高频谐振功率放大器课程设计说明书
课程设计高功放

课程设计高功放课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 高频功率放大器设计初始条件:1、可选元件:晶体管、高频磁环、电阻、电容、开关等2、仿真软件:EWB要求完成的主要任务:设计一个高频功率放大器,要求1.输出功率Po≥125mW2.工作中心频率fo=6MHz3. >65%时间安排:1.理论讲解,老师布置课程设计题目,学生根据选题开始查找资料;2.课程设计时间为1周。
(1)确定技术方案、电路,并进行分析计算,时间1天;(2)选择元器件、安装与调试,或仿真设计与分析,时间2天;(3)总结结果,写出课程设计报告,时间2天。
指导教师签名: 2010年月日系主任(或责任教师)签名:年月日目录摘要.............................................................. I Abstract......................................................... II 1 谐振功率放大器的工作原理. (1)1.1 基本原理电路 (1)2.2 谐振功率放大器的功率关系和效率 (3)2高频谐振功率放大器的性能分析 (4)2.1 谐振功率放大器的动态特性 (4)2.2 谐振功率放大器的负载特性 (4)2.3 放大器工作状态的调整 (6)3 高频谐振功率放大器的电路组成 (8)4 高频谐振功率放大器电路仿真 (13)总结 (14)参考文献 (15)附录 (16)摘要通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。
为获得足够大的高频输出功率,必须采用高频功率放大器。
我们对高频功率放大器和低频功率放大器的共同要求是输出功率大和效率高,但由于两者的工作频率和相对带宽相差颇大,就决定了他们之间有根本的差异。
基于两种放大器的不同特点,使得这两种功率放大器所选的状态有所不同:低频功放工作于甲类、甲乙类或乙类(限于推挽电路)状态,现在也出现了一些工作于丁类的低频放大器;高频功率放大器则一般工作于丙类(某些特殊情况可工作于甲类、乙类、丁类、戊类等)。
高频小信号谐振放大器的设计

⾼频⼩信号谐振放⼤器的设计⾼频⼩信号谐振放⼤器的设计⾼频⼩信号谐振放⼤器课程设计任务书1、设计课题:⾼频⼩信号谐振放⼤器2、设计⽬的:设计⼀个⼯作电压为9V ,中⼼频率为20MHz 的⾼频⼩信号谐振放⼤器,可⽤作接收机的前置放⼤器和中频放⼤器。
3、主要技术指标及要求 (1)已知条件及主要技术指标已知条件:负载电阻Ω=k R L 1,电源电压V V cc 9+=。
技术指标:1中⼼频率MHz f o 20=; 2电压增益dB A uo 1≥∑(10倍); 3通频带MHz f 427.0=?; 4电路结构采⽤分⽴元件。
(2)设计的主要⼯作 1收集资料、消化资料;2选择原理电路,计算电路参数并仿真分析; 3制作印制电路板⼀张;4绘制电路原理图⼀张(A4图纸); 5绘制元件明细表⼀张(A4图纸); 6绘制印制电路板底图⼀张(A4图纸);7撰写设计报告⼀份,要求字数在3000字以上。
(3)时间安排1总时间四天,最后半天(4学时)为答辩时间;2星期⼀完成系统⽅案、电路原理图设计并计算电路参数; 3星期⼆上午完成电路参数的计算; 4星期⼆下午完成电路仿真; 5星期三撰写设计报告、绘图;6星期四完善资料,准备答辩,答辩过程分两步完成,前2节课时间分⼩组答辩,并初步推举出优秀设计2~4个;后2节课时间为优秀设计集中答辩时间。
(4)注意事项1作图必须规范,图幅整洁;2设计报告内容详细,叙述清楚,计算准确,有根有据,书写⼯整; 3独⽴完成任务。
第⼀章系统⽅案设计⼀、电路结构的选择根据设计任务书的要求,因放⼤器的增益⼤于20dB ,且MHz f o 20=,MHz f 427.0=?,采⽤单级放⼤器即可实现,拟定⾼频⼩信号谐振放⼤器的电路原理图如图1-1所⽰。
⼆、电路的⼯作过程(⼀)静态⼯作过程当输⼊信号ui=0V 时,放⼤器处于直流⼯作状态(静态)。
理想情况下,变压器T1的次级、变压器T2的初级视为短路,电容器Cb 、Ce 、Cf 视为开路,放⼤器的直流通路如图1-2(a)所⽰。
