第四章 MATLAB的数值计算功能(内容参考)
Matlab中常用的数值计算方法

Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。
Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。
本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。
一、数值积分数值积分是通过数值方法来近似计算函数的定积分。
在Matlab中,常用的数值积分函数是'quad'和'quadl'。
'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。
下面是一个使用'quad'函数计算定积分的例子。
假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。
我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。
二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。
在科学研究和工程应用中,常常需要求解微分方程的数值解。
在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。
'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。
下面是一个使用'ode45'函数求解常微分方程的例子。
假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。
我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。
三、非线性方程求解非线性方程是指方程中包含非线性项的方程。
在很多实际问题中,我们需要求解非线性方程的根。
Matlab中的数值计算方法简介

Matlab中的数值计算方法简介引言:Matlab是一种强大的数值计算软件,广泛应用于工程、科学、金融等领域。
它拥有丰富的数值计算方法库,可以帮助研究者和工程师解决各种数值计算问题。
本文将简要介绍几种常见的数值计算方法,并说明它们在Matlab中的实现和应用。
一、插值法插值法是一种通过已知数据点之间的插值,估计未知数据点的数值的方法。
常见的插值方法包括线性插值、拉格朗日插值和样条插值。
在Matlab中,我们可以使用interp1函数进行插值计算。
该函数可以根据给定的数据点,计算出在指定位置的插值结果。
我们可以通过设置插值的方法和插值节点的数目来调整插值的精度与计算效率。
二、数值积分数值积分是一种通过近似求解定积分的方法。
在Matlab中,我们可以使用quad和quadl函数进行数值积分。
这些函数可以自动选择合适的数值积分方法,并提供了较高的精度和计算效率。
我们只需提供被积函数和积分区间,即可获得近似的积分结果。
对于一些特殊形式的积分,如复杂函数或无穷积分,Matlab还提供了相应的函数供我们使用。
三、线性方程组求解线性方程组的求解是数值计算中的一个重要问题。
在实际应用中,我们经常会遇到大规模线性方程组的求解问题。
在Matlab中,我们可以使用矩阵运算功能和线性方程组求解函数来解决这类问题。
Matlab提供了一系列的求解函数,包括直接法和迭代法。
其中,直接法适用于小规模线性方程组,迭代法则适用于大规模线性方程组。
我们可以根据具体情况选择合适的方法和函数来求解线性方程组。
四、微分方程求解微分方程是许多科学和工程问题的数学模型,求解微分方程是数值计算中的常见任务。
在Matlab中,我们可以使用ode45函数来求解常微分方程的初值问题。
该函数采用龙格-库塔方法,对微分方程进行数值积分,并给出近似的解析结果。
对于偏微分方程和其他更复杂的微分方程问题,Matlab还提供了更多的求解函数和工具箱供我们使用。
五、最优化问题求解最优化问题是指在特定约束条件下,求解给定目标函数的最大值或最小值的问题。
matlab入门经典教程--第四章数值计算

