2019届中考数学试题分类汇编:一元一次方程(含解析)

合集下载

2019中考数学专题练习-一元一次方程的实际应用-行程问题(含解析)

2019中考数学专题练习-一元一次方程的实际应用-行程问题(含解析)

2019中考数学专题练习-一元一次方程的实际应用-行程问题(含解析)一、单选题1.甲乙二人在400米的环形跑道上练习同向竞走.乙每分钟走80米,甲每分钟走100米,现在甲在乙前100米,多少分钟后两人相遇?()A. 5分钟B. 20分钟C. 15分钟D. 10分钟2.A,B两站间特快列车需要行驶3小时30分钟,早6时两站同时对发首次列车,以后每隔1小时发一次车.那么,上午9时从A站发出的特快列车将与B站出发的列车相遇的次数是()A. 5次B. 6次C. 7次D. 8次3.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A. x﹣1=5(1.5x)B. 3x+1=50(1.5x)C. 3x﹣1=(1.5x)D. 180x+1=150(1.5x)4.一列匀速前进的火车,从它进入320米长的隧道到完全通过隧道共用了18秒,隧道顶部一盏固定的小灯灯光在火车上照了10秒钟,则这列火车的长为()A. 190米B. 400米C. 380米D. 240米5.甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是()A. 7x=6.5x+5B. 7x+5=6.5xC. (7﹣6.5)x=5D. 6.5x=7x﹣56.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是()A. 7.5秒B. 6秒C. 5秒D. 4秒7.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A. 2B. 2或2.25C. 2.5D. 2或2.58.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A. B. C. D.9.在长400米的环形跑道上,小明和小亮在同一地点同时同向出发,小明每分钟跑280米,小亮每分钟跑230米,若设两人x分钟第一次相遇,所列方程是()A. 280x+230x=400B. 280x+230x=400×2C. 280x﹣230x=400D. 280x﹣230x=400×210.父子二人早上去公园晨练,父亲从家出了跑步到公园需30分钟,儿子只需20分钟,如果父亲比儿子早出发5分钟,儿子追上父亲需()A. 8分钟B. 9分钟C. 10分钟D. 11分钟11.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A. B. C. D.12.某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x小时,则可列方程得()A. B. C. 5(x﹣)=4xD.13.一列长150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是()秒A. 60B. 50C. 40D. 3014.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A. 2或2.5B. 2或10C. 10或12.5D. 2或12.5二、填空题15.甲乙两人骑自行车同时从相距65km的两地相向而行,2h相遇.若甲比乙每小时多骑2.5km,乙的速度是________km/h.16.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________.17.甲乙两地相距250km, 某天小颖从上午7: 50由甲地开车前往乙地办事.在上午9: 00, 10: 00, 11: 00这三个时刻, 车上的导航仪都进行了相同的提示: 如果按出发到现在的平均速度继续行驶,那么还有1个小时到达乙地. 如果导航仪的提示语都是正确的,那么在上午11:00时,小颖距乙地还有________km.18.京﹣沈高速铁路河北承德段通过一隧道,估计从车头进入隧道到车尾离开隧道共需45秒,整列火车完全在隧道的时间为32秒,车身长180米,设隧道长为x米,可列方程为________ .19.A、B两动点分别在数轴﹣6、12两位置同时向数轴负方向运动,它们的速度分别是2单位长度/秒、4单位长度/秒,另一动点C也在数轴12的位置向数轴负方向运动,当遇到A 后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B追上A 时,C立即停止运动.若点C一直以8单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是________ 个单位长度.20.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为 ________21.梁老师驾车从家乡出发,上国道到南昌,其间用了4.5h;返回时走高速公路,路程缩短了5km,平均速度提高了10km/h,比去时少用了0.5h回到家乡,若设他家乡到南昌走国道的路程为xkm,则可列方程为 ________22.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若船在静水中速度为26km/h,水流速度为2km/h,则A港和B港相距________ km.三、解答题23.甲乙两地之间相距30km,A同学从甲地骑自行车去乙地,B同学从乙地骑自行车去甲地,两人同时出发,相向而行,经过2小时相遇;相遇后,A同学就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有4km.求:A、B骑车的速度各是多少?24.A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时。

中考数学专题复习一元一次方程(含解析)

中考数学专题复习一元一次方程(含解析)

中考备考专题复习:一元一次方程一、单选题1、(2016•大连)方程2x+3=7的解是()A、x=5B、x=4C、x=3.5D、x=22、(2016•梧州)一元一次方程3x﹣3=0的解是()A、x=1B、x=﹣1C、x=D、x=03、若关于x的方程(k-1)x2+x-1=0是一元一次方程.则k=( )A、0B、1C、2D、34、(2016•泰安)当1≤x≤4时.mx﹣4<0.则m的取值范围是()A、m>1B、m<1C、m>4D、m<45、已知方程2x-3=+x的解满足|x|-1=0.则m的值是()A、-6B、-12C、-6与-12D、任何数6、若2(a+3)的值与4互为相反数.则a的值为()A、﹣1B、﹣C、﹣5D、7、下列各式中.是方程的个数为()(1)-3-3=-7 (2)3x-5=2x+1 (3)2x+6(4)x-y=0 (5)a+b>3 (6)a2+a-6=0A、1个B、2个C、3个D、4个8、如果等式ax=b成立.则下列等式恒成立的是().A、abx=abB、x=C、b-ax=a-bD、b+ax=b+b9、已知关于x的方程x2+bx+a=0有一个根是-a(a≠0) . 则a-b的值为().A、-1B、0C、1D、210、在如图的2016年6月份的月历表中.任意框出表中竖列上三个相邻的数.这三个数的和不可能是()A、27B、51C、69D、7211、互联网“微商”经营已成为大众创业新途径.某微信平台上一件商品标价为200元.按标价的五折销售.仍可获利20元.则这件商品的进价为()A、120元B、100元C、80元D、60元12、某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3.二楼售出与未售出的座位数比为3:2.且此场音乐会一、二楼未售出的座位数相等.则此场音乐会售出与未售出的座位数比为何?()A、2:1B、7:5C、17:12D、24:1713、某车间有26名工人.每人每天可以生产800个螺钉或1000个螺母.1个螺钉需要配2个螺母.为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉.则下面所列方程正确的是()A、2×1000(26﹣x)=800xB、1000(13﹣x)=800xC、1000(26﹣x)=2×800xD、1000(26﹣x)=800x14、8月份是新学期开学准备季.东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后.超出部分按50%收费.在百惠书店购买学习用品或工具书累计花费50元后.超出部分按60%收费.郝爱同学准备买价值300元的学习用品和工具书.她在哪家书店消费更优惠()A、东风B、百惠C、两家一样D、不能确定15、在解方程时.方程两边同时乘以6.去分母后.正确的是()A、2x﹣1+6x=3(3x+1)B、2(x﹣1)+6x=3(3x+1)C、2(x﹣1)+x=3(3x+1)D、(x﹣1)+x=3(x+1)二、填空题16、已知方程(a-2)x|a|-1=1是一元一次方程.则a=________.x=________ .17、如果关于x的方程x2﹣3x+k=0有两个相等的实数根.那么实数k的值是________.18、一件服装的标价为300元.打八折销售后可获利60元.则该件服装的成本价是________元.19、为了改善办学条件.学校购置了笔记本电脑和台式电脑共100台.已知笔记本电脑的台数比台式电脑的台数的还少5台.则购置的笔记本电脑有________台.20、书店举行购书优惠活动:①一次性购书不超过100元.不享受打折优惠.②一次性购书超过100元但不超过200元一律打九折.③一次性购书200元一律打七折.小丽在这次活动中.两次购书总共付款229.4元.第二次购书原价是第一次购书原价的3倍.那么小丽这两次购书原价的总和是________元.三、计算题21、先化简:÷ + .再求当x+1与x+6互为相反数时代数式的值.四、解答题22、在红城中学举行的“我爱祖国”征文活动中.七年级和八年级共收到征文118篇.且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇.求七年级收到的征文有多少篇?23、世界读书日.某书店举办“书香”图书展.已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元.《汉语成语大词典》按标价的50%出售.《中华上下五千年》按标价的60%出售.小明花80元买了这两本书.求这两本书的标价各多少元.五、综合题24、在纪念中国抗日战争胜利70周年之际.某公司决定组织员工观看抗日战争题材的影片.门票有甲乙两种.甲种票比乙种票每张贵6元.买甲种票10张.乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元.那么最多可购买多少张甲种票?25、如图是一根可伸缩的鱼竿.鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩.完全收缩后.鱼竿长度即为第1节套管的长度(如图1所示):使用时.可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm.第2节套管长46cm.以此类推.每一节套管均比前一节套管少4cm.完全拉伸时.为了使相邻两节套管连接并固定.每相邻两节套管间均有相同长度的重叠.设其长度为xcm.(1)请直接写出第5节套管的长度.(2)当这根鱼竿完全拉伸时.其长度为311cm.求x的值.26、随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进.拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率.(2)若该市某社区今年准备新建一养老中心.其中规划建造三类养老专用房间共100间.这三类养老专用房间分别为单人间(1个养老床位).双人间(2个养老床位).三人间(3个养老床位).因实际需要.单人间房间数在10至30之间(包括10和30).且双人间的房间数是单人间的2倍.设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个.求t的值.答案解析部分一、单选题1、【答案】 D【考点】一元一次方程的解【解析】【解答】解:2x+3=7. 移项合并得:2x=4.解得:x=2.故选D【分析】方程移项合并.把x系数化为1.即可求出解.此题考查了一元一次方程的解.方程的解即为能使方程左右两边相等的未知数的值.2、【答案】 A【考点】一元一次方程的解【解析】【解答】解:3x﹣3=0.3x=3.x=1.故选:A.【分析】直接移项.再两边同时除以3即可.此题主要考查了一元一次方程的解.关键是掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3、【答案】B【考点】一元一次方程的定义【解析】【解答】根据题意得:k-1=0.解得:k=1.故答案是:B.【分析】只含有一个未知数(元).并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a.b是常数且a≠0).高于一次的项系数是0.据此可得出关于k的方程.继而可求出k的值.4、【答案】 B【考点】一元一次方程的解【解析】【解答】解:设y=mx﹣4.由题意得.当x=1时.y<0.即m﹣4<0.解得m<4.当x=4时.y<0.即4m﹣4<0.解得.m<1.则m的取值范围是m<1.故选:B.【分析】设y=mx﹣4.根据题意列出一元一次不等式.解不等式即可.本题考查的是含字母系数的一元一次不等式的解法.正确利用函数思想、数形结合思想是解题的关键.5、【答案】 C【考点】一元一次方程的解.含绝对值符号的一元一次方程【解析】【解答】∵|x|-1=0∴x=±1当x=1时.把x=1代入方程2x-3=+x2-3=+1∴m=-6.当x=-1时.把x=-1代入方程2x-3=+x-2-3=-1∴m=-12∴m的值是-6与-12.【分析】根据方程的解满足|x|-1=0就可得到x=±1.即±1是方程的解.把x=±1分别代入方程2x-3= m 3 +x就得到关于m的方程.从而求出m的值.本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法.在以后的学习中.常用此法求函数解析式.6、【答案】C【考点】相反数.解一元一次方程【解析】【解答】解:∵2(a+3)的值与4互为相反数.∴2(a+3)+4=0.∴a=﹣5.故选C【分析】先根据相反数的意义列出方程.解方程即可.此题是解一元一次方程.主要考查了相反数的意义.一元一次方程的解法.掌握相反数的意义是解本题的关键.7、【答案】C【考点】一元一次方程的定义.二元一次方程的定义.一元二次方程的定义【解析】【解答】根据方程的定义依次分析即可。