高频电子线路课程设计:高频谐振功率放大器

课程名称:高频电子线路设计课题:高频谐振功率放大器系别:机电工程学院专业班级:电子信息工程学生姓名:指导教师:设计时间:2009/12/7 —2009/12/12高频谐振功率放大器设计者:指导教师:摘要:本电路主要由谐振回路、耦合回路、基极偏置电路三部分组成。
本电路主要应用于发射机的末级功率放大,突出特点为有较高的输出功率和效率。
关键词:高频;甲类功放;丙类功放;谐振引言:利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要单元电路。
根据放大器中晶体管工作状态的不同或晶体管电流导通角θ的范围,可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角越小,放大器的效率越高。
丙类放大器的导通角θ<90%,效率η可达到80%,高频功率放大器一般选择在丙类工作状态。
本设计采用甲类功放输出的最大不失真信号作为激励源,丙类功放作为末级功放以获得较大的输出功率和较高的效率。
1设计任务与要求设计一个高频谐振功率放大器。
=3W ,工作中心频率f0≈6.5MHz ,效率η>50 % ,负技术要求:输出功率P载RL=50Ω,电源电压VCC=9V,2△f0.7=3.25MHz2方案设计与论证利用选频网络作为负载回路的功率放大器称为谐振功率放大器。
根据放大器电流导通角θ的范围可以分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180°,效率最高也只能达到50%,而丙类功放的θ<90%,效率η可达到80%。
甲类放大器电流的流通角为180°,适用于小信号低功率放大。
乙类放大器导通角等于180°;丙类放大器导通角则小于180°。
乙类和丙类都适用于大功率工作。
丙类工作状态的输出功率和效率是三种工作状态中最高者。
高频功率放大器大多工作于丙类。
但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。
高频谐振功率放大器设计说明

课程设计任务具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、采用晶体管完成一个高频谐振功率放大器的设计2、电源电压V cc=+12V,采用NXO-100环形铁氧体磁芯,3、工作频率f0=6MHz4、负载电阻R L= 75Ω时,输出功率P0≥100Mw,效率η>60%5、完成课程设计报告(应包含电路图,清单、调试及设计总时间安排:二十周一周,其中3天硬件设计,4天软、硬件调试及答辩。
指导老师签名年月日系主任(或责任老师)签名:年月日目录摘要 (I)1 高频功率放大器简介 (1)1.1 宽带功放 (1)1.2 丙类功率放大器. (4)2 单元电路的设计 (6)2.1 丙类功率放大器的设计 (6)2.2 甲类功率放大器的设计 (8)2.3 电路仿真 (9)3 电路的安装与调试 (10)4 课程设计心得体会 (12)参考文献 (14)附录1 (15)摘要高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大。
以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。
高频功率放大器是通信系统中发送装置的重要组件。
放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。
甲类放大器电流的流通角为360°,适用于小信号低功率放大。
乙类放大器电流的流通角约等于°;丙类放大器电流的流通角则小于180°。
乙类和丙类都适用于大功率工作。
丙类工作状态的输出功率和效率是三种工作状态中最高者。
高频功率放大器大多工作于丙类。
但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。
高频功率放大器课程设计

目录一、课程设计目的 (2)二、课程设计题目描述和要求 (2)三、课程设计报告内容 (2)四、结论 (13)五、结束语 (13)六、参考书目: (14)一、课程设计目的由于高频振动器所产生的高频振动信号的功率很小,不能满足发射机天线对发射机的功率要求,所以在发射之前需要经过功率放大后才能获得足够的功率输出。
