有分压抽头引出以方便介损测量。
电磁部分由中间变压器(T1),补偿电抗器(L),阻尼器(R0),保护间隙(P)组成。
工作时,一次电压通过CVT中的电容分压器将一次高压将低到一定水平通过后面的中间变压器处理转变为可供二次设备保护,测量,计量用的小电压,这种内部结构从一次侧看CVT呈容性可有效避免如串级式电压互感器(电磁式互感器一次呈感性)与电源侧开关断口电容结构形成谐振回路防止了谐振过电压出现。
电容分压器(C2)的低压端(N)与地之间可接入载波耦合器(J)它的阻抗值在工频(50Hz)时极小可视为短路,N端在不作载波通讯时必须接地。
为补偿电容分压器(C2)的容性阻抗串入补偿电抗器(L)使CVT在工频下回路中电感和分压电容的等效电容处于谐振中从而减小CVT回路自身的阻抗提高了测量精度和带负荷的能力。
中间变压器(T1)工作在磁化特性线性段输出低电压供给保护与测量设备其低压端(Xt)在设备运行时与接地端短接并禁止开路,阻尼器(R0)起抑制铁磁谐振保护设备绝缘作用它并联在二次绕组(da,dn)中,该绕组提供零序保护电压额定输出100V也称剩余电压绕组用作高压输电线路某相出现单相接地时给保护器零序电压报警。
电容式电压互感器试验内容及方法

电容式电压互感器试验内容及方法第一章绪论电压互感器作为一种电压变换装置(Transformer)是电力系统中不可或缺的设备,它跨接于高压与零线之间,将高电压转换成各种仪表的工作电压,(国标规定为100/√3和100V),电压互感器的主要用途有:1)用做商业计量用。
主要接于变电站的线路出口和入口上,常用于网与网、站与站之间的电量结算用,这种用途的互感器一般要求0.2级计量精度,互感器的输出容量一般不大;2)用做继电保护的电压信号源。
这种互感器广泛应用于电力系统的母线和线路上,它要求的精度一般为0.5级及3P级,输出容量一般较大;3)用做合闸或重合闸检同期、检无压信号用,它要求的精度一般为1.0、3.0级,输出容量也不大。
现代电力系统,电压互感器一般可做到四线圈式,这样,一台电压互感器可集上述三种用途于一身。
电容式电压互感器(Capacitor Voltage Transformers,简称“CVT”)是50年代开始研制生产,经过科技人员不懈的努力,我国的电容式电压互感器技术已达到国际先进水平,但在生产、试验研究、以及使用过程中存在很多问题。
本文拟从电容式电压互感器的各种试验基本原理入手,着重说明电容式电压互感器基本试验方法,检验的目的以及在现场使用、现场检验方面存在的问题怎样通过试验的手段来判断等问题,以使产品设计、试验、销售、服务和运行部门的专业人员对其有一个比较全面的了解。
第二章电容式电压互感器试验要求§1.基本试验条件1.1试验的环境条件为了保证试验的准确性、可靠性,所有试验应在一定条件下进行,试验时应注意试验环境条件并做好记录。
试验环境条件分为两种,一种为人工环境,这种情况下,一般在产品标准中都作了具体规定;另一种为自然环境条件,这种情况下,试验条件一般应遵循以下几条规律。
a) 环境温度,应在+5~+35 ℃范围内。
b) 试品温度与环境温度应无显著差异。
试品在不通电状态下在恒定的周围空气温度中放置了适当长的时间后,即认为与周围空气温度相同。
电容式电压互感器介质损耗及电容量测试方法分析

收稿日期:2016-08-02作者简介:杨 龙(1986-),男,甘肃定西人,本科,助理工程师,研究方向:高压电气试验。
文章编号:1009-3664(2016)06-0203-02 中图分类号:TM451 文献标识码:A运营探讨电容式电压互感器介质损耗及电容量测试方法分析杨 龙(国网四川省电力公司攀枝花供电公司,四川攀枝花617067) 摘要:文中论述了电容式电压互感器介质损耗(tgδ)和电容量测试常用方法,对各种测量方法的利弊作出分析和总结。
