第10章贯通测量方案的选择与误差预计(精)知识讲解

合集下载

贯通误差预计

贯通误差预计

西康铁路秦岭隧道(Ⅰ线)采用TBM施工。

隧道全长18.5 km,两端独头掘进距离长(近10 km),再加上TBM 一次成洞,对贯通精度要求比较高,给洞内控制测量带来了很大的困难。

本文介绍这项工程中控制测量实施方案。

一、控制测量设计众所周知,隧道贯通面上贯通误差的影响值,由洞外、洞内控制测量两部分组成。

由于洞外采用GPS 网作控制来保证洞外控制精度,因此本设计只对洞内控制测量进行设计。

为保证高精度贯通,本设计按总横向中误差150 mm(《铁路测量规则》规定为250 mm),高程中误差25 mm进行设计。

按《测规》规定的分配原则,分配给洞内横向中误差为120 mm,洞内高程中误差17 mm。

1. 平面(横向)测量设计由于Ⅰ线隧道采用TBM施工,其通视条件较好,为提高测量精度,导线边长尽量长,故本方案按边长为650 m的导线测量方案进行设计。

这时洞内横向贯通误差为:按上述布设方案,R x,dy计算如下:(1) 洞内∑R2x计算依据各导线点至贯通面的竖直距离计算的结果为∑R2x=900062125。

(2) 洞内∑dy2计算由于洞内导线沿隧道中线布设,隧道为直线隧道,则dy=0,即∑dy2=0。

(3) 洞内测角精度计算由于采用测距标称精度为±(2 mm+2×10-6D)的全站仪测距,洞内测边误差远小于1/100 000。

因为∑dy2=0,则m2yi=0,所以其中,mβ为洞内测角精度。

代入数据,得则mβ=±0.83″。

实际采用±0.7″,即洞内按一等导线要求和精度指标进行施测可满足在120 mm内贯通要求。

2. 高程测量设计洞内两开挖洞口间长度按19 km计,则高程控制测量的高差中数偶然中误差为:(三等水准限差)所以洞内高差控制测量按三等水准要求即可满足高程贯通中误差影响值为17 mm的要求。

从安全角度考虑,实际操作可按二等水准要求施测。

3. 贯通误差预计(1) 横向贯通误差预计由式当mβ=±0.7″,导线平均边长为650 m时,m y=±102 mm<120 mm(洞内分配值)。

浅析煤村煤矿贯通测量误差预计

浅析煤村煤矿贯通测量误差预计
定 向误 差为 :
m£ =±^m ‘ m =± 32 =±√ n 0+n / + =± ” 3・ + +, .
根 据公 式 :
M M( ) "
收 稿 日期 : 0 7— 7— 2 2 0 0 0
作 者 简 介 :郑 永 海 ( 9 4一) 男 , 南 新 密 人 , 级 工 程 师 ,9 2年 15 , 河 高 18 毕业 于浙 江 煤 炭 化 工 学 院 , 从 事 煤 田 地 质测 绘 工作 。 现
21 3 . 1. 9 0 9 6 . 3 9 . 1. 9 7
4 37 5 . 3 10 6 . 9 . 22 1. 5 2 3 8 1 8 .
8 6 .
4一 B
6 4 .
5 3
2 3 .
6 4 .

13 4 6 1.
1. 86
6. 5
1 1 地 面 连 接 误 差 .
对测 量误 差预计 如 下 。
1 两 井 定 向 的误 差
由于井深 较浅 , 因此 采用 单重 稳定 投点 , 上下 井 连接 方 案如 图 1所 示 。地 面 近 井 点 的敷 设 精 度 为 1 3 0 0的 闭合导线 , 结点 2后再 敷 设 2 副 4和 /00 到 一 副井 垂球 线连 接 。闭合 导线 点主 1直 接和 主垂球 线 连 接 , 测角 中误 差 5 。边 长 的 误 差 系数 ( 电测 其 ” 光 距 仪标 称精 度 ) 0 0 0 3 b=0 0 04 井 下 沿 巷 Ⅱ= . 0 , . 0 , 道敷 设 7 级 导线 。E 一A 一 一 一 进 行连 接 , ” 其 测角 中误 差为 7 , 长 误 差 系数 n=0 0 0 3 b= ”边 .0 , 0 0 04 两井 相距 2 . 6i。主井垂 深 1 5 0 5i, .0 , 35 n 6.9 n

