电容式电压互感器

合集下载

电容式电压互感器

电容式电压互感器

三、运行与维护
➢ 电容式电压互感器的常见故障和缺陷
1)渗漏油。包括分压电容器的膨胀器制造质量不良造成的破裂渗漏、端部法兰 密封老化造成的渗漏、电磁单元油位观察窗密封不良造成的渗漏。需要特别 说明的是,电容分压单元一旦发现渗漏油要立即退出运行。
2)分压电容器介质损耗试验超标。主要因内部电容元件制造工艺不良和总装时 真空处理不好造成。
一、基本原理
电压互感器分类
按照电压变换原理分为: 电磁式TV 电容式TV 电子式TV
按绝缘介质分为: 油浸式TV 气体绝缘TV 干式TV
按用途分为: 计量用TV 测量用TV 保护用TV
按磁路结构分为: 单极式TV 串极式TV 开放式铁芯TV
一、基本原理
一、基本原理
一、基本原理
一、基本原理
一、基本原理
3)电磁单元内部的补偿电抗器因铁芯松动造成振动大,声音异常。 4)中压电容接地端子未正常接地或者接地不良造成二次接线盒内部放电。
三、运行与维护
三、运行与维护
三、运行与维护
三、运行与维护
三、运行与维护
三、运行与维护
三、运行与维护
三、运行与维护
三、运行与维护
三、运行与维护
谢谢! 欢迎批评指正!
80
பைடு நூலகம்
一、基本原理
一、基本原理
一、基本原理
一、基本原理
一、基本原理
一、基本原理
一、基本原理
一、基本原理
一、基本原理
一、基本原理
一、基本原理
一、基本原理
一、基本原理
一、基本原理
一、基本原理
一、基本原理
二、基本结构
二、基本结构
二、基本结构

电容式电压互感器

电容式电压互感器

1 电容式电压互感器(CVT)电压互感器[1](PT/VT)是用来变换线路电压的设备,主要功能是测量线路的电压、功率和电能。

电压互感器是电力系统中不可缺少的一种设备,在各电压等级都发挥着重要作用,其主要用于电压测量、电能计量、继电保护和自动控制等方面。

电压互感器根据结构型式主要分为电磁式、电容式和电子式三种。

目前新型的电子式互感器发展迅猛,其具有很多优异性能,但是由于其稳定性和可靠性较差,无法成为法定计量设备,所以电力系统中使用最广泛的电压互感器仍为电磁式电压互感器(PT)和电容式电压互感器(CVT)[2]。

文献[3]中统计了截至2015年广州电网各类电压互感器的使用情况,电磁式、电容式、电子式使用量占比依次是18.58%、81.30%、0.12%,可见电容式电压互感器的使用数量占据绝对优势。

PT本质上是一台容量不大的变压器,其在低压等级的测量准确度较高,但随着电压等级的升高,其绝缘可靠性变低,成本也更为昂贵。

CVT是由电容分压器和电磁单元组成,先通过串联电容进行分压后接入电磁单元,电磁单元与PT相似,所以CVT具有PT的全部功能外还有以下特点:电容分压器的分压大大提高了CVT的绝缘性能,使得它在电磁单元绝缘水平较低时也可以对高电压进行转换;内部电容器可以通过耦合作用在长距离通讯、远方测量、线路高频保护等方面发挥载波作用;制作工艺不复杂、易于维护、经济性显著[4]。

所以CVT广泛应用于110kV及以上电压等级的电网中。

从结构上看,CVT比PT多出一套电容分压装置,且其多用于电压等级较高的电网中,所以其故障率也会有所升高。

我们最大CVT被广泛应用于超高压、特高压电网中,所以会经常出现在高海拔、大温差、易覆冰、易污秽等复杂地理环境中,环境因素会很大程度地影响其测量准确度,它的故障发生率也会有所上升[2]。