本次课程设计使通过已学的电路基础知识,模拟高频振动功率放大器,使发射机内部各级电路之间信号功率能有效传输,这就要求放大器输入端和输出端都能实现阻抗匹配。
即放大器输入端阻抗和信号阻抗匹配,放大器输出端阻抗和负载阻抗匹配。
我们知道能量是不能放大的,高频信号的功率放大,其实质在输入高频信号的控制下将电源直流功率转换为高频功率,因此除要求高频功率放大器产生符合要求的高频功率外,还应要求有尽可能高的转换率。
主要是根据已知数据设计一个丙类高频功率放大器。
二、课程设计题目描述和要求设计一高频功率放大电路;1.要求三极管工作在丙类状态;2. 主要技术指标:输入已调波的峰值为100mV;载波频率为6.5MHz,输出功率≧1w,负载50Ω,效率≧80%;3.用相关仿真软件画出电路并对电路进行分析与测试。
三、课程设计报告内容3.1 设计方案的论证高频功率放大器的主要功用是放大高频信号,并且以高效输出大功率为目的,它主要应用于各种无线电发射机中。
发射机中的振荡器产生的信号功率很小,需要经多级高频功率放大器才能获得足够的功率,送到天线辐射出去。
高频功率放大器输出功率范围,可以小到便捷式发射机的毫瓦级,大到无线电广播电台的几十千瓦,甚至兆瓦级。
目前,功率为几百瓦以上的高频功率放大器,其有源器件大多为电子管,几百瓦已下的高频功率放大器则主要采用双极晶体管和大功率场效应管。
如图所示是一个采用晶体管的高频功率放大器的原理线路,除电源和偏置电路外,它是由晶体管、谐振回路和输入回路三部分组成的。
高频功放中常采用平面工艺制造的NPN高频大功率管,它能承受高电压和大电流,并有较高的特征频率fT。
高频小信号谐振放大器课程设计

湖南工学院课程设计说明书课程名称:通信电子线路设计题目:高频小信号谐振放大器设计院系:电气与信息工程系学生姓名:刘超龙学号:402070207专业班级:电信0702班2009年05月08日word文档可自由复制编辑课程设计任务书设计题目高频小信号谐振放大器学生姓名刘超龙所在院系电气与信息工程系专业、年级、班电信0702班设计要求:1、掌握电子电路分析和设计得基本方法。
包括:根据设计任务和指标初选电路;调查研究和设计计算确定电路方案;选择元件、安装电路、调试改进;分析实验结果、写出设计性总结报告。
2 培养一定的自学能力、独力分析问题的能力。
包括:学会自己分析解决问题的方法应对设计中遇到的问题,能通过独立思考、查询工具书和文献来寻找解决方案,掌握电路测试的一般规律;能通过观察、判断、实验、再判断的基本方法解决实验中的一般故障;能对实验结果独立地进行分析,进而做出恰当的评价。
3、巩固常用电子仪器的正确使用方法,掌握常用电子器件的测试技能。
4、通过严格的科学训练和设计实践,逐步树立严肃认真、一丝不苟、实事求是的科学作风,并逐步建立正确的生产观、经济观和全局观。
学生应完成的工作:要求有课程设计说明书,并对总个所设计系统进行仿真调试,说明书中要有仿真结果和调试环节。
参考文献阅读:[1] 张肃文陆兆熊,高频电子线路(第三版)高等教育出版社[2] 曾兴雯陈健,高频电子线路辅导,西安电子科技大学出社。
[3] 戴峻浩,高频电子线路指导,国防工业出版社。
[4] 谈文心,高频电子线路[M].,西安交通大学出版社。
[5] 谢自美,电子线路设计实验测试(第二版)华中科技大学出版社。
工作计划:1.确定电路形式。
2.设置静态工作点。
3.计算谐振回路的参数。
4.确定输入耦合回路及高频滤波电容。
5.电路的安装与调试。
word文档可自由复制编辑高频小信号谐振放大器摘要:掌握高频小信号谐振放大器的工程设计方法,谐振回路的调谐方法,放大器的各项技术指标的测试方法及高频情况下的各种分布参数对电路性能的影响。
高频功率放大器课程设计报告书

目录1 .概述及基本原理 (1)2.方案及各部分设计原理分析 (2)2.1整体介绍 (2)2.2原理分析 (2)2.3具体分析 (3)3.1功率放大器输出功率的计算分析 (4)3.2谐振回路的计算分析 (4)3.3放大管栅极和板极的电流电压关系 (5)3.4高频功率放大器的能量关系 (8)3.5发射管的工作状态 (9)4.仿真结果及分析总结 (10)5.心得体会 (13)6.参考文献 (14)1 .概述及基本原理高频功率放大器是对载波信号或高频信号进行功率放大的电路。