河北省2019年中考数学第2章第1节一次方程组及应用精讲试题

河北省2019年中考数学第2章第1节一次方程组及应用精讲试题

第二章方程(组)与不等式(组) 第一节一次方程(组)及应用及应用在河北五年中考真题及模拟)一次方程(组)的应用1.(2019河北中考)利用加减消元法解方程组⎩⎪⎨⎪⎧2x+5y=-10,①5x-3y=6,②下列做法正确的是( D ) A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×22.(2019张家口中考模拟)小明在解关于x,y的二元一次方程组⎩⎪⎨⎪⎧x+y=△,2x-3y=5时,解得⎩⎪⎨⎪⎧x=4y=则△和代表的数分别是( B )A.△=1,=5 B.△=5,=1C.△=-1,=3 D.△=3,=-13.(2019石家庄二模)希望中学九年级(1)班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是( A )A.2(x-1)+x=49 B.2(x+1)+x=49C.x-1+2x=49 D.x+1+2x=494.(2019原创)已知⎩⎪⎨⎪⎧x=3,y=-2是关于⎩⎪⎨⎪⎧ax+by=3,bx+ay=-7的解,则(a+b)(a-b)的值为__-8__.5.(2019河北中考)已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.解:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°.解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=11 2.∵n为整数,∴θ不能取630°;(2)依题意,得(n-2)×180°+360°=(n+x-2)×180°.解得x=2.,中考考点清单方程、方程的解与解方程1.含有未知数的__等式__叫方程.2.使方程左右两边相等的__未知数__的值叫方程的解.3.求方程__解__的过程叫解方程.等式的基本性质4.一次方程(组)次方程【易错警示】(1)解一元一次方程去分母时常数项不要漏乘,移项一定要变号;(2)二元一次方程组的解应写成⎩⎪⎨⎪⎧x=a,y=b的形式.列方程(组)解应用题的一般步骤6.(1)消元思想:将二元一次方程组通过消元使其变成一元一次方程;(2)整体思想:在解方程时结合方程的结构特点,灵活采取整体思想,使整个过程简捷;(3)转化思想:解一元一次方程最终要转化成ax =b ;解二元一次方程组先转化成一元一次方程; (4)数形结合思想:利用图形的性质建立方程模型解决几何图形中的问题; (5)方程思想:利用其他知识构造方程解决问题.,中考重难点突破一元一次方程及解法【例1】(1)(2019成都中考)已知|a +2|=1,则a =________.(2)解方程:0.5x +20.03-x =0.3(0.5x +2)0.2-13112.【解析】(1)注意绝对值等于1的数有两个;(2)先根据分式的基本性质把各分母变成整数,再由等式的性质去分母,小心不要把两者混为一谈.【答案】(1)-1或-3;(2)解:原方程可化为:50x +2003-x =3(x +4)4-13112,解得x =-5.1.若代数式x +3值是2,则x =__-1__. 2.(滨州中考)解方程:2-2x +13=1+x2.解:去分母,得12-2(2x +1)=3(1+x), 去括号,得12-4x -2=3+3x , 移项,得-4x -3x =3+2-12, 合并同类项,得-7x =-7, 系数化为1,得x =1.二元一次方程组及解法【例2】已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =m ,x +2y =-1的解互为相反数,则m =________.【解析】由解互为相反数可得x =-y ,而后把x =-y 代入方程组从而得到关于m ,y 的二元一次方程组,解之即可得m 的值.【答案】-13.(2019济南中考)如果13x a +2y 3与-3x 3y 2b -1是同类项,那么a ,b 的值分别是( A )A.⎩⎪⎨⎪⎧a =1,b =2B.⎩⎪⎨⎪⎧a =0,b =2C.⎩⎪⎨⎪⎧a =2,b =1D.⎩⎪⎨⎪⎧a =1,b =1 4.解方程组:⎩⎪⎨⎪⎧5x +10=10y , ①15x =20y +10. ②解:由①,得x -2y =-2.③ 由②,得3x -4y =2.④ ③×2-④,得x =6.把x =6代入③,得y =4,所以原方程组的解为⎩⎪⎨⎪⎧x =6,y =4.一元一次方程的应用【例3】(2019资阳中考)电器商城某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( A )A .562.5元B .875元C .550元D .750元【解析】本例涉及标价、打折后的新售价、进价、利润、利润率及它们之间的关系.进价为500÷20%=2 500(元).设标价为x 元,根据题意,得80%x -2 500=500,解得x =3 750.∴3 750×90%-2 500=875(元).【答案】B5.学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.求篮球和足球的单价.解:设一个篮球x 元,则一个足球(x -30)元. 由题意,得2x +3(x -30)=510. 解得x =120.x -30=90.答:一个篮球120元,一个足球90元.二元一次方程的应用【例4】(2019金华中考)某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4∶3,二楼售出与未售出的座位数比为3∶2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为( A )A .2∶1B .7∶5C .17∶12D .24∶17【解析】设一楼售出的座位数为4x ,未售出的座位数为3x ,二楼售出的座位数为3y ,未售出的座位数为2y.由题意,得3x =2y ,则x =2y 3.那么4x +3y3x +2y =4×23y +3y 2y +2y=17∶12.【答案】C6.(2019新疆中考)某班级为筹建运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有多少种购买方案?解:设买甲种运动服x 套,乙种y 套. 由题意,得20x +35y =365,则x =73-7y 4,∵x ,y 必须为正整数, ∴73-7y 4>0,即0<y <737,∴当x =3时,x =13, 当y =7时,x =6. 答:有2种方案.二元一次方程组的应用【例5】(2019徐州中考)某景点的门票价格如下表:班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1 118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【解析】条件中只说(1)班学生人数少于50人,(2)班人数多于50人且少于100人.那么,两班共有人数是不到100人,还是比100人多,都不清楚,因此,需分类讨论是100多人,还是在50至100中.【答案】解:(1)设七年级(1)班有x 人、七年级(2)班有y 人.当50<x +y <100时,由题意,得 ⎩⎪⎨⎪⎧12x +10y =1 118,10(x +y )=816. ∴x +y =81.6,不是整数,不合题意. 当x +y >100时,由题意,得 ⎩⎪⎨⎪⎧12x +10y =1 118,8(x +y )=816.解得⎩⎪⎨⎪⎧x =49,y =53. 答:七年级(1)班有49人,七年级(2)班有53人;(2)七年级(1)班节约了(12-8)×49=196(元),七年级(2)班节约了(10-8)×53=106(元).7.(江西中考)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.解:设每支中性笔x 元,每盒笔芯y 元. 根据题意,得 ⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28,解得⎩⎪⎨⎪⎧x =2,y =8. 答:每支中性笔2元,每盒笔芯8元.8.(孝感中考)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级.经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种、B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠.请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.解:(1)设A 种树木每棵x 元,B 种树木每棵y 元.根据题意,得⎩⎪⎨⎪⎧2x +5y =600,3x +y =380.解得⎩⎪⎨⎪⎧x =100y =80. 答:A 种树木每棵100元,B 种树木每棵80元;(2)设购买A 种树木为a 棵,则购买B 种树木为(100-a)棵. 则a≥3(100-a),∴a≥75. 设实际付款总金额为w 元.则w =0.9[100a +80(100-a)]=18a +7 200, ∵18>0,w 随a 的增大而增大, ∴当a =75时,w 最小.即a =75,w 最小值=18×75+7 200=8 550(元).∴当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少费用为8 550元.2019-2020学年数学中考模拟试卷一、选择题1.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.752.已知,则以下对m的估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<63.由6个大小相同的正方体搭成的几何体如图所示,若小正方体的棱长为a,关于它的视图和表面积,下列说法正确的是( )A.它的主视图面积最大,最大面积为4a2B.它的左视图面积最大,最大面积为4a2C.它的俯视图面积最大,最大面积为5a2D.它的表面积为22a24.如图,延长正方形ABCD的AB边至点E,使BE=AC,则∠BED=( )A.20°B.30°C.22.5°D.32.5°5.以下所给的数值中,为不等式﹣2x+3<0的解集的是()A.x<﹣2B.x>﹣1C.x<﹣32D.x>326.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.7.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)与(0,3)之间(包含端点),下列结论:①当x>3时,y<0;②﹣1≤a≤﹣23;③3≤n≤4;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确的有()A.1个B.2个C.3个D.4个8.有这样一道题:如图,在正方形ABCD中,有一个小正方形EFGH,其中E,F,G分别在4B,BC,FD 上,连接DH,如果BC=12,BF=3.求tan HDG∠的值.以下是排乱的证明步骤:①求出EF、DF的长;②求出tan HDG∠的值;③证明BFE=CDF∠∠④求出HG、DG;⑤证明ΔBEF~ΔCFD.证明步骤正确的顺序是( )A.③⑤④①②B.①④⑤③②C.③⑤①④②D.⑤①④③②9.某天的同一时刻,甲同学测得1m的测竿在地面上的影长为0.6m,乙同学测得国旗旗杆在地面上的影长为9.6m。