所以我们主要针对电网中使用最为广泛的电容式电压互感器进行了研究。

1.1 CVT的基本原理图1-1 电容式电压互感器基本原理图电容式电压互感器主要由电容单元和电磁单元两部分组成,其并联在线路上,先通过电容分压得到10~20kV的电压,然后再经过电磁单元变换成所需的检测电压[5]。

电容式电压互感器课件

电容式电压互感器课件
绿色环保 环保意识的提高将推动电容式电压互感器向更加 环保的方向发展,如无油化、小型化等。
未来研究方向探讨
高精度测量技术
研究提高电容式电压互感器测量 精度的方法和技术,满足电力系
统高精度测量的需求。
温度稳定性研究
探究温度对电容式电压互感器性 能的影响规律,提出改善温度稳 定性的有效措施。
新型材料应用
ERA
绝缘材料性能要求及选择依据
绝缘材料性能要求
良好的机械性能 良好的热稳定性
高介电强度 低介质损耗
绝缘材料性能要求及选择依据
工作电压等级
选择依据
01
02
03
环境温度
湿度
04
05
污秽等级
绝缘结构设计原则和方法
设计原则 安全可靠,满足运行要求
结构简单,便于制造和维修
绝缘结构设计原则和方法
经济合理,降低制造成本 设计方法
学习方法
理论讲解、案例分析、实验操作等多种方式相结合,提高学习效果。
学习成果
掌握电容式电压互感器的基本知识,具备分析和解决实际问题的能 力。
行业发展趋势预测
1 2 3
技术创新 随着新材料、新工艺、新技术的不断涌现,电容 式电压互感器的性能将不断提高,应用领域也将 不断拓展。
智能化发展 结合人工智能、大数据等先进技术,实现电容式 电压互感器的智能化监测、诊断和管理,提高设 备运行的安全性和可靠性。
根据电压等级和绝缘水平确定绝缘结构形式
绝缘结构设计原则和方法
01
根据电场分布和绝缘材料特性进行 结构优化
02
采用计算机辅助设计进行仿真分析 和优化
提高绝缘性能的措施和建议
措施 采用高性能绝缘材料

电容式电压互感器

电容式电压互感器

电容式电压互感器(CVT)CVT的中文全名为电容式电压互感器,在国外已有四十多年的发展历史,在72.5~800 kV电力系统中已被普遍应用。

国产CVT于1964年在西安电力电容器厂诞生,到如今也积累了三十五年的制造和运行经验,逐渐进入成熟期。

尤其是近几年,国产CVT在准确度及输出容量的提高以及成功地采用速饱和电抗型阻尼器使铁磁谐振阻尼特性和瞬变响应特性明显改善等方面有了突破性进展。

电容式电压互感器CVT的定义编辑本段回目录CVT(电容式电压互感器)是一种由电容分压器和电磁单元组成的电压互感器。

其设计及内部接线使电磁单元的二次电压实质上与施加到电容分压器上的一次电压成正比,并且在连接方法正确时其相位差接近于零。

CVT的构成及原理编辑本段回目录CVT(电容式电压互感器)主要由电容分压器和中压变压器组成。

电容分压器由瓷套和装在其中的若干串联电容器组成,瓷套内充满保持0.1MPa正压的绝缘油,并用钢制波纹管平衡不同环境以保持油压,电容分压可用作耦合电容器连接载波装置。

中压变压器由装在密封油箱内的变压器、阻尼装置和补偿电抗器组成,油箱顶部空间充氮。

一次绕组分为主绕组和微调绕组,一次侧和一次绕组间串联一个低损耗电抗器。

由于电容式电压互感器的非线性阻抗和固有的电容有时会在电容式电压互感器内引起铁磁谐振,因而用阻尼装置抑制谐振,阻尼装置由电阻和电抗器组成,跨接在二次绕组上,正常情况下阻尼装置有很高的阻抗,当铁磁谐振引起过电压,在中压变压器受到影响前,电抗器已经饱和了只剩电阻负载,使振荡能量很快被降低。

CVT的准确度及额定输出容量编辑本段回目录国外的CVT最高准确度为0.2级,额定输出容量正在逐步降低。

以厂商ABB为例,目前其标准产品在0.2级下的输出从250VA已降低到120VA,其它国外公司各种电压等级CVT额定输出也不超过250VA,这主要是由于现代继电保护装置和测量系统所需负荷大幅减小。

国内情况则相反。

根据需求,国产CVT在0.2级条件下的额定输出容量在不断提高。

电容式电压互感器

电容式电压互感器

电容式电压互感器1、概述电容式电压互感器(简称CVT),1970年研制出国产第一台330KVCVT,1980年和1985年研制出第一代和第二代500KVCVT,1990年和1995年研制出第三代和第四代500KVCVT,30多年来积累了丰富的科研、开发设计和生产经验,在国内开发出一代又一代的CVT新产品,带动了国产CVT的发展。