m a t l a b入门经典教程--第四章数值计算-CAL-FENGHAI.-(YICAI)-Company One1第四章数值计算4.1引言本章将花较大的篇幅讨论若干常见数值计算问题:线性分析、一元和多元函数分析、微积分、数据分析、以及常微分方程(初值和边值问题)求解等。
但与一般数值计算教科书不同,本章的讨论重点是:如何利用现有的世界顶级数值计算资源MATLAB。
至于数学描述,本章将遵循“最低限度自封闭”的原则处理,以最简明的方式阐述理论数学、数值数学和MATLAB计算指令之间的内在联系及区别。
对于那些熟悉其他高级语言(如FORTRAN,Pascal,C++)的读者来说,通过本章,MATLAB卓越的数组处理能力、浩瀚而灵活的M函数指令、丰富而友善的图形显示指令将使他们体验到解题视野的豁然开朗,感受到摆脱烦琐编程后的眉眼舒展。
对于那些经过大学基本数学教程的读者来说,通过本章,MATLAB精良完善的计算指令,自然易读的程序将使他们感悟“教程”数学的基础地位和局限性,看到从“理想化”简单算例通向科学研究和工程设计实际问题的一条途径。
对于那些熟悉MATLAB基本指令的读者来说,通过本章,围绕基本数值问题展开的内容将使他们体会到各别指令的运用场合和内在关系,获得综合运用不同指令解决具体问题的思路和借鉴。
由于MATLAB的基本运算单元是数组,所以本章内容将从矩阵分析、线性代数的数值计算开始。
然后再介绍函数零点、极值的求取,数值微积分,数理统计和分析,拟合和插值,Fourier分析,和一般常微分方程初值、边值问题。
本章的最后讨论稀疏矩阵的处理,因为这只有在大型问题中,才须特别处理。
从总体上讲,本章各节之间没有依从关系,即读者没有必要从头到尾系统阅读本章内容。
读者完全可以根据需要阅读有关节次。
除特别说明外,每节中的例题指令是独立完整的,因此读者可以很容易地在自己机器上实践。
MATLAB从版升级到版后,本章内容的变化如下:MATLAB从版起,其矩阵和特征值计算指令不再以LINPACK和EISPACK库为基础,而建筑在计算速度更快、运行更可靠的LAPACK和ARPACK程序库的新基础上。
MATLAB-第4章

v
i 1
n
2 i
。
max { vi } 。
1 ≤i ≤n
设 A 是一个 m ×n 的矩阵,矩阵的 3 种常用范数如下。 1-范数: A 1 max { aij } 。
1 ≤ j ≤n i 1 m
2-范数: A 2 1 ,其中 λ 1 为 A'A 最大特征值。 ∞-范数: A max { aij } 。
【例4.6】先建立5 × 5矩阵A,然后将A的第一行元素乘以1, 第二行乘以2,…,第五行乘以5。 用一个对角矩阵左乘一个矩阵时,相当于用对角阵的第一个 元素乘以该矩阵的第一行,用对角阵的第二个元素乘以该 矩阵的第二行……依此类推,因此,只需按要求构造一个 对角矩阵D,并用D左乘A即可。命令如下: A=[1:5;2:6;3:7;4:8;5:9] D=diag(1:5); D*A %用D左乘A,对A的每行乘以一个指定常数
(2)构造对角矩阵 设V为具有m个元素的向量,diag(V,k)的功能是产生一个 n × n(n = m + k|)对角阵,其第k条对角线的元素即为 向量V的元素。 例如: diag(1:3,-1) ans = 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3 0 省略k时,相当于k为0,其主对角线元素即为向量V的元素。
2.矩阵的秩与迹 (1)矩阵的秩 rank(A) (2)矩阵的迹 矩阵的迹即矩阵的对角线元素之和。 trace(A)。
3.向量和矩阵的范数
设向量 V = (v1 ,v2 ,…,vn ),向量的 3 种常用范数如下。 1-范数: V 2-范数: V ? -范数: V
1
vi 。
i 1
n
2
3.矩阵的转置 所谓转置,即把源矩阵的第一行变成目标矩阵第一列,第二 行变成第二列……依此类推。显然,一个m行n列的矩阵 经过转置运算后,变成一个n行m列的矩阵。MATLAB中, 转置运算符是单撇号(')。
如何使用MATLAB进行数值计算

如何使用MATLAB进行数值计算使用MATLAB进行数值计算一、引言数值计算是现代科学与工程领域中不可或缺的一部分,它能够解决许多实际问题,包括求解方程、优化问题和模拟实验等。