2019全国中考数学真题分类汇编之29:数学文化(含答案)

2019全国中考数学真题分类汇编之29:数学文化(含答案)

2019年全国中考数学真题分类汇编:数学文化一、选择题1. (2019年乐山市)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。

问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( ) ()A 1,11()B 7,53 ()C 7,61 ()D 6,50【考点】二元一次方程组的解法与应用 【解答】解:设人数人,物价y 钱.⎩⎨⎧=+=-y x yx 4738解得:⎩⎨⎧==537y x ,故选B.2.(2019年重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为,乙的钱数为y ,则可建立方程组为( )A .B .C .D .【考点】二元一次方程组的解法与应用 【解答】解:设甲的钱数为,乙的钱数为y ,依题意,得:.故选:A .3. (2019年山东省德州市)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长尺,木长y尺,则可列二元一次方程组为()A. B. C D【考点二元一次方程组的解法与应用、数学文化【解答】解:设绳长尺,长木为y尺,依题意得,故选:B.4.(2019年湖北省襄阳市)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为人,所列方程正确的是()A.5﹣45=7﹣3 B.5+45=7+3 C.=D.=【考点】一元一次方程的应用【解答】解:设合伙人数为人,依题意,得:5+45=7+3.故选:B.5. (2019年湖北省宜昌市)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC 中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A.6B.6C.18D.【考点】二次根式的应用【解答】解:∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;故选:A.6.(2019年福建省)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读个字,则下面所列方程正确的是( ) A .+2+4=34685 B .+2+3=34685C .+2+2=34685D .+12+14=34685【考点】由实际问题抽象出一元一次方程【解答】解:设他第一天读个字,根据题意可得:+2+4=34685, 故选:A .7.(2019年吉林省长春市)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为,买鸡的钱数为y ,可列方程组为( ) A . B .C D .【考】由实际问题抽象出二元一次方程组【解答】解:设人数为,买鸡的钱数为y ,可列方程组为: . 故:D .8.(2019年甘肃兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为斤,一只燕的重量为y 斤,则可列方程组为( ) A . B .CD .【考由际问抽出二元一次方程组 【解答】解:由题意可得, , 故:C .9.(019年湖南省长沙市)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为尺,绳子长为y 尺,则所列方程组正确的是()A.B.C.D.考点由实际问题抽象出二元一次方程组【解答】解:由题意可得,,故选A.10.(2019年浙江省舟山市)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹两,牛每头y两,根据题意可列方程组为()A.B.C.D【考】二元一次方程组的应用【解答】解:设马每匹两,牛每头y两,根据题意可列方程组为:.故:D.11.(2019年浙江省宁波市)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【考点】勾股定理【解答】解:设直角三角形的斜边长为c ,较长直角边为b ,较短直角边为a , 由勾股定理得,c 2=a 2+b 2,阴影部分的面积=c 2﹣b 2﹣a (c ﹣b )=a 2﹣ac +ab =a (a +b ﹣c ), 较小两个正方形重叠部分的宽=a ﹣(c ﹣b ),长=a , 则较小两个正方形重叠部分底面积=a (a +b ﹣c ),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积, 故选:C . 二、填空题1. (2019年上海市)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 . 斛米.(注:斛是古代一种容量单位) 【考点】二元一次方程组的解法【解答】解:设1个大桶可以盛米斛,1个小桶可以盛米y 斛, 则,故++y +5y =5, 则+y =56.答:1大桶加1小桶共盛56斛米.故答案为:56.2. (2019年辽宁省大连市)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu ,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为 . 【考点】二元一次方程组的应用【解答】解:设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛, 根据题意得:, 故案为.3(2019年江苏省南通市)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有个人共同出钱买鸡,根据题意,可列一元一次方程为.【解答】一元一次方程的应用【考点】解:设有个人共同买鸡,根据题意得:9﹣11=6+16.故答案为:9﹣11=6+16.4.(2019年湖南省株洲市)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.【解答】一元一次方程的应用【考点】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.5.(2019年湖北省咸宁市)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长y尺,可列方程组为.【解答】二元一次方程组的应用【考点】解:设木条长尺,绳子长y尺,依题意,得:.答案为:..(2019年江苏省泰安市)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重两,每枚白银重y两,根据题意可列方程组为____.【解答】由实际问题抽象出二元一次方程组【考点】解:设每枚黄金重两,每枚白银重y两,由题意得:,故案为:.7(201年宁夏自治)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程2+5﹣14=0即(+5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是(++5)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×14+52,据此易得=2.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程2﹣4﹣12=0的正确构图是.(只填序号)【解答】一元二次方程的应用【考点】解:∵2﹣4﹣12=0即(﹣4)=12,∴构造如图②中大正方形的面积是(+﹣4)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×12+42,据此易得=6.故答案为:②.8.(2019年甘肃白银)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数614040401000036000806403109204849791803139699出现“正面朝上”的次数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).【解答】利用频率估计概率【考点】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.三、解答题1.(2019年甘肃省)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【考点】一元一次方程的解法及应用【解答】解:设共有人,根据题意得:+2=,去分母得:2+12=3﹣27,解得:=39,∴=15,则共有39人,15辆车.2.(2019年湖北省黄石市)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?【解答】一元一次方程的应用【考点】解:(1)设当走路慢的人再走600步时,走路快的人的走步,由题意得:600=100:60∴=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+60y100∴y=500答:走路快的人走500步才能追上走路慢的人.。

湖南省2019年、2020年数学中考试题分类(4)——方程的解法和应用(含解析)

湖南省2019年、2020年数学中考试题分类(4)——方程的解法和应用(含解析)