CVT最主要的特点是:——耐电强度高,绝缘裕度大,运行可靠。

——能可靠的阻尼铁磁谐振。

成功采用新型组尼期,严格进行质量控制,确保出厂的每一台CVT均能在从低到高的任何电压下有效阻尼各种频率的铁磁谐振。

——优良的顺变响应特性。

当一次短路后其二次剩余电压能在20MS内降到5%以下,特别适应于快速继电保护。

——具有电网谐波监测的专利技术。

2、应用电容式电压感器可在高压和超高压电力系统中用于电压和功率测量、电能计量、继电保护、自动控制等方面,并可兼作耦合电容器用于电力线载波通信系统。

如有需求,可提供用于谐波电压测量的内部附件及外部接线端子。

(1)安装运行场所:户外或户内。

(2)海拔:330kv及以下产品不超过2000m。

500kv产品不超过1000m,根据订货要求,可提供直至4000m的高原型产品。

(3)环境温度:-40/+40度,-25/+45度。

由用户在订货时选定(也可选择其他温度类别)。

(4)风速:不超过42m/s。

(5)污秽等级:Ⅰ级污秽(外绝缘爬电比距≥17mm/kv);Ⅲ级污秽(外绝缘爬电比距≥25mm/kv);Ⅳ级污秽(外绝缘爬电比距≥31mm/kv)。

污秽等级由用户在订货时选择。

(6)复冰厚度:不超过10mm。

(7)地震烈度:不超过8度。

根据用户要求,也可提供更高抗震能力的产品。

(8)系统额定频率:50Hz或60Hz有用户在订货是确定。

(9)系统接地条件:中性点有效接地或中性点非有效接地;由用户在订货时确定。

3、型号说明CTV的型号组成如下:TYD☆◇—□△其中:TYD—电容式电压互感器,☆—角注,设计序号,◇—CVT的额定电压(及系统的额定相电压),单位为KV,□—额定电容量,单位为uF,△—尾注,特征代号其中:F—产品用于中性点非有效接地系统,无此字母时用于有效接地系统;G—高原型产品;H—耐污秽等级Ⅲ级以上;TH—湿热带地区L—内充SF6的产品;运行在张家口沙岭子变电站中的500千伏电容式电压互感器。

《电容式电压互感器》课件

《电容式电压互感器》课件

常见故障及处理方法
电容式电压互感器常见的故障包括漏电流、介质击穿和失效等。我们可以通 过定期维护、间隔检测和合理安装来预防和处理这些故障。
总结
电容式电压互感器在电力系统中扮演着至关重要的角色,其准确度和稳定性 对于电力系统的正常运行至关重要。未来,我们可以预见电容式电压互感器 将不断发展,以适应电力系统的需求。
原理及特点
电容式电压互感器的工作原理是通过将高电压信号和辅助电容器连接在一起,形成一个电容电压分压器。它具 有高精度、低功耗和较小的体积。
结构和参数
电容式电压互感器的结构由高压绝缘子、电容器和低压变压器组成。其参数 包括额定电压、额定频率、准确度等,每个参数都对其性能有着重要影响。
应用领域
电容式电压互感器在电力系统中有广泛的应用,用于测量和保护设备、监测 电力质量,并在变电站和输电线路中起到关键作用。然而,它也有一些局限 性,需要合理使用。系统中测量和保护的重要设备。本课件将深入 探讨电容式电压互感器的原理、结构和应用领域,以及常见故障和处理方法。
简介
电容式电压互感器是一种用于测量高压绝缘子和设备上电压信号的传感器。 它通过电容效应将高电压信号转换为低电压信号,以便进行测量和保护。