利用选频网络作为负载回路的功率放大器成为谐振功率放大器。
随着现代通信技术的日益发展高频放大应用的领域也越来越广。
在某些场合高频放大技术的高低成为制约本领域技术发展的关键所在。
比如射频手机和高频信号收发机等,都需要用到高频功率放大器,并且作为一项非常重要的技术攻关项目。
特别是移动电话机中高频功率放大器品质的高低直接影响其产品的技术指标。
所以本次课程设计我选择高频功谐振率放大器。
如图1-1所示为高频功放基本原理图,图中,高频扼流圈提供直流通路,C1为隔直流电容,谐振回路分别为输入和输出滤波匹配网络。
其中天线等效阻抗,作为输出负载。
与非谐振功放比较,它们都要求安全高效地输出足够大的不失真功率,但有一些区别。
图1-1高频功放基本原理图谐振式高频功率放大器的特点是:①为了提高效率,放大器常工作于丙类状态,晶体管发射结为反向偏置,由E b(V BB)来保证,流过晶体管的电流为余弦脉冲波形;②负载为谐振回路,除了确保从电流脉冲波中取出基波分量,获得正弦电压波形外,还能实现放大器的阻抗匹配。
2.方案及各部分设计原理分析2.1整体介绍基本部分组成,即电子管、谐振回路和电源。
电子管在放大器中起着把直流能量转换为交流能量的作用;谐振回路是电子管的负载;电源供给电子管各电极电压,它们共同保证电子管的正常工作。
放大器有两个主要电路:板极电路和栅极电路。
板极电路包括并联振荡回路和直流板极电压Ea 的馈电电路。
课程设计---高频谐振放大电路

课程设计---高频谐振放大电路*课程设计报告题目:高频谐振功率放大器学生姓名:***学生学号:********系别:电气信息工程学院专业:通信工程年级:2014届任课教师:****电气信息工程学院制2013年5月高频谐振功率放大器学生:***指导教师:***电气信息工程学院通信工程摘要高频功率放大器是通信系统中发送装置的主要组件,用于发射机地末端。
本课程设计的高频功率放大器电路由两极功率放大器组成,第一级为甲类功率放大器,第二级为丙类谐振功率放大器。
分别对甲类功率放大器和丙类谐振功率放大器设计,通过给定的技术指标要求确定甲类功率放大器和丙类谐振功率放大器设计的工作状态和计算出电路中各器件参数,从而设计出完整高频功率放大器电路,再利用电子设计软件multisim对电路仿真。
适用于小信号低功率放大。
乙类放大器电流的流通角约等于 180°;丙类放大器电流的流通角则小于180°。
乙类和丙类都适用于大功率工作。
丙类工作状态的输出功率和效率是三种工作状态中最高者。
高频功率放大器大多工作于丙类。
但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。
由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。
高频功率放大器在很多领域和方面都有应用,并且涉及到很多方面的知识点,则在此次设计中我们可以掌握高频宽带功放与高频谐振功放的设计方法,电路调谐及测试技术;负载的变化及激励电压,基极偏置电压,集电极电压的变化对放大器工作状态的影响;了解寄生振荡引起的波形失真及消除寄生振荡的方法;并且可以了解并掌握仿真软件的应用。
关键词:高频谐振功率放大器工作状态效率输出功率1课程设计的任务与要求1.1 课程设计的任务设计一个高频谐振功率放大器。
1.2 课程设计的要求1.2.1、确定丙类谐振功率放大器设计的工作状态。
1.2.2、确定丙类谐振功率放大器计算出电路中各器件参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。
为了获得足够大的高频输出功率,必须采用高频功率放大器。
高频功率放大器是无线电发射没备的重要组成部分。
在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,因此在它后面要经过一系列的放大,如缓冲级、中间放大级、末级功率放大级等,获得足够的高频功率后,才能输送到天线上辐射出去。
这里提到的放大级都属于高频功率放大器的范畴。
实际上高频功率放大器不仅仅应用于各种类型的发射机中,而且高频加热装置、高频换流器、微波炉等许多电子设备中都得到了广泛的应用。