湖南省2019年、2020年数学中考试题分类(4)——方程的解法和应用一.选择题(共19小题) 1.(2020•张家界)《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .2932x x +=-B .9232x x -+=C .9232x x +-=D .2932x x -=+2.(2019•怀化)一元一次方程20x -=的解是( ) A .2x = B .2x =- C .0x = D .1x = 3.(2020•益阳)同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( ) A .45x y =⎧⎨=-⎩ B .45x y =-⎧⎨=⎩ C .23x y =-⎧⎨=⎩ D .36x y =⎧⎨=-⎩4.(2019•邵阳)某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A .7161328x y x y +=⎧⎨+=⎩B .(72)161328x y x y +-=⎧⎨+=⎩C .716(132)28x y x y +=⎧⎨+-=⎩D .(72)16(132)28x y x y +-=⎧⎨+-=⎩5.(2019•长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩6.(2020•邵阳)设方程2320x x -+=的两根分别是1x ,2x ,则12x x +的值为( )A .3B .32-C .32D .2-7.(2020•张家界)已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为( ) A .2 B .4 C .8 D .2或4 8.(2020•衡阳)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为( )A .2352035202600x x x ⨯--+=B .352035220600x x ⨯--⨯=C .(352)(20)600x x --=D .(35)(202)600x x --=9.(2020•怀化)已知一元二次方程240x kx -+=有两个相等的实数根,则k 的值为( ) A .4k = B .4k =- C .4k =± D .2k =± 10.(2019•湘潭)已知关于x 的一元二次方程240x x c -+=有两个相等的实数根,则(c = )A .4B .2C .1D .4- 11.(2019•湘西州)一元二次方程2230x x -+=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判断 12.(2019•郴州)一元二次方程22350x x +-=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根13.(2019•淄博)若123x x +=,22125x x +=,则以1x ,2x 为根的一元二次方程是( ) A .2320x x -+= B .2320x x +-= C .2320x x ++=D .2320x x --=14.(2019•怀化)一元二次方程2210x x ++=的解是( )A .11x =,21x =-B .121x x ==C .121x x ==-D .11x =-,22x = 15.(2019•衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(12)1x -=B .29(1)1x -=C .9(12)1x +=D .29(1)1x += 16.(2020•长沙)随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x 万件产品,依题意得( )A .40050030x x =-B .40050030x x =+C .40050030x x =-D .40050030x x=+ 17.(2019•湘潭)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为( )A .1209020x x =-B .1209020x x =+C .1209020x x =-D .1209020x x =+ 18.(2019•益阳)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( )A .23x +=B .23x -=C .23(21)x x -=-D .23(21)x x +=-19.(2019•株洲)关于x 的分式方程2503x x -=-的解为( )A .3-B .2-C .2D .3 二.填空题(共13小题) 20.(2020•株洲)关于x 的方程38x x -=的解为x = . 21.(2020•衡阳)某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有 名. 22.(2019•湘西州)若关于x 的方程320x kx -+=的解为2,则k 的值为 . 23.(2020•岳阳)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,根据题意,可列方程组为 . 24.(2020•常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 次.25.(2020•永州)方程组422x y x y +=⎧⎨-=⎩的解是 .26.(2020•邵阳)中国古代数学家杨辉的《田亩比类乘除捷法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x 步,则依题意列方程为 . 27.(2020•娄底)一元二次方程220x x c -+=有两个相等的实数根,则c = . 28.(2020•郴州)已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c = . 29.(2020•永州)若关于x 的一元二次方程240x x m --=有两个不相等的实数根,则实数m 的取值范围是 .30.(2019•娄底)已知方程230x bx ++=,则方程的另一根为 . 31.(2019•张家界)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多 步. 32.(2019•邵阳)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的最小整数值是 . 三.解答题(共8小题)(2)该商场售完这500箱矿泉水,可获利多少元?34.(2019•怀化)解二元一次方程组:37,31x y x y +=⎧⎨-=⎩35.(2020•湘西州)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少? 36.(2019•邵阳)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率. 37.(2020•益阳)“你怎么样,中国便是怎么样;你若光明,中国便不黑暗”.2019年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城.针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务? 38.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和95N 口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,95N 口罩花费9600元.已知购进一次性医用外科口罩的单价比95N 口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和95N 口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?39.(2020•郴州)解方程:24111x x x =+--.40.(2020•张家界)今年疫情防控期间,某学校花2000元购买了一批消毒液以满足全体师生的需要.随着疫情的缓解以及各种抗疫物资供应更充足,消毒液每瓶下降了2元,学校又购买了一批消毒液,花1600元购买到的数量与第一次购买到的数量相等,求第一批购进的消毒液的单价.湖南省2019年、2020年数学中考试题分类(4)——方程的解法和应用一.选择题(共19小题) 1.(2020•张家界)《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .2932x x +=-B .9232x x -+=C .9232x x +-=D .2932x x -=+【解答】解:依题意,得:9232x x -+=.故选:B . 2.(2019•怀化)一元一次方程20x -=的解是( ) A .2x = B .2x =- C .0x = D .1x = 【解答】解:20x -=, 解得:2x =. 故选:A . 3.(2020•益阳)同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( ) A .45x y =⎧⎨=-⎩B .45x y =-⎧⎨=⎩C .23x y =-⎧⎨=⎩D .36x y =⎧⎨=-⎩【解答】解:由题意得:9431x y x y -=⎧⎨+=⎩①②,由①得,9x y =+③,把③代入②得,4(9)31y y ++=,解得,5y =-,代入③得,954x =-=,∴方程组的解为45x y =⎧⎨=-⎩,故选:A . 4.(2019•邵阳)某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A .7161328x y x y +=⎧⎨+=⎩B .(72)161328x y x y +-=⎧⎨+=⎩C .716(132)28x y x y +=⎧⎨+-=⎩D .(72)16(132)28x y x y +-=⎧⎨+-=⎩【解答】解:设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为(72)16(132)28x y x y +-=⎧⎨+-=⎩,故选:D . 5.(2019•长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩【解答】解:由题意可得, 4.50.51y x y x =+⎧⎨=-⎩, 故选:A . 6.(2020•邵阳)设方程2320x x -+=的两根分别是1x ,2x ,则12x x +的值为( )A .3B .32-C .32D .2-【解答】解:由2320x x -+=可知,其二次项系数1a =,一次项系数3b =-,由根与系数的关系:12331b x x a -+=-=-=.故选:A . 7.(2020•张家界)已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为( ) A .2 B .4 C .8 D .2或4 【解答】解:2680x x -+= (4)(2)0x x --=解得:4x =或2x =,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,此时三角形的底边长为2,故选:A . 8.(2020•衡阳)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为( )A .2352035202600x x x ⨯--+=B .352035220600x x ⨯--⨯=C .(352)(20)600x x --=D .(35)(202)600x x --= 【解答】解:依题意,得:(352)(20)600x x --=. 故选:C . 9.(2020•怀化)已知一元二次方程240x kx -+=有两个相等的实数根,则k 的值为( ) A .4k = B .4k =- C .4k =± D .2k =±【解答】解:一元二次方程240x kx -+=有两个相等的实数根, ∴△2()4140k =--⨯⨯=, 解得:4k =±. 故选:C . 10.(2019•湘潭)已知关于x 的一元二次方程240x x c -+=有两个相等的实数根,则(c = ) A .4 B .2 C .1 D .4- 【解答】解:方程240x x c -+=有两个相等的实数根, ∴△2(4)411640c c =--⨯⨯=-=, 解得:4c =. 