电容式电压互感器

电容式电压互感器

电容式电压互感器引言电容式电压互感器是一种常用于电力系统中的电气设备,用于测量高电压系统中的电压值。

它具有精确度高、稳定性好、响应速度快等特点,因此在电力系统的监测、保护和控制中起着重要作用。

本文将介绍电容式电压互感器的工作原理、结构组成以及其在电力系统中的应用。

工作原理电容式电压互感器是利用电容器在电压作用下的反应来测量电压值的。

其基本工作原理如下:1.电容式电压互感器的核心部分是一个绕组,它由一对互相绝缘的金属板组成。

这对金属板之间形成了一个电容。

当待测电压施加在金属板上时,会在板之间产生电场。

2.待测电压的电场会导致金属板上产生极化电荷,从而改变电容器的电容值。

这种变化可以通过测量电容器的电容值来得到待测电压的大小。

3.为了减小金属板之间的漏电流,电容式电压互感器通常会采用绝缘材料来隔离金属板,从而提高测量的精确度。

结构组成电容式电压互感器主要由以下组成部分构成:1.金属板:金属板是电容式电压互感器的关键部分。

它负责承受待测电压,并通过电场改变电容器的电容值。

2.绝缘材料:绝缘材料用于隔离金属板之间,以减小漏电流。

绝缘材料需要具有良好的绝缘性能和耐电压能力。

3.线圈:电容式电压互感器中的线圈用于接收电容器中的信号,并将其转化为可测量的电压信号。

4.外壳:外壳是电容式电压互感器的保护部分,它可以防止电容器受到外界环境的干扰,同时提供机械强度。

应用电容式电压互感器具有广泛的应用范围,主要包括以下方面:1.电力系统监测:电容式电压互感器可以用于电力系统中对电压进行精确测量,从而确保电力系统的稳定运行。

它可以用于测量各个节点的电压值,并及时反馈给监控系统。

2.电力系统保护:电容式电压互感器用于电力系统的保护,例如过压保护、欠压保护等。

当电压超出预设范围时,电容式电压互感器会发出警报信号,以便采取相应的措施。

3.电力系统控制:电容式电压互感器可以用于电力系统的控制,例如自动电压调节器(AVR)的控制。

电容式电压互感器 电磁单元

电容式电压互感器 电磁单元

电容式电压互感器电磁单元
电容式电压互感器(Capacitor Voltage Transformers,CVTs)是电力系统中的重要设备,用于高电压等级的测量、监控和保护。

其中,电磁单元是电容式电压互感器的核心部分,其性能直接影响整个设备的运行效果。

电磁单元主要包含一次绕组和二次绕组,它们共同构成了互感器的基本工作原理。

一次绕组通常与高压线路直接相连,而二次绕组则与测量、控制和保护装置相连接。

当一次绕组上施加电压时,会在绕组中产生感应电流,该电流进一步产生磁场,进而在二次绕组中产生感应电动势。

这个过程实现了高电压与低电压之间的隔离,同时保证了测量和监控的准确性。

电磁单元的设计和制造过程中,需要特别关注其绝缘性能。

由于一次绕组承受高电压,如果绝缘性能不佳,可能会导致设备损坏或人身伤害。

因此,电磁单元的绝缘材料和结构对于设备的长期稳定运行至关重要。

另外,电磁单元的动态特性也是评价其性能的重要指标。

在电力系统发生故障时,
如短路或雷击,电容式电压互感器可能会承受瞬态的高电压和电流。

此时,电磁单元应具有良好的动态响应能力,以防止设备过热或损坏。

在生产过程中,还需要对电磁单元进行严格的测试和检验。

这包括但不限于耐压测试、温升测试、误差测试等,以确保每一台设备都满足电力系统的运行要求。

电容式电压互感器的电磁单元是一个设计精良、制造严格、测试全面的设备。

在实际应用中,其性能的稳定性和可靠性对于保障电力系统的安全、经济运行具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IC几乎是不变的。 tg取决于缺陷对Ir 的影响。
这相当于不同的绝缘部分相并联的情况,总 绝缘损耗为完好部分与缺陷部分介质损耗之和。
P U 2C X tg U 2C0tg 0 U 2C1tg1 U 2C0tg 0 U 2C1tg1 tg U 2C X C0tg 0 C1tg1 CX
2 2 2 2 2 2
I CS ~U I
R

UR

UC
U
并联等效电路图
电流相量图
等值电路的应用
如果损耗主要是由于电导引起的,则常应用并联 等值电路。 如果损耗主要由介质极化及连接导线的电阻等引 起,则常用串联等值电路。

必须注意同一介质用不同等值电路表示时,其 等值电容量是不同的。
2 U Cs tg 2 P U C ptg 2 1 tg Cs Cp 1 tg 2
这样如果缺陷部分(C1)越小,则C1 / CX 越 小,所以在测量整体绝缘tg时越难以发现缺陷部 分( tg1)的影响。
发电机
反映不灵敏的设备 tg 反映灵敏的设备
电力电缆
变压器绕组
套管 PT
CT
在线检测tg的电桥法
在停电试验中用电桥法测量tg是一种常用的、 高精度的测量方法。 如果能够在运行状态下进行
Cx
CN
1 Z X RX j C X 1 Z N j( ) C N
单元体积的介质损耗 I=Ir+IC
~U
IC