本次课设报告先是对高频功率放大器有关理论知识作了一些简要的介绍,然后在性能指标分析基础上进行单元电路设计,最后设计出整体电路图,在软件中仿真验证是否达到技术要求,对仿真结果进行分析,最后总结课设体会。
工程概况高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。
低频功率放大器的工作频率低,但相对频带宽度却很宽。
例如,自20至20000 Hz,高低频率之比达1000倍。
因此它们都是采用无调谐负载,如电阻、变压器等。
高频功率放大器的工作频率高(由几百Hz 一直到几百、几千甚至几万MHz),但相对频带很窄。
例如,调幅广播电台(535-1605 kHz 的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。
中心频率越高,则相对频宽越小。
因此,高频功率放大器一般都采用选频网络作为负载回路。
由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。
正文3.1课程设计目的由于高频振动器所产生的高频振动信号的功率很小,不能满足发射机天线对发射机的功率要求,所以在发射之前需要经过功率放大后才能获得足够的功率输出。
本次课程设计使通过已学的电路基础知识,模拟高频振动功率放大器,使发射机内部各级电路之间信号功率能有效传输,这就要求放大器输入端和输出端都能实现阻抗匹配。
即放大器输入端阻抗和信号阻抗匹配,放大器输出端阻抗和负载阻抗匹配。
3.2设计思路及方法3.2.1基于Multisim的高频功率放大器的仿真Multisim是一个专门用于电子电路仿真和设计的EDA软件,它具有直观、方便的操作界面,创建电路、选用元器件和虚拟测试仪器等均可直接从屏幕图形中选取,操作简便。
它具有完备的电路分析功能,可以完成电路的瞬态分析和稳态分析、时域分析和频域分析、器件的线性和非线性分析、交直流灵敏度分析等电路分析方法。
在进行仿真的过程中,可以存储测试点的数据、测试仪器的工作状态、显示的波形。
它先进的高频仿真设计和功能,是目前众多仿真电路所不具备的。
3.2.2放大器分类利用选频网络作为负载回路的功率放大器称为谐振功率放大器。
根据放大器电流导通角θ的范围可以分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180o,效率最高也只能达到50%,而丙类功放的θ<90%,效率η可达到80%。
如图表1-1表1-1 不同工作状态时放大器的特点3.2.3阻抗匹配高频放大器是发射机的重要组成部分,它的主要任务是以提高效率输出最大的高频功率,因此高频功率一般工作在丙类,必须是LC谐振回路,以实现阻抗匹配!3.2.4设计指标(1)输出功率高频功率放大器的输出功率是指放大器的负载RL上得到的最大不失真功率。
由于负载RL与丙类功率放大器的谐振回路之间采用变压器耦合方式,实现了阻抗匹配,则集电极回路的谐振阻抗R0上的功率等于负载RL上的功率,所以将集电极的输出功率视为高频功率放大器的输出功率,即Po=PC。
(2)效率高频功率放大器的总效率由集电极的效率和输出网络的传输效率决定。
而输出网络的传输效率通常是由于电感、电容在高频工作时产生一定损耗而引起的,放大器的能量转换效率主要由集电极的效率所决定。
所以常将集电极的效率视为高频功放的效率。
η= Po/ PD电路通过测量来计算功放的效率。
集电极回路谐振时,CCC LLD c V I R V p p 02==η式中,Ic0——电流表mA 的测量值。
3.3 集电极电流余弦脉冲分解当晶体管特性曲线理想化后,丙类工作状态的集电极电流脉冲是尖顶余弦脉冲。
这适用于欠压或临界状态。
晶体管的内部特性为:ic = gc (eb –VBZ)它的外部电路关系式:eb = –VBB + Vbmcos t ec = VCC –Vcmcos t当ωt=0时,ic = ic max因此,i c max = g c V bm (1–cos θc )若将尖顶脉冲分解为傅里叶级数,得i c =I c0+I cm1cos ωt+I cm2cos2ωt+…+I cmn cosn ωt+…由傅里叶级数的求系数法得 其中)()(max max 10max 0C n C cmn C C cm C C C i I i I i I θαθαθα==)(=1)cos 1)(1(sin cos cos sin 2)()cos 1(sin cos )()cos 1(cos sin )(210c cc c c c n c c c c c c c c c c n n n n n θθθθθπθαθπθθθθαθπθθθθα---⋅=--=--=图3.3尖顶脉冲的分解系数由图可见,当qc ≈120°时,Icm1/Ic max 达到最大值。