关键词:电容式电压互感器;分压电容器;自激法;tgδAnalysis of the Dielectric Loss of the Capacitor Voltage Transformerand Common Methods of Measuring CapacitanceYANG long(Panzhihua Power Supply Company of State Grid Sichuan Electric Power Company,Panzhihua 617067,China)Abstract:In this paper,the dielectric loss(tgδ)of the capacitor voltage transformer and common methods of measur-ing capacitance is analyzed,and the advantages and disadvantages of various measurement methods are analyzed and sum-marized.Key words:capacitive voltage transformer;voltage dividing capacitor;self excitation method;tgδ 由于电容式电压互感器(也称CVT)具有结构简单、防止铁磁谐振、兼做高频保护和载波通讯用、绝缘可靠等优点,在电力系统110 kV及以上电压等级中得到广泛应用。
电容式电压互感器介质损耗因数的测量与分析

电容式电压互感器介质损耗因数的测量与分析【摘要】本文介绍了测量介质损耗因数的意义,并基于电容式电压互感器介损试验进行了具体陈述,相应试验危险点及注意事项、故障原因等内容也进行了简单介绍和分析。
【关键词】电容式电压互感器;介质损耗因数;测量方法1.概述电容式电压互感器(Capacitor V oltage Transformers,简称CVT)作为一种电压变换装置应用于电力系统,主要用作供电侧量仪表、继电保护装置或者控制装置的电压信号取样设备,它接于高压设备与地之间,将系统电压转换成二次电压[1-3]。
电容式电压互感器由电容分压器、电磁单元(包括中间变压器和电抗器)和接线端子盒组成,实际操作对象为一220kV电容式电压互感器如图1所示。
图1 电容式电压互感器外观图及原理接线图通过电气试验,可以及时发现CVT的绝缘缺陷,对于确保电网和设备安全意义重大。
介质损耗因数的测量是CVT绝缘预防性试验中的重要项目之一,它是一项灵敏度很高的试验项目,能有效地检查设备绝缘受潮、油脂劣化以及严重的局部缺陷等。
例如,某台CVT正常tanδ值为0.5%,而当受潮后tanδ值为4.5%,两个数据相差9倍;而测量绝缘电阻,受潮前后的数值相差不大。
正是由于测量介质损耗因数对反映上述缺陷具有较高的敏感度,所以在CVT的交接和预防性试验中都得到了广泛的应用。
本文结合国网技术学院几个月的学习经历,介绍下CVT介质损耗因数的测量与分析。
2.测量介质损耗因数的意义电压作用下电介质中产生的一切损耗称为介质损耗或介质损失。
如果介质损耗很大,会使电介质温度升高,促使材料发生老化,如果介质温度不断上升,甚至会把电介质融化、烧焦,丧失绝缘能力,导致热击穿,因此,电介质损耗的大小是衡量绝缘介质电性能的一项重要指标。
然而不同设备由于运行电压、结构尺寸等不同,不能通过介质损耗的大小来衡量对比设备好坏。
因此引入了介质损耗因数tanδ(又称介质损失角正切值)的概念。
4.电容式电压互感器绝缘介损测试方法研究全解

电容式电压互感器绝缘介损测试方法研究四川广元电业局罗军川桂林电力电容器总厂宋守龙摘要:本文介绍了降低测试误差的一些实用经验和措施,提出了现场电容式电压互感器分压电容器绝缘介质损耗测试方法建议。
关键词:电容分压器介质损耗电磁单元测量方法1 引言随着电容式电压互感器(Capacitor V oltage Transformers,以下简称CVT)在电力系统的广泛运用,其现场试验问题越来越突出。
目前的CVT绝大多数为单柱式结构,分压器和电磁单元叠装为一个整体,现场试验时,不便将电容分压器与电磁单元分开,因此现场测试比较麻烦,容易引起测量误差,甚至不能进行正常测试。