贯通测量方案的选择与误差预计教学

贯通测量方案的选择与误差预计教学

数据保密
对于涉及保密要求的贯通测量 数据,应采取必要的安全保密 措施,确保数据安全。
在贯通测量完成后,应将相关 资料进行整理存档,以便后续 查阅和使用。
04
贯通测量案例分析
案例一:矿山贯通测量方案选择与误差预计
总结词
矿山贯通测量方案的选择与误差预计是确保矿山安全生产的重要环节。
详细描述
在矿山贯通测量中,应根据矿山的实际情况选择合适的测量方案,包括地面控制测量、井下控制测量以及贯通导 线测量等。同时,应充分考虑测量过程中可能出现的误差,并采取相应的措施进行预计和减小误差,以确保贯通 测量的精度和可靠性。
根据贯通测量的目标和现 场条件,选择合适的测量 方法、仪器和人员配置。
数据处理与分析
对测量数据进行处理、分 析和误差处理,确保测量 结果的准确性和可靠性。
01

明确贯通测量的目的、要 求和精度标准,为后续方
案制定提供依据。
实地测量
按照测量方案进行实地测 量,获取相关数据。
优化资源配置
合理配置人员、设备、时 间等资源,确保测量工作 的顺利进行。
贯通测量方案的评估方法
对比分析法
将不同方案的优缺点进行 对比,选择最优方案。
专家评估法
邀请专家对方案进行评估, 根据专家意见选择合适的 方案。
模拟实验法
通过模拟实验验证方案的 可行性和准确性。
02
贯通测量误差预计
贯通测量误差的来源
05
贯通测量方案的发展趋势
智能化贯通测量技术的应用
自动化数据处理
利用计算机技术和算法,实现测 量数据的自动处理和解析,减少
人工干预和误差。
实时监测与预警
通过传感器和远程监控系统,实时 监测测量数据,及时发现异常情况 并预警,提高安全性和可靠性。

贯通测量误差预计之浅见

贯通测量误差预计之浅见

贯通测量误差预计之浅见一、贯通测量误差预计的重要性在大型贯通规程中,测量工作起着至关重要的作用。

而贯通误差预计是检验测量方案是否可靠,能否实施的依据。

同时,只有通过贯通误差预计,才能制定出适合贯通工程的正确的测量方案。

二、贯通误差预计与测量设计对某矿14#层422盘区52207巷贯通测量进行《贯通测量误差预计与测量设计》。

预计贯通在K点处,南井与六风井之间直线距离约4㎞,地面导线长约5㎞,井下导线长约6㎞。

根据《规程》规定,结合工程需要,确定贯通相遇点K在水平方向上允许偏差不得超过0.5m。

由于沿同一煤层掘进,高程无偏差。

一)、贯通测量方案的选择本贯通测量仪器,地面、井下统一采用同一台DTM-532型全站仪。

1、地面控制测量本工程为两井间的井巷贯通工程,地面近井点以四个GPS测点:六风井近1、六风井近2、水池、北洋路西四个点为起始点建立平面控制系统,布成方向附合导线,用全站仪三架法进行施测,测后进行严密平差。

以求得六风井近1点、井口的坐标和六风井近1-六风井近2及井口点的方位角、水池点的坐标和水池-北洋路西的方位角,为起始数据,分别引测井下导线。

地面水平角施测按《国家三角测量和精密导线测量规范》有关四等精密导线测量的规定进行。

高程按《国家水准测量规范》有关四等水准测量的规定进行。

3、矿井联系测量及井下导线测量井口点起始,用全站仪经井筒导入坐标高程及施测井下导线,均按7″级导线施测,为了减小风流大的影响,采用三架法測至11#416-1辅巷开始埋设永久点,测永久点时,对准时除采取挡风措施外,采用重垂球,并注意提高对准精度。