I

P 功率三角形
绝缘介质工作图
U 电流相量图
使用介质损耗P表示绝缘介质的品质好坏是不 方便的,因为P值与试验电压、介质尺寸等因素有 关,不同设备间难以进行比较。 所以改用介质损耗角正切 tg 来判断介质的品 质。 tg与类似,是仅取决于材料的特性与材料尺 寸无关的物理量。
电容性设备在线监测
Dissipation Factor on-line Monitoring
电容性设备
通常绝缘介质的平均击穿场强随其厚度的增加
而下降。在较厚的绝缘内设置均压电极,将其分隔
为若干份较薄的绝缘,可提高绝缘整体的耐电强度。
由于结构上的这一共同点,电力电容器、耦合电容 器、电容型套管、电容型电流互感器以及电容型电 压互感器等,统称为电容型设备。
电场作用下的绝缘体性能
无电场 电场作用下 E
+ -
+ -
+ -
+ -
+ -
+ -
+ +
+ +
+ -
+ + +
+ -
+ -
+ -
+ -
+ -
电极化
+
A
+ + + + + + + + + -
原子极化
+ + + + + + -
方向极化
绝缘介质的能量损耗
绝缘介质在外部场强的作用下存在能量损耗: 电导引起的损耗 介质极化引起的损耗 电介质的能量损耗简称介质损耗。

电力电容器


电容式套管
高压电流互感器(CT)
高压电压互感器(PT)
电容式电压互感器(CVT)
是电力系统中检修数量最大的一类设备,检修项 目明确,工作量大。进行在线监测是非常必要的。
电力电容器结构
铝箔 绝缘薄膜
电容器剖面图
结构单元
电场作用下的绝缘体性能
电极 绝缘介质 电极 电极 绝缘介质 电极
等值电路的等价性
由于绝缘介质的tg 一般都很小,即 1+tg2 1

CP CS = C
所以通常情况下,介质损耗的两种等值电路都 可以用相同的表达方式:
P U 2Ctg
讨论介质损耗的意义
绝缘结构设计时,必须注意到绝缘材料的tg。如 果tg过大会引起严重发热,是绝缘材料迅速老化, 进而导致热击穿。
在直流电场作用下,由于介质没有周期性的 极化过程,介质中的损耗仅由电导引起。 在交流电压下,除电导损耗外,还存在由于 周期性的极化而引起的能量损耗,因此需要引入 新的物理量加以描述。
回路电流
I=Ir+IC
视在功率
介质损耗
S= P + jQ = U Ir+ jUIC
P= Q tg = U2 C tg P= Q tg = E2 tg Ir S Q

在绝缘预防性试验中, tg是基本测试项目,当绝 缘受潮或劣化时, tg将急剧上升。绝缘内部是否存 在可疑的放电现象,也可以通过测量 tg - U的关系 曲线加以判断。

可见 tg既是绝缘劣化的原因,也是绝缘劣化的特征。
介质损耗所能反映的缺陷

绝缘受潮。 绝缘脏污。 绝缘中存在气隙放电。
UC代表较多气隙开始放电 时所对应的外加电压。 tg = f (U ) 从tg 增长的陡度可反映绝 缘劣化的程度。 UC U
tg
介质损耗的不足 tg是反应绝缘功率损耗大小的特性参数,与 绝缘体积无关。这一点并非总是有利的。 如果绝缘内的缺陷不是分布性的而是集中性 的,则tg反映不灵敏。
Ir tg IC
UDA = UDB , UAC = UBC = UX 以反接法为例, IX Z3= IN Z4 IX ZX= IN ZN
Z X ZN Z3 Z4
Cx
CN
Z 3 R3 R4 Z4 R4 1 j C 4 1 j C 4
检测,则有效性更高。
传统电桥法
被测量 设备
标准 电容 被测量 设备
标准 电容
西林电桥测tgδ的基本线路 (a) 正接法; (b)反接法


电桥工作电压一般为10kV;
正接法由于调节部分处于低压臂,操作比较安全;
当被测设备必须一端接地时,则须采用反接法。此 时应注意电桥调节部分处于高压侧。
无论是正接法还是反接法,电桥平衡时G中的电流IG = 0, 所以 IDA = IAC = IX , IDB = IBC = IN
= 90 -
并联等值电路
U R 1 tg UCP CP R U 2 P U CPtg R
I=Ir+IC
IC IR
2
IR
~U
CP
R
IC

I
Hale Waihona Puke 串联等效电路图U 电流相量图
串联等值电路
Ir tg Cs r I / Cs U r U rCs r U Cs tg PI r 2 2 2 2 r (1 Cs ) r (Cs r ) 1 tg 2
相关文档
最新文档