在Ic max 与负载阻抗Rp 为某定值的情况下,输出功率将达到最大值。
这样看来,取qc=120°应该是最佳通角了。
但此时放大器处于甲级工作状态效率太低。
为了兼顾效率和功率,常常取导通角70度左右。
3.4 高频功率放大器的分析方法高频功率放大器因工作于大信号的非线性状态,不能用线性等效电路分析,工程上普遍采用解析近似分析方法——折线法来分析其工作原理和工作状态。
这种分析方法的物理概念清楚,分析工作状态方便,但计算准确度较低。
所谓折线法是将电子器件的特性曲线理想化,用一组折线代替晶体管静态特性曲线后进行分析和计算的方法。
对谐振功率放大器进行分析计算,关键在于求出电流的直流分量IC0和基频分量Icm1。
根据理想化原理晶体管的静态转移特性可用交横轴于VBZ 的一条直线来表示(VBZ 为截止偏压)图3.4晶体管实际特性和理想折线0.5 0.4 0.3 0.2 0.1 0 -0.05V BZ3.5 谐振功放基本电路组成为了使高频功率放大器有高效率地输出大功率,常常选择工作在丙类状态下工作。
我们知道,在一元件(呈电阻性)的耗散功率等于流过该元件的电流和元件两端电压的乘积。
由图可知基极直流偏压VBB 使基极处于反向偏压的状态,对于NPN 型管来说,只有在激励信号为正值的一段时间内才有集电极电流产生,所以耗散功率很小。
晶体管的作用是在将供电电源的直流能量转变为交流能量的过程中起开关控制作用,谐振回路中LC 是晶体管的负载,电路工作在丙类工作状态。
图2-2为谐振功率放大器各级电压和电流波形。
图3.5谐振功率放大器各级电压和电流波形3.6 谐振功率放大器的外部特性3.6.1负载特性如果VCC 、VBB 、Vb 这几个参变量不变,则放大器的工作状态就由负载电阻R 决定。
此时,放大器的电流、输出电压、功率、效率等随Rp 而变化的特性,就叫做放大器的负载特性。
①欠压状态:B 点以右的区域。
在欠压区至临界点的范围内,根据Vc=R* Ic1,放大器的交流输出电压在欠压区内必随负载电阻R 的增大而增大,其输出功率、效率的变化也将如此。
②临界状态:负载线和Eb max 正好相交于临界线的拐点。
放大器工作在临界线状态时,输出功率大,管子损 耗小,放大器的效率也就较大。
所以,高频谐振功率放大器一般工作于这个状态。
③过压状态:放大器的负载较大,在过压区,随着负载Rp 的加大,Ic1要下降,因此放大器的输出功率和效率也要减小(a )(b )(c )(d )ωti C U on 转移特性0i C ω tωt ω tωtωt U bm-θθu BE u b-θθi Cma x U onU BBu BE i Bi C u CEU CCU CEminθθ-θθθ-θU bm U BB(e )图3.6.1谐振放大器的负载特性3.6.2集电极调制特性集电极调制特性是指VBB 、Vbm 和R 一定,放大器性能随VCC 变化的特性。
如图2-6所示。
由于VBB 和Vbm 一定,也就是VBEmax 和IC 脉冲宽度一定,因而对应于VCEmin 的动态点必定在VBE =VBEmax 的那条特性曲线上移动;当VCC 由大减小时,相应的VCEmin 也由大减小,放大器的工作状态将由欠压进入过压,IC 波形也将由接近余弦变化的脉冲波变为中间凹陷的脉冲波。
图3.6.2谐振放大器的集电极调制特性c0CCCC3.6.3基极调制特性基极调制特性是指VCC、Vbm和R一定,放大器性能随VBB变化的特性。
如图2-7所示。
当Vbm一定, VBB自负值向正方向增大,集电极电流脉冲不仅宽度增大,而且还因VBEmax 增大而使其高度增加,因而IC0和IC1m(相应的Vcm)增大,结果使VCEmin减小,放大器由欠压进入过压状态。
图3.6.3谐振放大器的基极调制特性3.6.4放大特性放大特性是指VBB、VCC和R一定,放大器性能随Vbm变化的特性,如图2-8所示。