而MATLAB作为一种功能强大的数值计算软件,被广泛应用于各个领域。
本文将介绍如何使用MATLAB进行数值计算,并结合实例进行说明。
二、MATLAB基础首先,我们需要了解MATLAB的基本操作和语法,以便能够熟练运用。
MATLAB使用矩阵和数组来存储和处理数据,因此,熟悉矩阵和数组操作是非常重要的。
MATLAB中的矩阵和数组是通过方括号来定义的,例如:A = [1 2 3; 4 5 6; 7 8 9]表示一个3x3的矩阵A,其中每个元素由空格或分号隔开。
我们可以使用括号或索引来访问矩阵中的元素。
例如,要访问矩阵A的第二行第三列的元素,可以使用A(2,3)。
MATLAB提供了大量内置的数学函数,包括算术运算、三角函数、指数和对数函数等。
这些函数可以直接应用于矩阵和数组,简化了数值计算的过程。
三、方程求解方程求解是数值计算中的一个重要任务,MATLAB提供了多种方法来求解方程,包括代数方法和数值方法。
1. 代数方法对于一些简单的方程,例如一元一次方程或二次方程,可以直接使用MATLAB内置的解方程函数进行求解。
例如,对于一元一次方程ax + b = 0,可以使用solve函数来求解。
代码示例:syms x;eqn = a*x + b == 0;sol = solve(eqn, x);其中,syms x;指定x为符号变量,eqn为方程表达式,sol为方程的解。
2. 数值方法对于一些复杂的方程,无法用解析方法求解。
这时,可以使用数值方法来近似求解。
MATLAB提供了多种数值求解方法,包括二分法、牛顿法和割线法等。
这些方法可以通过迭代逼近的方式求解方程的根。
代码示例:f = @(x) x^2 - 4;x0 = 2;x = fzero(f, x0);其中,f为方程的表达式,x0为初始猜测值,x为方程的根。
MATLAB数值计算功能

MATLAB数值计算功能下面将详细介绍MATLAB数值计算功能的一些主要方面:1. 矩阵运算和线性代数:MATLAB具有强大的矩阵操作功能,可以直接对矩阵进行加减乘除、求逆矩阵、求特征值等运算。
MATLAB中的线性方程组求解函数(如`linsolve`和`inv`)可以更轻松地解决各种线性代数问题。
2. 数值积分和微分:MATLAB提供了多种数值积分和微分函数,用于求解一元和多元函数的定积分、不定积分、数值微分和数值求导。
例如,可以使用`integral`函数计算函数的定积分,并使用`diff`函数计算函数的导数或`gradient`函数计算梯度。
3. 方程求解:MATLAB提供了一系列函数,用于解决非线性方程和代数方程组。
这些函数包括`fsolve`(用于求解非线性方程),`roots`(用于求解多项式方程的根)和`solve`(用于求解代数方程组)等。
4. 曲线拟合和数据拟合:MATLAB提供了多个函数用于曲线拟合和数据拟合,包括`polyfit`(多项式拟合),`lsqcurvefit`(非线性最小二乘曲线拟合),`interp1`(一维插值)和`griddata`(多维数据插值)等。
这些函数可以帮助用户找到数据之间的模式和关系。
5. 常微分方程(ODE)求解:MATLAB提供了用于求解常微分方程组(ODE)的函数,既可以用传统的数值方法求解,也可以用符号计算求解。
用户可以使用`ode45`、`ode23`或`ode15s`等函数来求解初值问题或边界值问题。
6. 线性最小二乘拟合:MATLAB中的`lsqnonlin`函数可以用于线性最小二乘问题的求解,包括曲线拟合、数据拟合、参数估计等。
用户可以使用该函数来找到使得拟合曲线和观测数据之间残差最小的参数。
7. 数值优化:MATLAB包含一系列优化函数,可以求解常规优化问题、无约束优化问题、约束优化问题等。
用户可以使用函数`fminsearch`、`fminunc`和`fmincon`等来找到函数的最小值或最大值。
MATLAB数值计算功能

MATLAB数值计算功能
MATLAB是一种非常强大的数值计算软件,被广泛应用于科学计算、
工程计算和数据分析等领域。
它提供了丰富的数值计算功能,包括基本的
数学运算、线性代数、数值积分、微分方程求解、优化算法等。
下面将详
细介绍一些常见的数值计算功能。