故选:A . 11.(2019•湘西州)一元二次方程2230x x -+=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .无法判断 【解答】解:1a =,2b =-,3c =, 244441380b ac ∴-==-⨯⨯=-<, ∴此方程没有实数根. 故选:C . 12.(2019•郴州)一元二次方程22350x x +-=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根 【解答】解:一元二次方程22350x x --=中, △23429(5)0=-⨯⨯->, ∴有两个不相等的实数根. 故选:B .13.(2019•淄博)若123x x +=,22125x x +=,则以1x ,2x 为根的一元二次方程是( ) A .2320x x -+= B .2320x x +-=C .2320x x ++=D .2320x x --=【解答】解:22125x x +=, 21212()25x x x x ∴+-=, 而123x x +=, 12925x x ∴-=, 122x x ∴=,∴以1x ,2x 为根的一元二次方程为2320x x -+=.故选:A .14.(2019•怀化)一元二次方程2210x x ++=的解是( ) A .11x =,21x =- B .121x x ==C .121x x ==-D .11x =-,22x =【解答】解:2210x x ++=, 2(1)0x ∴+=, 则10x +=,解得121x x ==-, 故选:C . 15.(2019•衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(12)1x -=B .29(1)1x -=C .9(12)1x +=D .29(1)1x += 【解答】解:设这两年该地区贫困人口的年平均下降率为x ,根据题意得: 29(1)1x -=, 故选:B . 16.(2020•长沙)随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x 万件产品,依题意得( )A .40050030x x =-B .40050030x x =+C .40050030x x =-D .40050030x x=+ 【解答】解:设更新技术前每天生产x 万件产品,则更新技术后每天生产(30)x +万件产品,依题意,得:40050030x x =+. 故选:B . 17.(2019•湘潭)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为( )A .1209020x x =-B .1209020x x =+C .1209020x x =-D .1209020x x =+ 【解答】解:由题意可得, 1209020x x =+, 故选:B .18.(2019•益阳)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( )A .23x +=B .23x -=C .23(21)x x -=-D .23(21)x x +=- 【解答】解:方程两边都乘以(21)x -,得 23(21)x x -=-, 故选:C .19.(2019•株洲)关于x 的分式方程2503x x -=-的解为( )A .3-B .2-C .2D .3 【解答】解:去分母得:2650x x --=, 解得:2x =-,经检验2x =-是分式方程的解, 故选:B .二.填空题(共13小题) 20.(2020•株洲)关于x 的方程38x x -=的解为x = 4 . 【解答】解:方程38x x -=, 移项,得38x x -=, 合并同类项,得28x =. 解得4x =. 故答案为:4. 21.(2020•衡阳)某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有 23 名. 【解答】解:设女生有x 名,则男生人数有(217)x -名,依题意有 21752x x -+=, 解得23x =. 故女生有23名. 故答案为:23. 22.(2019•湘西州)若关于x 的方程320x kx -+=的解为2,则k 的值为 4 . 【解答】解:关于x 的方程320x kx -+=的解为2, 32220k ∴⨯-+=, 解得:4k =. 故答案为:4. 23.(2020•岳阳)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,根据题意,可列方程组为 2501030x y x y +=⎧⎨+=⎩ .【解答】解:依题意,得:2501030x y x y +=⎧⎨+=⎩.故答案为:2501030x y x y +=⎧⎨+=⎩.24.(2020•常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 4 次. 【解答】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得: 1015110535x y y +=⎧⎨-⨯+=⎩, 整理得:10530x y y +=⎧⎨=⎩,解得:46x y =⎧⎨=⎩.故答案为:4.25.(2020•永州)方程组422x y x y +=⎧⎨-=⎩的解是 22x y =⎧⎨=⎩.【解答】解:422x y x y +=⎧⎨-=⎩①②,①+②得:36x =,即2x =, 把2x =代入①得:2y =, 则方程组的解为22x y =⎧⎨=⎩,故答案为:22x y =⎧⎨=⎩26.(2020•邵阳)中国古代数学家杨辉的《田亩比类乘除捷法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x 步,则依题意列方程为 (12)864x x += . 【解答】解:矩形的宽为x (步),且宽比长少12(步), ∴矩形的长为(12)x +(步). 依题意,得:(12)864x x +=. 故答案为:(12)864x x +=.27.(2020•娄底)一元二次方程220x x c -+=有两个相等的实数根,则c = 1 . 【解答】解:一元二次方程220x x c -+=有两个相等的实数根, ∴△224(2)40b ac c =-=--=, 解得1c =. 故答案为1.28.(2020•郴州)已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c =258. 【解答】解:根据题意得△2(5)420c =--⨯⨯=,解得258c =.故答案为:258.29.(2020•永州)若关于x 的一元二次方程240x x m --=有两个不相等的实数根,则实数m 的取值范围是 4m >- .【解答】解:由已知得:△224(4)41()1640b ac m m =-=--⨯⨯-=+>, 解得:4m >-. 故答案为:4m >-.30.(2019•娄底)已知方程230x bx ++=【解答】解:设方程的另一个根为c , (52)3c +=,c ∴. 31.(2019•张家界)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多 12 步. 【解答】解:设长为x 步,宽为(60)x -步, (60)864x x -=,解得,136x =,224x =(舍去), ∴当36x =时,6024x -=,∴长比宽多:362412-=(步), 故答案为:12. 32.(2019•邵阳)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的最小整数值是 0 . 【解答】解:一元二次方程220x x m --=有两个不相等的实数根, ∴△440m =+>, 1m ∴>-; 故答案为0;三.解答题(共8小题)(2)该商场售完这500箱矿泉水,可获利多少元? 【解答】解:(1)设购进甲矿泉水x 箱,购进乙矿泉水y 箱, 依题意,得:500253514500x y x y +=⎧⎨+=⎩,解得:300200x y =⎧⎨=⎩.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(3525)300(4835)2005600-⨯+-⨯=(元). 答:该商场售完这500箱矿泉水,可获利5600元.34.(2019•怀化)解二元一次方程组:37,31x y x y +=⎧⎨-=⎩【解答】解:3731x y x y +=⎧⎨-=⎩①②,①+②得: 28x =,解得:4x =, 则431y -=, 解得:1y =,故方程组的解为:41x y =⎧⎨=⎩.35.(2020•湘西州)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少? 【解答】解:(1)设口罩日产量的月平均增长率为x ,根据题意,得 220000(1)24200x +=解得1 2.1x =-(舍去),20.110%x ==, 答:口罩日产量的月平均增长率为10%. (2)24200(10.1)26620+=(个).答:预计4月份平均日产量为26620个. 36.(2019•邵阳)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.【解答】解:设平均增长率为x ,根据题意列方程得 230(1)36.3x +=解得10.1x =,2 2.1x =-(舍)答:我国外贸进出口总值的年平均增长率为10%. 37.(2020•益阳)“你怎么样,中国便是怎么样;你若光明,中国便不黑暗”.2019年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城.针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务? 【解答】解:(1)设原来生产防护服的工人有x 人,由题意得,800650810(7)x x =-, 解得:20x =.经检验,20x =是原方程的解.答:原来生产防护服的工人有20人;(2)设还需要生产y 天才能完成任务. 8005820=⨯(套), 即每人每小时生产5套防护服.由题意得,106502051014500y ⨯+⨯⨯, 解得8y .答:至少还需要生产8天才能完成任务. 38.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和95N 口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,95N 口罩花费9600元.已知购进一次性医用外科口罩的单价比95N 口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和95N 口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?word 可编辑文档11 【解答】解:(1)设一次性医用外科口罩的单价是x 元,则95N 口罩的单价是(10)x +元,依题意有 1600960010x x =+, 解得2x =,经检验,2x =是原方程的解,1021012x +=+=.故一次性医用外科口罩的单价是2元,95N 口罩的单价是12元;(2)设购进一次性医用外科口罩y 只,依题意有212(2000)10000y y +-,解得1400y .故至少购进一次性医用外科口罩1400只.39.(2020•郴州)解方程:24111x x x =+--. 【解答】解:24111x x x =+--, 方程两边都乘(1)(1)x x -+,得(1)4(1)(1)x x x x +=+-+,解得3x =,检验:当3x =时,(1)(1)80x x -+=≠.故3x =是原方程的解.40.(2020•张家界)今年疫情防控期间,某学校花2000元购买了一批消毒液以满足全体师生的需要.随着疫情的缓解以及各种抗疫物资供应更充足,消毒液每瓶下降了2元,学校又购买了一批消毒液,花1600元购买到的数量与第一次购买到的数量相等,求第一批购进的消毒液的单价.【解答】解:设第一批购进的消毒液的单价为x 元,则第二批购进的消毒液的单价为(2)x -元, 依题意,得:200016002x x =-, 解得:10x =,经检验,10x =是原方程的解,且符合题意.答:第一批购进的消毒液的单价为10元.。