测量时按《规程》要求,每测站两测回,同测回上、下半测回互差小于20″,测回间互差小于12″。

4、高程测量高程测量在测导线的同时,按四等水准测量的要求,进行三角高程测量。

垂直角观测符合测量限差要求,仪高和觇标高应用小钢卷尺在观测前后各量一次,两次丈量的互差不应大于4mm,取其平均值作为最终丈量值。

贯通测量方案的选择与误差预计 毛亚春

贯通测量方案的选择与误差预计   毛亚春

贯通测量方案的选择与误差预计毛亚春摘要:矿山测量属于该领域的一项十分关键的基础技术工作,但是,贯通项目的测量精度优劣在很大程度上决定着这一个项目能否准确贯通,贯通测量的方案设定和误差预计在施工中起指导作用,科学的指导和严谨的工作态度是贯通测量任务完成的保障。

本文进一步分析了贯通测量方案的选择与误差预计,以供同仁参考借鉴。

关键词:贯通测量;方案选择;误差预计一、贯通误差预计参数的类型贯通误差预计参数根据其各自情况不同主要划分为地面控制网误差预计参数、陀螺定向误差预计参数mT、立井导入高程误差预计参数mα、井下控制网误差预计参数。

地面控制网误差主要是由于地面已知控制点的坐标、方位角误差引起的,即边长误差mL上、角度误差mβ上及高程误差参数mH上。

井下控制网误差参数有测角误差参数mβ下、量边误差参数mL下及高程测量误差参数mH下。

测角误差有测量水平角误差和测量垂直角误差;量边误差有钢尺量边误差和光电测距仪量边误差;高程测量误差有水平测量误差和三角高程测量误差。

二、贯通误差来源两个或两个以上的掘进工作面在预定地点彼此接通的工程称为贯通。

贯通包括两个方向的误差: 贯通误差在贯通中线方向上的投影称为纵向误差,与之垂直的投影方向的误差称为横向误差。

在高程方向上的误差称为高程误差。

把纵向误差和横向误差的平方和几何平均值称为贯通点的点位误差。

由于导线测角和测边误差的累积,必然会使贯通点的设计位置与实际位置发生偏移,即产生点位误差。

贯通测量误差一般包括三个部分的误差,分别为地面控制部分误差,两井之间进行联系测量的误差和井下导线测量部分的误差。

地面控制部分误差和两井之间联系测量的误差可以采用不同的测量方法进行控制。

由于井下作业环境复杂,很难提高。

因此在进行贯通测量之前,必须对井下测量部分进行贯通测量的误差预计,来保证贯通工程的顺利进行。

本文在进行贯通点的误差预计时,分别推导了井下贯通点的横向误差和纵向误差计算公式,并讨论了在满足限差条件下如何使得贯通点的点位误差达到最小,根据推导结果采用条件平差的模型,在满足最小二乘条件的原则下,预计贯通点的点位误差。

隧道贯通测量误差预计方案

隧道贯通测量误差预计方案

隧道贯通测量误差预计方案隧道进出口、斜井间贯通时,除进行洞外导线和洞外高程测量之外,还必须进行隧道洞内和进出口、斜井间的联系测量。

所以在进行贯通测量误差预计时,要考虑隧道进出口、斜井间的联系测量误差及隧道洞内测量误差的综合影响。

(一)测量方案简述工程要求水平重要方向x’上的容许偏差为0.3m,竖直方向上的容许偏差为0.05m.(1) 隧道洞外进口、斜井按B级GPS网进行测量,测量时采用美国产天宝5800GPS观测2个时段,每个时段测量1.5小时。

(2)定向测量尤溪隧道进口、斜井各采用几何定向。

1、对中误差当定向边边长d=400m时,仪器及棱镜的对中误差为:E C=E T=±1”。

2、测线前后两测回的平均值误差M平=±1/√2=±0.71”.则M定=±√M EC2+M ET2+M平=±√12+12+0.712=±1.58”3、洞内导线测量进口从洞口起始边GCPI140-GCPI119边开始,沿大里程方向闭合到秀村斜井的CPI140-3~CPI140-4边。

测角、测边采用日本产SOKKIA SET230R全站仪,角度测9个测回:每边往、返各测3个测回,一测回内读数误差不大于5mm,单程测回间较差不大于10mm,往测及返测边长化算到隧道平均高程面上水平距离(经气象和倾斜改正)后的互差,不得大于边长1/6000。