1.数学运算:
MATLAB提供了丰富的数学函数,可以进行各种基本的算术运算,如
加减乘除、幂运算、取模运算等。
同时,它还提供了一些高级的数学函数,如三角函数、指数函数、对数函数等。
通过这些函数,用户可以进行各种
复杂的数学运算。
2.线性代数:
3.数值积分:
4.微分方程求解:
5.优化算法:
MATLAB提供了各种优化算法,如线性规划、非线性规划、整数规划、二次规划等。
用户可以通过设定目标函数和约束条件,利用MATLAB的优
化函数寻找最佳的解。
这对于优化问题的求解非常有用,如工程设计、生
产调度等。
6.统计分析:
7.数据可视化:
总之,MATLAB的数值计算功能非常丰富,可以满足各种数学计算和数据分析的需求。
它不仅提供了各种基本的数学运算功能,还提供了高级的线性代数、数值积分、微分方程求解、优化算法和统计分析等功能。
同时,其强大的数据可视化功能也是很多用户选择MATLAB作为数值计算工具的重要原因之一。
数值分析第四章外推法计算数值微分MATLAB计算实验报告

数值分析第四章外推法计算数值微分MATLAB计算实验报告数值分析MATLAB计算实验报告姓名班级学号⼀、实验名称⽤MATLAB编程实现数值微分的外推法计算。
⼆、实验⽬的1.掌握数值微分和定义和外推法的计算过程;2.了解数值微分外推法的计算⽅法并且编写出与其算法对应的MATLAB程序代码;3.体会利⽤MATLAB软件进⾏数值计算。
三、实验内容⽤外推法计算f(x)=x2e?x在x=0.5的导数。
四、算法描述1.命名函数。
2.如果输⼊未知数少于四个,默认精度10^-33.描述T表矩阵坐标4.依次赋值计算 T表第⼀列5.根据数值微分计算公式求出T表矩阵的值6.若达到精度则运算结束,若未达到循环计算7.输出T表,得出的值就是导数值五、实验结果六、实验结果分析此实验通过MATLAB实现外推法数值微分计算,得到相应的数据,⽅便对数据进⾏分析。
从结果可以看出,当步长h=0.025时⽤中点微分公式只有3位有效数字,外推⼀次达到5位有效数字,外推两次达到9位有效数字。
七、附录(程序)function g=waituifa(fname,x,h,e)if nargin<4,e=1e-3;end;i=1;j=1;G(1,1)=(feval(fname,x+h)-feval(fname,x-h))/(2*h);G(i+1,1)=(feval(fname,x+h/2)-feval(fname,x-h/2))/h;G(i+1,j+1)=(4^j*G(i+1,j)-G(i,j))/(4^j-1);while abs(G(i+1,i+1)-G(i+1,i))>ei=i+1;G(i+1,1)=(feval(fname,x+h/2^i)-feval(fname,x-h/2^i))/(2*h/2^i); for j=1:iG(i+1,j+1)=((4^j)*G(i+1,j)-G(i,j))/(4^j-1);endendGg=G(i+1,i+1);。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章MATLAB 的数值计算功能
一.多项式`
1.多项式的表达与创建
Matlab用矢量表达多项式系数,元素按降幂排列:
P(x)=a0x n+a1x n-1+a2x n-2…a n-1x+a0
其系数矢量为:P=[a0 a1… a n-1 a n]
如将根矢量表示为:
ar=[ ar1 ar2… ar n]
则根矢量与系数矢量之间关系为:
(x-ar1)(x- ar2) … (x- ar n)= a0x n+a1x n-1+a2x n-2…a n-1x+a0多项式系数矢量可通过调用函数p=poly(ar)产生
例1:由根矢量创建多项式。
将多项式(x-6)(x-3)(x-8)表示为系数形式a=[6 3 8]
pa=poly(a) %求系数矢量
ppa=poly2sym(pa) %以符号形式表示原多项式
ezplot(ppa,[-50,50])
pa =
1 -17 90 -144
ppa =
x^3-17*x^2+90*x-144
注:(1)根矢量元素为n ,则多项式系数矢量元素为n+1;