中考数学总复习训练一元一次方程(含解析)

中考数学总复习训练一元一次方程(含解析)

一元一次方程一、选择题1.下列方程中,是一元一次方程的是( )A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=2.已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为()A.1 B.﹣1 C.9 D.﹣93.如果2x+3=5,那么6x+10等于()A.15 B.16 C.17 D.344.甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6。

5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是()A.7x=6.5x+5 B.7x+5=6.5x C.(7﹣6。

5)x=5 D.6。

5x=7x﹣55.如果三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是()A.56 B.48 C.36 D.126.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定7.当1﹣(3m﹣5)2取得最大值时,关于x的方程5m﹣4=3x+2的解是()A.B.C.D.8.王先生到银行存了一笔三年期的定期存款,年利率是4。

25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是( )A.x+3×4。

25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4。

25x)=33825二、填空题9.已知关于x的方程有相同的解,那么这个解是.10.某人以4千米/时的速度步行由甲地到乙地,然后又以6千米/时的速度从乙地返回甲地,那么某人往返一次的平均速度是千米/时.11.如果|a+3|=1,那么a= .12.如果关于x的方程3x+4=0与方程3x+4k=18是同解方程,则k= .13.已知方程的解也是方程|3x﹣2|=b的解,则b= .14.已知方程2x﹣3=+x的解满足|x|﹣1=0,则m= .15.若(5x+2)与(﹣2x+9)互为相反数,则x﹣2的值为.16.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是元.17.某公路一侧原有路灯106盏,相邻两盏灯的距离为36米,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54米,则需更换新型节能灯盏.18.当日历中同一行中相邻三个数的和为63,则这三个数分别为.三、解答题19.已知方程2x+3=2a与2x+a=2的解相同,求a的值.20.解方程:.21.是否存在整数k,使关于x的方程(k﹣5)x+6=1﹣5x;在整数范围内有解?并求出各个解.22.解下列关于x的方程.(1)4x+b=ax﹣8;(a≠4)(2)mx﹣1=nx;(3).23.解方程:|x﹣1|+|x﹣5|=4.24.某商场经销一种商品,由于进货时价格比原进价降低了6。

2019年、2020年山东省中考试题分类数学(6)——坐标系与一次函数(含答案)

2019年、2020年山东省中考试题分类数学(6)——坐标系与一次函数(含答案)

2019年、2020年山东省数学中考试题分类(6)——坐标系与一次函数一.点的坐标(共1小题)1.(2020•滨州)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)二.规律型:点的坐标(共1小题)2.(2019•菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)三.坐标确定位置(共1小题)3.(2020•威海)如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A 型地砖,则正整数m,n须满足的条件是.四.坐标与图形性质(共1小题)4.(2020•临沂)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为.五.函数自变量的取值范围(共1小题)5.(2020•菏泽)函数y=√x−2x−5的自变量x的取值范围是()A.x≠5B.x>2且x≠5C.x≥2D.x≥2且x≠5六.函数值(共1小题)6.(2020•烟台)按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为.七.函数的图象(共1小题)7.(2020•潍坊)若定义一种新运算:a⊗b={a−b(a≥2b)a+b−6(a<2b),例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.八.动点问题的函数图象(共2小题)8.(2020•东营)如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A.12B.8C.10D.13 9.(2020•淄博)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12B.24C.36D.48九.函数的表示方法(共1小题)10.(2020•威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为.x…﹣1013…y…0340…一十.一次函数的性质(共1小题)11.(2019•临沂)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>−bk时,y>0一十一.一次函数图象与系数的关系(共1小题)12.(2020•东营)已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k0(填“>”或“<”).一十二.一次函数图象上点的坐标特征(共3小题)13.(2019•枣庄)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A.y=﹣x+4B.y=x+4C.y=x+8D.y=﹣x+814.(2020•临沂)点(−12,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是.15.(2019•泰安)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n 个正方形对角线长的和是.一十三.一次函数与一元一次方程(共1小题)16.(2020•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y =ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=15一十四.一次函数与一元一次不等式(共2小题)17.(2019•烟台)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.18.(2019•滨州)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13x时,x的取值范围为.一十五.两条直线相交或平行问题(共2小题)19.(2019•东营)如图,在平面直角坐标系中,函数y=√33x和y=−√3x的图象分别为直线l1,l2,过l1上的点A1(1,√33)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为.20.(2020•滨州)如图,在平面直角坐标系中,直线y=−12x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△P AB的面积;(3)请把图象中直线y=﹣2x+2在直线y=−12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.一十六.一次函数的应用(共11小题)21.(2019•东营)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢22.(2019•聊城)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15B.9:20C.9:25D.9:30 23.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.24.(2020•东营)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号价格(元/只)项目甲乙成本 12 4 售价186(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.25.(2020•烟台)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A ,B 两种型号的口罩9000只,共获利润5000元,其中A ,B 两种型号口罩所获利润之比为2:3.已知每只B 型口罩的销售利润是A 型口罩的1.2倍. (1)求每只A 型口罩和B 型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B 型口罩的进货量不超过A 型口罩的1.5倍,设购进A 型口罩m 只,这10000只口罩的销售总利润为W 元.该药店如何进货,才能使销售总利润最大?26.(2020•青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m 3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y (m 3)与注水时间t (h )之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y (m 3)与注水时间t (h )之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?27.(2020•聊城)今年植树节期间,某景观园林公司购进一批成捆的A ,B 两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.28.(2020•德州)小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?29.(2019•临沂)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x 表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h02468101214161820 y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.30.(2019•济宁)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.31.(2019•德州)下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A30250.1B50500.1C100不限时(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为;若选择方式B最省钱,则月通话时间x的取值范围为;若选择方式C最省钱,则月通话时间x的取值范围为;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.2019年、2020年山东省数学中考试题分类(6)——坐标系与一次函数参考答案与试题解析一.点的坐标(共1小题)1.【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.二.规律型:点的坐标(共1小题)2.【解答】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A2019的坐标是(1009,0).故选:C.三.坐标确定位置(共1小题)3.【解答】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n 同为偶数.故答案为m、n同为奇数或m、n同为偶数.四.坐标与图形性质(共1小题)4.【解答】解:连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA=√22+12=√5,∵OB=1,∴AB=√5−1,即点A(2,1)到以原点为圆心,以1为半径的圆的距离为√5−1,故答案为:√5−1.五.函数自变量的取值范围(共1小题)5.【解答】解:由题意得x﹣2≥0且x﹣5≠0,解得x≥2且x≠5.故选:D.六.函数值(共1小题)6.