所有闭(附)合导线和支导线均有不同观测者独立测量两次,取两次测量的角度及边长平均值,并进行严密平差计算。

4、隧道洞外水准测量进口与秀村之间的水准测量按照洞外二等水准要求实测,自进口洞外水准点GCPI140到秀村斜井洞口水准点BM60进行往返观测单程路线长度27KM,同时采用美国Trimble电子水准仪和日本产Sokkia电子水准仪实测。

5、洞内水准测量采用苏-光自动安平水准仪往返观测,往返高差的较差不大于±4√L(L 为水准点间的长度,以km 为单位)。

两井间巷道贯通测量设计及误差预计

两井间巷道贯通测量设计及误差预计

两井间巷道贯通测量设计及误差预计摘要:两个井筒之间的巷道贯通一般需要贯通测量距离长,受已有巷道坡度和角度限制,导线点不能均匀布置,导线边长一般较短,导线测站多,对贯通测量增加了难度。

为保证巷道能够准确贯通,在工程施工前要对贯通测量方案进行设计,依据设计的测量方法和各项精度要求进行误差预计计算,误差预计结果能满巷道贯通要求说明测量方案正确,否则需要重新设计。

关键词:两井;贯通;测量设计;误差预计一、概述铜川矿业公司玉华煤矿位于铜川市印台区,随矿井发展设计从地面开拓北风井与井下现有巷道定点贯通。

两井口间井下导线全长5300多米,地面控制距离近5600米,闭合长度10893米。

井下受巷道条件限制导线边长和角度不能均匀布置且观测条件差,所以施工前必须进行贯通设计和误差预计。

二、地面控制测量设计1.GPS平面控制根据付(斜)井和北风井两个井口附近的具体条件并兼顾今后测量工作,设计在付井附近布设六个近井点,北风井附近布设一组四个近井点,并与测区附近的三个国家控制点共同构网联测,采用GPS测量方案。

(1)已知点资料根据现有的“矿区控制点成果资料”,选取距测区10km以内的三个高等级控制点“葡萄寺”(Ⅱ等点)、“中石峁”(Ⅱ等点)及“草滩”(Ⅲ等点)作为GPS起算点。

(2)近井点布设首先布置与井下通视的井口永久点,其它点布设在稳定位置,要求最小基线长度不低于200m。

保证相邻两点之间相互通视,并尽可能使同组近井点之间都通视。

设计在两个井口共设置10个近井点,点位与编号见附图1。

(3)GPS网的精度设计根据《煤矿测量规程》确定近井点测量采用E级GPS网。

(4)GPS网的图形设计GPS网共有10个未知点(近井点)和3个已知点,其图形布设如附图1。

采用边连接方式,包括6个同步环。

最长基线边9238m,最短基线边300m。

总基线边36条,其中独立基线边18条,必要基线边12条,多余基线边6条。

表1E级GPS网测量精度与技术要求(5)GPS测量方法先对三个已知点进行GPS检测,在确认已知点进行GPS约束平差,然后再进行整体控制测量。

论述隧道贯通测量中导线设计与误差预计

论述隧道贯通测量中导线设计与误差预计

Science &Technology Vision 科技视界1隧道贯通当前现状测绘技术的发展,使得越来越多的先进仪器和方法应用于隧道贯通测量。

国家1:10000基本地形图为隧道选址提供了基础图件;遥感技术提供了多光谱影像,可对隐患地质构造和水文地质条件进行推断;光电测距仪,电子全站仪以及全球定位系统技术的应用,使隧道施工平面控制图的建立得到革命性的改变;电子计算机的普遍应用,使隧道控制网的优化设计和贯通误差变的十分简单。

目前世界最长的隧道为日本本州和北海道全长53.9公里的青函隧道。

迄今为止,我国最长的隧道为太行山隧道,其全长27.839公里。

随着时间的推移,一定会出现更长的隧道,且其更新的速度也会越来越快。

误差在测量过程中是不可避免的,隧道贯通中的主要误差为隧道贯通测量重要方向上的误差。

在实际施工中,通常因为提高工程进度、缩短工程期限以及改善隧道中的工作环境等,我们一般采用隧道两端的开切口为施工点,从隧道的两端同时进行开工。

为了保证隧道在贯通的方向和贯通点的的误差满足《工程测量规范》中的精度要求,所以在工程施工前,隧道贯通过程中测量设计方案及预计误差都是相当重要的。

此次举例来说明一下隧道贯通测量的导线设计和误差预计本次的贯通测量地面控制网为四等GPS 控制网,采用边连式的方法进行,最长边长2360米,最短边长1300米,平均边长约1805.83m,隧道高6m,宽13m。