DL/T 596-1996《电力设备预防性试验规程》修订说明中推荐采用电磁单元本身作为试验电源的自激法进行测量,但受电磁单元本身和测试方法的影响,测量结果不能反映设备绝缘的真实情况。
为有效监测CVT分压电容器的绝缘状况,CVT设备厂家在使用说明书中都提供了现场测试时的测试方法和判断标准,主要有正接法和自激法两种测量分析方法(也有单位为避免测量结果为负值,采用反接法测量CVT分压电容器整体总电容介损)。
各运行单位在测试方法上主要依据设备厂家提供的试验方法,但由于设备状况的改变和现场测试环境复杂多变等因素的影响,试验中出现的问题较多,在现场试验中对中压变压器一二次绕组端部的处理上问题尤为突出,不能正确分析处理各种异常现象,测试值忽高忽低。
由于CVT是大电容、小介损试品,对于膜纸复合绝缘结构,规程要求其tanδ不大于0.2%,如果测试方法不当产生偏大的测量误差,电容器tanδ很可能超过0.2%,出现设备误判和停电损失或者整体综合介损的测试结果为负值的情况,无法判定电容分压器的介损是否合格。
本文中笔者以现场试验为基础,通过对正接法、反接法和自激法试验测量值进行误差分析,表明现场测试值与真实值(CVT组装前分体试验测试值)之间的对应关系,更有利于客观、准确分析和评价设备的绝缘状况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容式电压互感器绝缘介损测试方法研究四川广元电业局罗军川桂林电力电容器总厂宋守龙摘要:本文介绍了降低测试误差的一些实用经验和措施,提出了现场电容式电压互感器分压电容器绝缘介质损耗测试方法建议。
关键词:电容分压器介质损耗电磁单元测量方法1 引言随着电容式电压互感器(Capacitor V oltage Transformers,以下简称CVT)在电力系统的广泛运用,其现场试验问题越来越突出。
目前的CVT绝大多数为单柱式结构,分压器和电磁单元叠装为一个整体,现场试验时,不便将电容分压器与电磁单元分开,因此现场测试比较麻烦,容易引起测量误差,甚至不能进行正常测试。
DL/T 596-1996《电力设备预防性试验规程》修订说明中推荐采用电磁单元本身作为试验电源的自激法进行测量,但受电磁单元本身和测试方法的影响,测量结果不能反映设备绝缘的真实情况。
为有效监测CVT分压电容器的绝缘状况,CVT设备厂家在使用说明书中都提供了现场测试时的测试方法和判断标准,主要有正接法和自激法两种测量分析方法(也有单位为避免测量结果为负值,采用反接法测量CVT分压电容器整体总电容介损)。
各运行单位在测试方法上主要依据设备厂家提供的试验方法,但由于设备状况的改变和现场测试环境复杂多变等因素的影响,试验中出现的问题较多,在现场试验中对中压变压器一二次绕组端部的处理上问题尤为突出,不能正确分析处理各种异常现象,测试值忽高忽低。
由于CVT是大电容、小介损试品,对于膜纸复合绝缘结构,规程要求其tanδ不大于0.2%,如果测试方法不当产生偏大的测量误差,电容器tanδ很可能超过0.2%,出现设备误判和停电损失或者整体综合介损的测试结果为负值的情况,无法判定电容分压器的介损是否合格。
本文中笔者以现场试验为基础,通过对正接法、反接法和自激法试验测量值进行误差分析,表明现场测试值与真实值(CVT组装前分体试验测试值)之间的对应关系,更有利于客观、准确分析和评价设备的绝缘状况。
针对现有试验方法存在的诸多问题进行分析和改进,提出具有指导意义的现场CVT电容分压器绝缘介损标准测试接线方法,对现场绝缘试验实施导则的修编和完善提供了重要的参考价值。
2 CVT 工作原理及主要结构CVT是利用电容分压器将一次电压降低为几千至两万伏的中间电压,中间电压经中压变压器变换为所需的二次电压并实现一二次回路间的电气隔离。
通过调整补偿电抗器的电感值使CVT回路的感抗与容抗1/ω(C +C)接近相等,从而大大减小了CVT的内阻抗,提高了CVT的带负载能力。