【解答】解:∵﹣3<﹣1,把x=﹣3代入y=2x2,得y=2×9=18,故答案为:18.七.函数的图象(共1小题)7.【解答】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象从左向右逐渐上升,y随x的增大而增大,综上所述,A选项符合题意.故选:A.八.动点问题的函数图象(共2小题)8.【解答】解:根据图2中的曲线可知:当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP ⊥AB ,根据图2点Q 为曲线部分的最低点,得CP =12,所以根据勾股定理,得此时AP =√132−122=5.所以AB =2AP =10.故选:C .9.【解答】解:由图2知,AB =BC =10,当BP ⊥AC 时,y 的值最小,即△ABC 中,AC 边上的高为8(即此时BP =8),当y =8时,PC =√BC 2−BP 2=√102−82=6,△ABC 的面积=12×AC ×BP =12×8×12=48, 故选:D .九.函数的表示方法(共1小题)10.【解答】解:根据表中y 与x 的数据设函数关系式为:y =ax 2+bx +c ,将表中(1,4)、(﹣1,0)、(0,3)代入函数关系式,得∴{a +b +c =4a −b +c =0c =3,解得{a =−1b =2c =3,∴函数表达式为y =﹣x 2+2x +3.当x =3时,代入y =﹣x 2+2x +3=0,∴(3,0)也适合所求得的函数关系式.故答案为:y =﹣x 2+2x +3.一十.一次函数的性质(共1小题)11.【解答】解:∵y =kx +b (k <0,b >0),∴图象经过第一、二、四象限,A 正确;∵k <0,∴y 随x 的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=−b k,当x>−bk时,y<0;D不正确;故选:D.一十一.一次函数图象与系数的关系(共1小题)12.【解答】解:设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入y=kx+b得,{−1=k+b3=−k+b,解得:k=﹣2,b=1,∴k<0,解法二:由A(1,﹣1)、B(﹣1,3)可知,随着x的减小,y反而增大,所以有k<0.故答案为:<.一十二.一次函数图象上点的坐标特征(共3小题)13.【解答】解:如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,设P点坐标为(x,y),∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为8,∴2(x+y)=8,∴x+y=4,即该直线的函数表达式是y=﹣x+4,故选:A.14.【解答】解:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵−12<2,∴m<n.故答案为m<n.15.【解答】解:由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:√2(OA1+C1A2+C2A3+C3A4+…+C n﹣1A n)=√2(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n个正方形对角线长的和是:√2×(2n﹣1),故答案为:√2(2n﹣1),一十三.一次函数与一元一次方程(共1小题)16.【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴方程x+5=ax+b的解为x=20.故选:A.一十四.一次函数与一元一次不等式(共2小题)17.【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x +2≤ax +c 的解为x ≤1;故答案为x ≤1;18.【解答】解:∵正比例函数y =13x 也经过点A ,∴kx +b <13x 的解集为x >3,故答案为:x >3.一十五.两条直线相交或平行问题(共2小题)19.【解答】解:由题意可得,A 1(1,√33),A 2(1,−√3),A 3(﹣3,−√3),A 4(﹣3,3√3),A 5(9,3√3),A 6(9,﹣9√3),…,可得A 2n +1的横坐标为(﹣3)n∵2019=2×1009+1,∴点A 2019的横坐标为:(﹣3)1009=﹣31009,故答案为:﹣31009.20.【解答】解:(1)由{y =−12x −1y =−2x +2解得{x =2y =−2, ∴P (2,﹣2);(2)直线y =−12x ﹣1与直线y =﹣2x +2中,令y =0,则−12x ﹣1=0与﹣2x +2=0, 解得x =﹣2与x =1,∴A (﹣2,0),B (1,0),∴AB =3,∴S △P AB =12AB ⋅|y P |=12×3×2=3; (3)如图所示:自变量x 的取值范围是x <2.一十六.一次函数的应用(共11小题)21.【解答】解:A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误; 故选:C .22.【解答】解:设甲仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 1=k 1x +40,根据题意得60k 1+40=400,解得k 1=6,∴y 1=6x +40;设乙仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 2=k 2x +240,根据题意得60k 2+240=0,解得k 2=﹣4,∴y 2=﹣4x +240,联立{y =6x +40y =−4x +240,解得{x =20y =160, ∴此刻的时间为9:20.故选:B .23.【解答】解:设当x >120时,l 2对应的函数解析式为y =kx +b ,{120k +b =480160k +b =720,得{k =6b =−240, 即当x >120时,l 2对应的函数解析式为y =6x ﹣240,当x =150时,y =6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m 3),故小雨家去年用水量为150m 3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m 3,若今年用水量与去年相同,水费将比去年多210元, 故答案为:210.24.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x 万只和y 万只,由题意可得:{18x +6y =300x +y =20, 解得:{x =15y =5,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a 万只和(20﹣a )万只,利润为w 万元,由题意可得:12a +4(20﹣a )≤216,∴a ≤17,∵w =(18﹣12)a +(6﹣4)(20﹣a )=4a +40是一次函数,w 随a 的增大而增大, ∴a =17时,w 有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.25.【解答】解:设销售A 型口罩x 只,销售B 型口罩y 只,根据题意得:{x +y =90002000x ×1.2=3000y,解得{x =4000y =5000, 经检验,x =4000,y =5000是原方程组的解,∴每只A 型口罩的销售利润为:20004000=0.5(元),每只B 型口罩的销售利润为:0.5×1.2=0.6(元).答:每只A 型口罩和B 型口罩的销售利润分别为0.5元,0.6元.(2)根据题意得,W =0.5m +0.6(10000﹣m )=﹣0.1m +6000,10000﹣m ≤1.5m ,解得m ≥4000,∵﹣0.1<0,∴W 随m 的增大而减小,∵m 为正整数,∴当m =4000时,W 取最大值,则﹣0.1×4000+6000=5600,即药店购进A 型口罩4000只、B 型口罩6000只,才能使销售总利润最大,最大利润为5600元.26.【解答】解:(1)设y 与t 的函数解析式为y =kt +b ,{b =1002k +b =380, 解得,{k =140b =100, 即y 与t 的函数关系式是y =140t +100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m 3/h );(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍. ∴甲进水口进水的速度是乙进水口进水速度的34, ∵同时打开甲、乙两个进水口的注水速度是140m 3/h ,∴甲进水口的进水速度为:140÷(34+1)×34=60(m 3/h ), 480÷60=8(h ),即单独打开甲进水口注满游泳池需8h .27.【解答】解:(1)设这一批树苗平均每棵的价格是x 元,根据题意列方程,得: 6300.9x −6001.2x =10,解这个方程,得x =20,经检验,x =20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A 种树苗每棵的价格为:20×0.9=18(元),B 种树苗每棵的价格为:20×1.2=24(元),设购进A 种树苗t 棵,这批树苗的费用为w 元,则:w =18t +24(5500﹣t )=﹣6t +132000,∵w 是t 的一次函数,k =﹣6<0,∴w 随t 的增大而减小,又∵t ≤3500,∴当t =3500棵时,w 最小,此时,B 种树苗有:5500﹣3500=2000(棵),w =﹣6×3500+132000=111000,答:购进A 种树苗3500棵,B 种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.28.【解答】解:(1)设超市B 型画笔单价为a 元,则A 型画笔单价为(a ﹣2)元. 根据题意得,60a−2=100a ,解得a =5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x﹣20)=4x+10.所以,y关于x的函数关系式为y={4.5x(1≤x≤20)4x+10(x>20)(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.29.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得{b=148k+b=18解得:k=12,b=14,y与x的关系式为:y=12x+14,经验证(2,15),(4,16),(6,17)都满足y=12x+14因此放水前y与x的关系式为:y=12x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:y=144x.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=12x+14 (0<x<8)和y=144x.(x>8)(3)当y=6时,6=144x,解得:x=24,因此预计24h水位达到6m.30.【解答】解:(1)由图可得,小王的速度为:30÷3=10km /h ,小李的速度为:(30﹣10×1)÷1=20km /h ,答:小王和小李的速度分别是10km /h 、20km /h ;(2)小李从乙地到甲地用的时间为:30÷20=1.5h ,当小李到达甲地时,两人之间的距离为:10×1.5=15km ,∴点C 的坐标为(1.5,15),设线段BC 所表示的y 与x 之间的函数解析式为y =kx +b ,{k +b =01.5k +b =15,得{k =30b =−30, 即线段BC 所表示的y 与x 之间的函数解析式是y =30x ﹣30(1≤x ≤1.5).31.【解答】解:(1)∵0.1元/min =6元/h ,∴由题意可得,y 1={30(0≤x ≤25)6x −120(x >25), y 2={50(0≤x ≤50)6x −250(x >50), y 3=100(x ≥0);(2)作出函数图象如图:结合图象可得:若选择方式A 最省钱,则月通话时间x 的取值范围为:0≤x <853, 若选择方式B 最省钱,则月通话时间x 的取值范围为:853<x <1753, 若选择方式C 最省钱,则月通话时间x 的取值范围为:x >1753. 故答案为:0≤x <853,853<x <1753,x >1753. (3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长, ∴结合图象可得:小张选择的是方式A ,小王选择的是方式B ,将y =80分别代入y 2={50(0≤x ≤50)6x −250(x >50),可得 6x ﹣250=80,解得:x =55,∴小王该月的通话时间为55小时.。