仪器的标称精度为±(1+lppm×D)mm。

(1)基线条件精度指标各等级GPS 相邻点间弦长精度用下式表示:σ=a 2+(bd )2√式中:σ———GPS 基线向量的弦长中误差(mm),亦即等效距离误差;a———GPS 接收机标称精度中的固定误差(mm);b———GPS 接收机标称精度中的比例误差系数(ppm);d———GPS 网中的相邻点间的距离(km)。

(2)最弱边相对中误差为:12+(1*1.8)2√1300000=1650000≤1450002隧道导线测量方案的设计2.1隧道内平面测量隧道平面测量包括井下施工导线测量、施工控制导线测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章贯通测量方案的选择与误差预计第一节概述一、贯通测量设计书的编制贯通工程,尤其是重要的贯通工程,关系到整个矿井的设计、建设与生产,所以必须认真对待。

矿山测量人员应在重要贯通工程施测之前,编制好贯通测量设计书。

特别重要的贯通测量设计书要报矿务局审批。

中国矿业大学环境与测绘学院矿山测量学主要任务是选择合理的测量方案和测量方法,以保证巷道正确贯通。

设计书可参照下列提纲编制: (1) 井巷贯通工程概况。

(2) 贯通测量方案的选定。

地面控制测量,矿井联系测量及井下控制测量。

包括所用测量起始数据情况。

(3) 贯通测量方法。

包括采用的仪器、测量方法及其限差。

(4) 贯通测量误差预计。

(5) 贯通测量成本预计。

(6) 贯通测量中存在的问题和采取的措施。

中国矿业大学环境与测绘学院矿山测量学贯通测量误差预计,就是按照所选择的测量方案与测量方法,应用最小二乘准则及误差传播律,对贯通精度的一种估算。

它是预计贯通实际偏差最大可能出现的限度,而不是预计贯通实际偏差的大小,因此,误差预计只有概率上的意义。

其目的是优化测量方案与选择适当的测量方法,做到对贯通心中有数。

在满足采矿生产要求的前提下,既不由于精度太低而造成工程的损失,影响正常安全生产,也不因盲目追求高精度而增加测量工作量。

中国矿业大学环境与测绘学院矿山测量学根据误差理论可知,服从正态分布的随机变量X落在 ( m + ks , m - ks ) 区间内的概率为: k 0 P {m + ks < X < m - ks } = 2F (k ) = 2ò 1 e 2p t2 2 dt 式中μ——正态随机变量的数学期望E(X)σ——正态随机变量的方差D(X) k——正系数中国矿业大学环境与测绘学院矿山测量学当取二倍中误差(方差),即k=2作为容许误差时,则其出现的概率约为95.5%;当k=3时,其概率约为99.7%。

k值愈大,则其随机变量落在(μ±kσ)区间的概率愈大,在评定测量成果质量时,一般均取二倍中误差作为容许误差,在预计误差,例如重要巷道的贯通时,则取三倍中误差作为预计误差,这样的目的。

主要是保证测量工作的质量能满足采矿工程的要求中国矿业大学环境与测绘学院矿山测量学成本采矿测量 c 精度 m 中国矿业大学环境与测绘学院矿山测量学表5-1 贯通测量的容许偏差贯通种类贯通巷道名称及特点在贯通面上的容许偏差/m 在中线之间第一类第二类立井贯通同一矿井内贯通巷道两井之间贯通巷道用小断面开凿立井井筒全断面全断面且预装罐梁灌道 0.3 0.5 0.5 0.1 0.02-0.03 在腰线之间 0.2 0.2 ---- 第三类中国矿业大学环境与测绘学院矿山测量学中国矿业大学环境与测绘学院矿山测量学贯通误差预计分为: 一井内巷道贯通测量误差预计两井间巷道贯通测量误差预计立井贯通测量误差预计井下导线加测坚强陀螺定向边后的巷道贯通测量误差预计。