整套CVT由电容分压器和电磁装置两部分叠装而成。
电容分压器的中压端和低压端由最下部的一节电容器底板上的小套管引出,并分别与电磁单元内的中压变压器的高压端、出线板上的载波通讯端子N相连接。
电磁装置和下节分压电容器在产品出厂时已连接为一体,电磁装置中的绝缘油系统与分压电容器的绝缘油系统完全隔离。
二次出线端子及载波端子通过油箱侧壁的二次出线盒引出。
其电气原理图如图1所示。
图1 CVT电气原理图注:C—载波耦合电容C1—主电容C2—分压电容D—阻尼器P—保护装置N —载波通讯端子A′—中压电压端子T—中压变压器1a、1n—二次1#绕组接线端子2a、2n—二次2号绕组接线端子da、dn—剩余电压绕组接线端子U1N—额定一次电压L—补偿电抗器X—补偿电抗器低压端子J—带有避雷有关规程规定,CVT在交接及预防性试验中应测量电容分压器的介质损耗和电容值,现场采用的测量方法主要有自激法、正接法和反接法,而选择不同的测量方法将产生程度不同的测量误差。
下面就其各自的接线特点和影响因素进行试验分析。
3 正接法测量整体总电容介质损耗3.1 试验接线现场研究试验采用全自动数字电桥AI-6000进行,其试验接线原理图如图2所示。
此时箱壳接地、X端子和中压变压器二次绕组悬空,加压线接电容分压器上端,C X线接N端子。
C B为中压变压器一次绕组对铁心、外壳和二次绕组的等值电容,R B为其等值介质损耗电阻。
一次绕组一端施加电压仍有部分绕组参与等值电路,与C B相串联的电感L B,但实测表明,当X端子悬空时,中压变压器的高压端对地总阻抗呈容性,电流I3超前U2。
由图2c可知,测量结果偏小,在很多情况下介质损耗测量值为负值。
如果现场用倒相法进行测量时,由于I3的分流作用,往往出现两个负值。
这样的测量结果是无法进行计算和绝缘分析的,试验结果如表1所示。
表 1 分体直接法与正接法、反接法的测量数据对比说明:测量试品为TYD110/3-0.02H,试验仪器采用数字电桥AI6000.分体测量时,电容器下法兰接地;整体测量时,X端子悬空,油箱接地。
(a)试验接线图(b)等值原理图(c)相量图图 2 正接法测量整体总电容介损接线原理图3.2 试验电压的选择由于X 端子、N 端子的工频耐受电压值分别为3kV 和4kV ,因此测试时若X 端子或N 端子悬空,则X 端子或N 端子的对地电压应不超过相应的耐压值。
采用正接法测量整体总电容介损时,CVT 上部接加压线,N 端子接电桥测试线。
由于测试时X 端子必须悬空,因此测试时X 端子对地的电压应不超过其出厂3kV 的绝缘耐受水平。
对于35kV 电压等级的CVT ,中压为10kV ,电容分压器的分压比接近2,因此测试电压应不超过6kV ;对于110kV 及以上电压等级的 CVT ,电容分压器的分压比均大于3.3,因此施加10kV 测试电压是完全可以的。
3.3 负值分析正接法测量CVT 整体介损容易产生负值现象 ,主要是由于CVT 电磁单元的影响,原因分析如下 。
电磁单元中的中压变压器一次回路与地之间的等效阻抗Z B 连接在电压分压器的中压端,其等效电路如图3所示。
阻抗Z B 中电阻R B 是造成整体介损偏负的主要原因,R B 值越小,R B 介损越偏负。
电阻的影响量可用下式近似计算 :)(1tan 21C C R B +=∆ωδ 电阻R B 为中压变压器一次回路与地之间的有功损耗。
它由一次回路各部件对地泄漏电阻、X 端子对地泄漏电阻、中压变压器铁心损耗的等效电阻、补偿电抗器铁心损耗的等效电阻并联而成。
当一次回路对地之间的绝缘正常时,中压变压器铁心损耗的等效电阻对R B 的影响最大。
图3 电磁单元的等值电路由于中压变压器一次绕组的激磁电抗很大,流经对地分布电容及对地泄露电阻的电流会在一次绕组两端产生一定的压降,从而在铁心中产生损耗,电阻R B 值减小,δtan ∆相应增大,测试结果偏小,如果δtan ∆大于实际值,必然出现负损耗的测量结果。