2)函数poly2sym(pa) 把多项式系数矢量表达成符号形式的多项式,缺省情况下自变量符号为x,可以指定自变量。
(3)使用简单绘图函数可以直接绘制符号形式多项式的曲线。
例2:求三阶方阵A的特征多项式系数,并转换为多项式形式。
a=[6 3 8;7 5 6; 1 3 5]
Pa=poly(a) %求矩阵的特征多项式系数矢量
Ppa=poly2sym(pa)
Pa =
1.0000 -16.0000 38.0000 -83.0000
Ppa =
x^3-17*x^2+90*x-144
注:n 阶方阵的特征多项式系数矢量一定是n +1阶的。
例3:由给定复数根矢量求多项式系数矢量。
r=[-0.5 -0.3+0.4i -0.3-0.4i];
p=poly(r)
pr=real(p)
ppr=poly2sym(pr)
p =
1.0000 1.1000 0.5500 0.1250
pr =
1.0000 1.1000 0.5500 0.1250
ppr =
x^3+11/10*x^2+11/20*x+1/8
注:(1)要形成实系数多项式,根矢量中的复数根必须共轭成对;
(2)含复数根的根矢量所创建的多项式系数矢量中,可能带有很小的虚部,此时可采用取实部的命令(real)把虚部滤掉。
例4:将多项式的系数表示形式转换为根表现形式,poly和roots互为逆函数。
求x3-6x2-72x-27的根
a=[1 -6 -72 -27]
r=roots(a)
r =
12.1229
-5.7345
-0.3884
MATLAB约定,多项式系数矢量用行矢量表示,根矢量用列矢量表示。
>>
1. 多项式的乘除运算
多项式乘法用函数conv(a,b)实现,除法用函数deconv(a,b)实现。
例1:a(s)=s2+2s+3, b(s)=4s2+5s+6,计算a(s)与b(s)的乘积。
a=[1 2 3]; b=[4 5 6];
c=conv(a,b)
cs=poly2sym(c,’s’)
c =
4 13 28 27 18
cs =
4*s^4+13*s^3+28*s^2+27*s+18
例2:展开(s2+2s+2)(s+4)(s+1) (多个多项式相乘)
c=conv([1,2,2],conv([1,4],[1,1]))
cs=poly2sym(c,’s’)(指定变量为s)
c =
1 7 16 18 8
cs =
s^4+7*s^3+16*s^2+18*s+8
例2:求多项式s^4+7*s^3+16*s^2+18*s+8分别被(s+4),(s+3)除后的结果。
c=[1 7 16 18 8];
[q1,r1]=deconv(c,[1,4]) q—商矢量,r—余数矢量
[q2,r2]=deconv(c,[1,3])
cc=conv(q2,[1,3]) 对除(s+3)结果检验
test=((c-r2)==cc)
q1 =
1 3 4 2
r1 =
0 0 0 0 0
q2 =
1 4 4 6
r2 =
0 0 0 0 -10
cc =
1 7 16 18 18
test =
1 1 1 1 1
1. 其他常用的多项式运算命令
pa=polyval(p,s) 按数组运算规则计算给定s 时多项式p 的值。
pm=polyvalm(p,s) 按矩阵运算规则计算给定s 时多项式p 的值。
[r,p,k]=residue(b,a) 部分分式展开,b,a 分别是分子分母多项式系数
矢量,r,p,k 分别是留数、极点和直项矢量
p=polyfit(x,y,n) 用n 阶多项式拟合x ,y 矢量给定的数据。
polyder(p) 多项式微分。
注: 对于多项式b(s)与不重根的n 阶多项式a(s)之比,其部分分式展开为:)()()(2211s k p s r L p s r p s r s a s b n n +-++-+-=
式中:p 1,p 2,…,p n 称为极点,r 1,r 2,…,r n 称为留数,k(s)称为直项,假如a(s)含有m 重根p j ,则相应部分应写成:
m j m j j j j j
p s r L p s r p s r )()(121-++-+--++
例3:对 (3x 4+2x 3+5x 2+4x+6)/(x 5+3x 4+4x 3+2x 2+7x+2) 做部分分式展开
a=[1 3 4 2 7 2];。