中国矿业大学环境与测绘学院矿山测量学二、选择贯通测量方案及误差预计的一般方法 (一) 了解情况,收集资料,初步确定贯通测量方案 (1)了解有关贯通工程的设计、部署、工程限差要求和贯通相遇点的位置等情况 (2)检核设计部门提供的图纸资料 (3)收集与贯通测量有关的测量资料,抄录必要的测量起始数据,并确认其可靠性和精度 (4)绘制巷道贯通测量设计平面图 (5)拟定出可供选择的测量方案。

中国矿业大学环境与测绘学院矿山测量学(二) 选择合适的测量方法测量方案初步确定后,选用什么仪器和哪种测量方法,规定多大的限差,采取哪些检核措施,都要一一确定下来。

这个选择是和误差预计相配合进行的,常常是有反复的过程。

(三) 进行贯通误差预计根据所选择的测量仪器和方法,确定各种误差参数。

依据初步选定的贯通测量方案和各项误差参数,就可估算出各项测量误差引起的贯通相遇点在贯通重要方向上的误差。

中国矿业大学环境与测绘学院矿山测量学(四) 贯通测量方案和测量方法的最终确定将估算所得的贯通预计误差与设计要求的容许偏差值进行比较,若前者小于后者,则初步确定的测量方案与测量方法是可行的。

当然前者过小也是不合适的。

若预计误差超过了容许偏差,则应调整测量方案或修改测量方法,增加观测次数,再重新进行估算。

通过逐渐趋近的方法,直到符合要求为止。

最后,根据测量方案最优、测量方法合理、预计误差小于容许偏差的原则,把测量方案与方法最终确定下来,编写出完整详细的贯通测量设计书,作为施测的依据。

中国矿业大学环境与测绘学院矿山测量学第二节一井内巷道贯通测量的误差预计这类贯通只需进行井下导线测量和高程测量,而不需进行地面连测和矿井联系测量,因此误差预计也只是估算井下导线测量和高程测量的误差。

一、水平重要方向(x′)上的误差预计贯通测量误差就是从k点开始,沿下山和平巷敷设导线,并测回到k点所引起的误差。

从形式上看似乎是一条闭合导线k-1-2……15-16-k,但在贯通之前实际上是一条支导线。

所以预计在水平重要方向上的贯通误差,实质上 M x 就是预计支导线终点k在x′方向上的误差。

k 中国矿业大学环境与测绘学院矿山测量学中国矿业大学环境与测绘学院矿山测量学支导线终点在x’方向上的中误差: a 2 2 2 2 2 Mx’k =(1/ρ )∑Ry’i mβi +∑cos imli2 钢尺量边时:a 2 2 2 2 2 2 Mx’k =(1/ρ )∑Ry’i mβi +a ∑licos i 2 xK 若导线独立施测两次,则平均值中误差为:2 2 M x′k平=M x′k/2 k点在x′方向上的预计误差为:Mx′k预=2Mx′k平中国矿业大学环境与测绘学院矿山测量学二、竖直方向上的误差预计贯通相遇点k在竖直方向上的误差是由上、下平巷中的水准测量误差和两个下山中的三角高程测量误差引起的,可按水准测量和三角高程测量的误差公式分别计算,然后求其累积总和。

(一) 上、下平巷中水准测量误差引起k点在高程上的误差井下水准测量误差MH水可按下列方法之一来估算。

中国矿业大学环境与测绘学院矿山测量学按每公里水准路线的高差中误差估算: M h水 = mhL R 式中 mhL——每公里长水准路线的高差中误差,可按《煤矿测量规程》规定取为mhL=50mm/22=±17.7mm/km或按本矿实测资料分析求得。

R——上、下平巷中水准路线总长度,以km为单位。

按理论公式估算: MH水=± m0 n 式中 m0——水准尺读数误差; n——上、下平巷中水准测量的总测站数。

中国矿业大学环境与测绘学院矿山测量学(二) 井下三角高程测量的误差按单位长度三角高程路线的高差中误差估算: M H 经=mhL L 式中 mhL——每公里长度三角高程路线的中误差,可按《煤矿测量规程》的规定取为 mhL =±100mm/2=±50mm/km; L——两下山中三角高程测量路线总长度,以km计。