3.4 改进正接法试验接线由以上分析可知,由于电磁单元的影响,现场采用正接测量CVT 整体综合介损时将产生偏小的测量误差,甚至出现负损耗的测量结果,因此CVT 电容分压器整体介损测量时应设法尽量减小电磁单元的影响。
现场比较常用的方法是将中压变压器二次绕组端接接地(X端子仍然悬空)后测试。
测量接线图及相量图如图4所示,等值电路图如图2b 所示。
因为短路二次绕组时,中压变压器激磁电抗与二次绕组的漏电抗并联,中压变压器一次回路的阻抗变得很小,流经对地分布电容及对地泄漏电阻的电流在一次绕组两端产生的压降也就很小,在铁心中产生损耗大大减小,电阻R B 值增大,δtan ∆减少,整体综合介损δtan ∆的测量误差相应减小,测试结果为正值。
在二次绕组短路后悬空与短路后接地两种接线方式下,其测量结果差别不大,如表1所示。
(a )接线图(b )相量图图 4 正接法短接二次绕组测量整体总电容介损接线原理图3.5 误差分析及有效性评析从表1测量数据可以看出,正接法测量分压电容器总电容介质损耗产生偏小的测量误差,压器二次绕组悬空时测量结果为负值,而短路悬空时的测量结果更接近真实值(工厂分体法测量值 )。
尽管采用短路二次绕组的改进接线方式进行测量可大大减小电磁单元对整体介损的影响,但由于测量时一次回路各部件对地泄漏电阻、X 端子对地泄漏电阻或大或小始终存在,补偿电抗器铁心损耗的等效电阻也不能有效消除,所以,短路二次绕组后测出 的整体介损仍比分体时测出的整体介损要小一些,如表1所示 。
至于偏小多少,取决于一次回路各部件、X 端子对地的绝缘状态及试品电容的大小。
有时在现场测试中,如果加上其它不确定影响因素,会放大测量结果偏小的程度,可能直接导致将有缺陷的设备判定为合格 。
由于CVT 下节电容器C 1和C 2相串联,如果高压电桥排除电磁单元的影响,正接法测量的电容器整体总介损应是C 1和C 2串联的介损值。
根据绝缘串并联的等值电路定性分析可知, 电容分压器整体总电容介损tan δ总是小于其中最大者,而大于其中最小者,因此宜分开测量,才能实现绝缘缺陷的定位查找。
假设主电容C 1、分压电容C 2的介质损耗分别为tan δ1、tan δ2,对于110kV 的CVT ,一 般有C C 42=,则此时测得的整体总介质损耗为:21212112tan 5/1tan 5/4)/()tan tan (tan δδδδδ+=++=C C C C由上式可知,此时较灵敏地反映了 C 1的绝缘状况,而对于运行中易于损坏的C 2,则反映不够灵敏。
当tanδ1≈0 时,必须满足tanδ2≥1% ,才能使C1和C2串联的总介质损耗tanδ≥0.2% (规程中规定的合格标准),即才有可能超过规程允许的标准。
由此可见,正接法测量整体综合介质损耗对发现分压电容C2绝缘缺陷,灵敏度很低,难以发现分压电容器早期绝缘缺陷,更无法判断绝艳缺陷的具体部位。
4 反接法测量整体总电容介质损耗4.1 试验接线为了避免现场正接法测量整体总电容介质损耗产生负值现象,有些单位选用反接法测量,此时N端子接地、X 端子仍悬空,中压变压器二次绕组端子短路并接地。
接线原理图如图5所示。
此时流过电桥的电流为I1=I2+I3,由于I3反映的是线圈电感、激磁损耗以及中压变压器一次对二次及其他的tanδ,所以I3的方向较I2超前于电压的角度要小,从相量图可知,此时出现了偏大的测量误差,如果没有I3的影响,则测量的为C1和C2的介质损耗。
现场测量数据如表1所示。
4.2 试验电压选择反接法测量整体总电容介损试验电压的选择与正接法情况相同,详见3.2条内容。
(a)试验接线图(b )等值电路图(c )相量图 图 5 反接法测量整体总电容介损接线原理图 4.3误差分析及有效性评析由于电磁单元的影响,反接法产生偏大的测量误差,其误差值可按下式近似计算分析:B n n δδtan )1(5/1tan ⋅+⋅=∆B B δδδtan 500/1tan 1005/1tan ⋅=⋅=∆式中2/C C n B =;对于110kV 的CVT ,取pF C B 500=,pF C 500002=,则100/1=n 。