固定VBB、增大Vbm和上述固定Vbm、增大VBB的情况类似,它们都使集电极电流脉冲的宽度和高度增大,放大器的工作状态有欠压进入过压;进入过压后,随着Vbm的增大,集电极的电流脉冲出现中间凹陷,且高度和宽度增加,凹陷加深。
图3.6.4 谐振放大器的放大特性3.7单元电路的设计3.7.1放大器工作状态的确定因为要求获得的效率 >60%,放大器的工作状态采用临界状态,取 =70°,所以谐振回路的最佳电阻为202)(P U U R CES CC -==551.25Ω集电极基波电流振幅0012R P I m c =≈0.019A集电极电流最大值为)70(11οαmc cm I I ==0.019/0.436=43.578mA其直流分量为CO I =cm I *)70(0οα=43.578*0.253=11.025mA电源供给的直流功率为PD=Ucc*Ico=132.3mW集电极损耗功率为P= PD – PC =32.3mW转换效率为η= PC / PD =100/132.3=75.6%当本级增益ρA =13dB 即20倍放大倍数,晶体管的直流β=10时,有: 输入功率为P1=P0/AP=5mW基极余弦电流最大值为IBM = ICM /β ≈ 4.36Ma基极基波电流振幅)70(11οα⨯=BM M B I I =4.36 0.436=1.9mA所以输出电压的振幅为UBM =2 P1/ IB1M ≈5.3V3.7.2谐振回路和耦合回路参数计算丙类功放输入、输出回路均为高频变压器耦合方式,其中基极体电阻Rbb<25Ω, 则输入阻抗436.0)70cos 1(25)()cos 1(11⨯-Ω=⨯-=οθαθbb R Z ≈87.1Ω则输出变压器线圈匝数比为13R R N N L=≈6.4 在这里,我们假设取N3=13和N1=2,若取集电极并联谐振回路的电容为C=100pF ,则20)21(1f C L π⨯=≈7.036μH 采用Φ10mm ×Φ6mm ×5mm 磁环来绕制输出变压器,因为有 其中μ=100H/m , A=210mm , l =25mm, L =7.036μH所以计算得N2=73.8甲类功率放大器的设计3.8.1电路性能参数计算甲类功率放大器输出功率等于丙类功率放大器的输入功率,即:PH = P1 =5mW输出负载等于丙类功放输入阻抗,即RH =1Z =87.1Ω设甲类功率放大器为电路的激励级电路,变压器效率b η取0.8,则集电极输出功率PC =b Hp η≈6.25mW若取放大器的静态电流ICC = ICM=5mA ,则集电极电压振幅UCM =2 PC / ICM =2.5V最佳负载电阻为CCMH P U R 22==0.5kΩ则射极直流负反馈电阻cqCESCM CC E I U U U R --=1 ≈1780Ω (cq I ≈ICM)则输出变压器线圈匝数比21R R N N bH η= ≈2 本级功放采用3DG12晶体管,取β=30 ρA =13dB 即20倍放大倍数 则输入功率Pi = P0 /ρA = =0.3125mW放大器输入阻抗Ri= Rbb+β*R3=25Ω+30R3若取交流负反馈电阻R3=10Ω,则Ri=335Ω 所以本级输入电压i i im P R U 2= ≈0.46V3.8.2静态工作点计算综上可知Ui=0时,晶体管射极电位UEQ= ICQ×RE1 = 8.9VUBQ =9.5VIBQ = ICQ /β=0.17mA若基极偏置电流I1 =5 IBQ ,则R2 = UBQ /5 IBQ ≈11.2k Ω所以,有21R U U U R boboCC ⨯-=≈2.95K ω3.9电路原理图及仿真图XSC1A B Ext Trig++_ _+_V11kVpk 6kHz 0°R12kΩR28kΩR350ΩR41.2kΩR5100ΩR675ΩC1 20nFC210nFC310nFC410nFC510nFC6150uFC710nFC820nFL11mHL21mHQ12N5551Q22N5551T1TS_AUDIO_10_TO_1T2123457910111213VCC12V16VCC14281图3.9.1高频谐振功率放大电路图图3.9.2电路仿真图4.课程设计心得体会课程设计是培养学生综合运用所学知识,是发现、提出、分析和解决实际问题、锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。