中国矿业大学环境与测绘学院矿山测量学按理论公式估算: 可用第八章所推证的理论公式计算。

但由于此类贯通测量路线中,一号下山与二号下山的高差基本相同,所以量边的系统误差影响可不予考虑,此时 m 2 H经 (偶 ) mH经 = ± 2 式中 m H(偶) ——偶然误差引起的三角高程测量中误差,计算方法见第八章。

中国矿业大学环境与测绘学院矿山测量学(三) k点在高程上的预计中误差 M2Hk=±M2 H水+M2H径若独立进行n次高程测量,则n次测量平均值的中误差为: M Hk平=M Hk/ M H预=2M Hk平 n (四) k 点在高程上的预计贯通误差中国矿业大学环境与测绘学院矿山测量学第三节两井间巷道贯通测量的误差预计两井间的巷道贯通时,除进行井下导线测量和井下高程测量之外,还必须进行地面测量和矿井联系测量。

所以在进行贯通测量误差预计时,要考虑地面测量误差、矿井联系测量误差及井下测量误差的综合影响。

中国矿业大学环境与测绘学院矿山测量学中国矿业大学环境与测绘学院矿山测量学一.贯通相遇点k在水平重要方向上的误差预计贯通相遇点k在水平重要方向上的误差来源包括:地面平面控制测量误差、定向测量误差和井下平面控制测量误差。

(一) 地面控制测量误差引起k点在x′方向上的误差两井间地面连测的平面控制测量的可能方案有: GPS,导线,三角测量,三边测量,边角网等方法。

中国矿业大学环境与测绘学院矿山测量学1.地面采用GPS(全球定位系统)时的误差预计在将GPS用于两井间巷道贯通测量时,可选用E级或D级精度来测设两井井口附近的近井点,而且两近井点Ⅰ与Ⅱ之间应尽量通视。

这时由于地面GPS测量误差所引起的k点在x′轴方向上的贯通误差按下式估算:中国矿业大学环境与测绘学院矿山测量学M x '上 = ± M SⅠⅡ cos a 'SⅠⅡ M S = ± a 2 + ( bS ) 2 (10-1) 式中 MSⅠⅡ——近井点Ⅰ与Ⅱ之间边长SⅠⅡ的误差; (10-2) a——固定误差,D级及E级GPS网的a≤10 mm; b——比例误差系数×10-6 ,D级GPS网的b≤10 ×106,E级GPS网的b≤20 ×10-6;α′——SⅠⅡ边与贯通重要方向x′之间的夹角。

中国矿业大学环境与测绘学院矿山测量学(1) 两近井点Ⅰ与Ⅱ之间应尽量互相通视,这样在由近井点Ⅰ向风井井口施测连接导线时,便可以近井点Ⅱ为后视点,同样,由近井点Ⅱ向立井施测连接导线时,也可以近井点Ⅰ为后视点,从而消除了起始边 (Ⅰ—Ⅱ)的坐标方位角中误差对于贯通的影响。

中国矿业大学环境与测绘学院矿山测量学(2) 如果受地形、地物条件的限制,近井点Ⅰ与Ⅱ之间无法通视,则可在Ⅰ、Ⅱ之间敷设地面连接导线,由于Ⅰ点及Ⅱ点的坐标已知,便可采用“无定向导线”的解算方法,即类似于两井几何定向时解算井下连接导线的方法,求出Ⅰ与Ⅱ之间各导线点1,2,……的坐标及各导线边坐标方位角。

中国矿业大学环境与测绘学院矿山测量学2. 地面采用导线方案时的误差预计当在地面两井口近井点之间布设闭合导线(或者是附合导线中的一部分)时,在进行地面导线的严密平差时,应当同时评定出近井点1与近井点j两点之间在x′方向上的相对点位误差Mx′1-j 以及(1-n)边的坐标方位角α1 与(j-(j-1))边的坐标方位角αj之间的相对中误差MΔα=Mα1-αj. 中国矿业大学环境与测绘学院矿山测量学地面导线测量误差对于贯通的影响为: M Da MX 上 = ± ( MX 1 - j ) + 2 r 2 2 2 2 R y1 + R yj 2 è ÷ ÷式中Mx′1-j——两个近井点1与j在x′方向上的相对点位误差;MΔα——两条近井点后视边坐标方位角之间的相对中误差; R y′1,Ry′j——分别为导线点1和j与k点连线在y′轴上的投影长。

相关文档
最新文档