2019中考数学分类汇编汇总 知识点11 一元一次不等式(组)的应用(第二期) 解析版

2019中考数学分类汇编汇总   知识点11  一元一次不等式(组)的应用(第二期)  解析版

一、选择题1. (2019黑龙江绥化,8题,3分)小明去商店购买A,B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元,若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量,则小明的购买方案有( )A.5种B.4种C.3种D.2种【答案】C【解析】设购买A种玩具x个,花x元,则买B种玩具花(10-x)元,购买102x-个,由题意得102xx->,∴103x>,又∵每种玩具至少买一件,∴A玩具最多买8件,其中x应为偶数,∴x=4,6,8,故选C.【知识点】不等式的应用2.(2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A.10<x<12 B.12<x<15 C.10<x<15 D.11<x<14【分析】根据题意得出不等式组解答即可.【解答】解:根据题意可得:,可得:12<x<15,∴12<x<15故选:B.3.(2019•怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55 B.72 C.83 D.89【分析】设该村共有x户,则母羊共有(5x+17)只,根据“每户发放母羊7只时有一户可分得母羊但不足3只”列出关于x的不等式组,解之求得整数x的值,再进一步计算可得.【解答】解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,∴x=11,则这批种羊共有11+5×11+17=83(只),故选:C.4.(2019•绵阳)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种【分析】设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据“购进甲乙商品不超过4200元的资金、两种商品均售完所获利润大于750元”列出关于x的不等式组,解之求得整数x的值即可得出答案.【解答】解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.二.填空题(共2小题)1.(2019•大渡口区)商店购进一批文具盒,进价每个4元,零售价每个6元,为促销决定打折销售,但利润率仍然不低于20%,那么该文具盒实际价格最多可打8折销售.【分析】由题意可知:利润率为20%时,获得的利润为4×20%=0.8元;若打x折该商品获得的利润=该商品的标价×﹣进价,列出不等式,解得x的值即可.【解答】解:设可以打x折出售此商品,由题意得:,解得:x≥8,答:该文具盒实际价格最多可打8折,故答案为:82.(2019•荆州)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是13≤x<15.【分析】根据题意得到:6﹣0.5≤0.5x﹣1<6+0.5,据此求得x的取值范围.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.三、解答题1.(2019内蒙古赤峰,22,12分)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?【思路分析】(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个,根据对话内容列出方程并解答;(2)设小明可购买钢笔y支,根据两种物品的购买总费用不超过400元列出不等式并解答.【解题过程】解:(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个,依题意得:10(x+1)×0.85=10x﹣17.解得x=17.答:小明原计划购买文具袋17个.(2)设小明可购买钢笔y支,则购买签字笔(50﹣x)支,依题意得:[8y+6(50﹣y)]×80%≤400.解得y≤100.即y最大值=100.答:明最多可购买钢笔100支.【知识点】一元一次方程的应用;一元一次不等式的应用2.(2019•张家界)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?【分析】(1)设购买甲种树苗x棵,购买乙种树苗(2x﹣40)棵,由题意可得,30x+20(2x﹣40)=9000;(2)设购买甲树苗y棵,乙树苗(10﹣y)棵,根据题意可得,30y+20(10﹣y)≤230,根据y的范围确定购买方案即可;【解答】解:(1)设购买甲种树苗x棵,购买乙种树苗(2x﹣40)棵,由题意可得,30x+20(2x﹣40)=9000,70x=9800,x=140,∴购买甲种树苗140棵,乙种树苗240棵;(2)设购买甲树苗y棵,乙树苗(10﹣y)棵,根据题意可得,30y+20(10﹣y)≤230,10y≤30,∴y≤3;购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵;3.(2019•河南)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.【分析】(1)设A的单价为x元,B的单价为y元,根据题意列出方程组,即可求解;(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,根据题意得到由题意可知,z≥(30﹣z),W=30z+15(30﹣z)=450+15z,根据一次函数的性质,即可求解;【解答】解:(1)设A的单价为x元,B的单价为y元,根据题意,得,∴,∴A的单价30元,B的单价15元;(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,由题意可知,z≥(30﹣z),∴z≥,W=30z+15(30﹣z)=450+15z,当z=8时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少;4.(2019•孝感)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.5.(2019•广东)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?【分析】(1)设购买篮球x个,购买足球y个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a个篮球,则购买(60﹣a)个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x的最大整数解即可.【解答】解:(1)设购买篮球x个,购买足球y个,依题意得:.解得.答:购买篮球20个,购买足球40个;(2)设购买了a个篮球,依题意得:70a≤80(60﹣a)解得a≤32.答:最多可购买32个篮球.6.(2019•资阳)为了参加西部博览会,资阳市计划印制一批宣传册.该宣传册每本共10页,由A、B两种彩页构成.已知A种彩页制版费300元/张,B种彩页制版费200元/张,共计2400元.(注:彩页制版费与印数无关)(1)每本宣传册A、B两种彩页各有多少张?(2)据了解,A种彩页印刷费2.5元/张,B种彩页印刷费1.5元/张,这批宣传册的制版费与印刷费的和不超过30900元.如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?【分析】(1)设每本宣传册A、B两种彩页各有x,y张,根据题意列出方程组解答即可;(2)设最多能发给a位参观者,根据题意得出不等式解答即可.【解答】解:(1)设每本宣传册A、B两种彩页各有x,y张,,解得:,答:每本宣传册A、B两种彩页各有4和6张;(2)设最多能发给a位参观者,可得:2.5×4a+1.5×6a+2400≤30900,解得:a≤1500,答:最多能发给1500位参观者.7.(2019•岳阳)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩.(1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的,求休闲小广场总面积最多为多少亩?【分析】(1)设改造土地面积是x亩,则复耕土地面积是(600+x)亩.根据“复耕土地面积+改造土地面积=1200亩”列出方程并解答;(2)设休闲小广场总面积是y亩,则花卉园总面积是(300﹣y)亩,根据“休闲小广场总面积不超过花卉园总面积的”列出不等式并解答.【解答】解:(1)设改造土地面积是x亩,则复耕土地面积是(600+x)亩,由题意,得x+(600+x)=1200解得x=300.则600+x=900.答:改造土地面积是300亩,则复耕土地面积是900亩;(2)设休闲小广场总面积是y亩,则花卉园总面积是(300﹣y)亩,由题意,得y≤(300﹣y).解得y≤75.故休闲小广场总面积最多为75亩.答:休闲小广场总面积最多为75亩.8.(2019•聊城)某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.【解答】解:(1)设A,B两种品牌运动服的进货单价各是x元和y元,根据题意可得:,解得:,答:A,B两种品牌运动服的进货单价各是240元和180元;(2)设购进A品牌运动服m件,购进B品牌运动服(m+5)件,则240m+180(m+5)≤21300,解得:m≤40,经检验,不等式的解符合题意,∴m+5≤×40+5=65,答:最多能购进65件B品牌运动服.9.(2019•北碚区)某杨梅园的杨梅除了运往市区销售外,还可以让市民亲自去园内采摘购买.已知今年5月份该杨梅在市区、园区的销售价格分别为16元/千克、20元/千克,今年5月份一共销售了2500千克,总销售额为44000元.(1)5月份该杨梅在市区、园区各销售了多少千克?(2)6月份是杨梅销售旺季,为了促销,杨梅园决定6月份将该杨梅在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种杨梅在市区、园区的销售量将在今年5月份的基础上分别增长30%、20%,要使6月份该杨梅的总销售额不低于49680元,则a的最大值是多少?【分析】(1)设在市区销售了x千克,则在园区销售了(2500﹣x)千克,根据等量关系:总销售额为44000元列出方程求解即可;(2)题目中的不等关系是:6月份该杨梅的总销售额不低于49680元列出不等式求解即可.【解答】解:(1)设在市区销售了x千克,则在园区销售了(2500﹣x)千克,则16x+20(2500﹣x)=44000,解得x=1500,2500﹣x=1000.故今年5月份该杨梅在市区销售了1500千克,在园区销售了1000千克.(2)依题意有16(1﹣a%)×1500(1+30%)+20(1﹣a%)×1000(1+20%)≥49680,55200(1﹣a%)≥49680,解得:a≤10.故a的最大值是10.10.(2019•万州区)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买12台节能新设备,现有甲乙两种型号的设备可供选购,经调查,购4台甲比购3台乙多用18万元,购3台甲比购4台乙少用4万元(1)求甲乙两种设备的单价;(2)该公司决定购买甲设备不少于5台,购买资金不超过136万元,你认为该公司有几种购买方案?并直接写出最省钱的购买方案.【分析】(1)设甲设备的单价为x万元,乙设备的单价为y万元,根据“购4台甲比购3台乙多用18万元,购3台甲比购4台乙少用4万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲设备m台,则购进乙设备(12﹣m)台,根据购买甲设备不少于5台且购买资金不超过136万元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数可得出各购买方案,再由甲设备的单价>乙设备的单价可找出最省钱的购买方案.【解答】解:(1)设甲设备的单价为x万元,乙设备的单价为y万元,依题意,得:,解得:.答:甲设备的单价为12万元,乙设备的单价为10万元.(2)设购进甲设备m台,则购进乙设备(12﹣m)台,依题意,得:,解得:5≤m≤8.∵m为整数,∴m=5,6,7,8,∴该公司共有4种购买方案,方案1:购进甲设备5台,乙设备7台;方案2:购进甲设备6台,乙设备6台;方案3:购进甲设备7台,乙设备5台;方案4:购进甲设备8台,乙设备4台.∵甲设备的单价>乙设备的单价,∴方案1购进甲设备5台,乙设备7台最省钱.11.(2019•遵义)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?【分析】(1)根据题意可以列出相应的方程组,从而可以求得租用A,B两型客车,每辆的费用;(2)根据题意可以列出相应的不等式,从而可以得到有哪几种租车方案和最省钱的方案.【解答】解:(1)设租用A,B两型客车,每辆费用分别是x元、y元,,解得,,答:租用A,B两型客车,每辆费用分别是1700元、1300元;(2)设租用A型客车a辆,租用B型客车b辆,,解得,,,,∴共有三种租车方案,方案一:租用A型客车2辆,B型客车5辆,费用为9900元,方案二:租用A型客车4辆,B型客车2辆,费用为9400元,方案三:租用A型客车5辆,B型客车1辆,费用为9800元,由上可得,方案二:租用A型客车4辆,B型客车2辆最省钱.12.(2019•荆州)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为8辆;(3)学校共有几种租车方案?最少租车费用是多少?【分析】(1)设参加此次研学活动的老师有x人,学生有y人,根据“若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用租车总辆数=师生人数÷35结合每辆客车上至少要有2名老师,即可得出租车总辆数为8辆;(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,根据8辆车的座位数不少于师生人数及租车总费用不超过3000元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为正整数即可得出租车方案数,设租车总费用为w元,根据租车总费用=400×租用35座客车的数量+320×租用30座客车的数量,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得:.答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.故答案为:8.(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:2≤m≤5.∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.13.(2019•滨州)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【分析】(1)可设辆甲种客车与1辆乙种客车的载客量分别为x人,y人,根据等量关系2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人,列出方程组求解即可;(2)根据题意列出不等式组,进而求解即可.【解答】解:(1)设辆甲种客车与1辆乙种客车的载客量分别为x人,y人,,解得:,答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车a辆,依题意有:,解得:6>a≥4,因为a取整数,所以a=4或5,a=4时,租车费用最低,为4×400+2×280=2160.14.(2019•大渡口区)母亲节前夕,某商店从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为3:4,单价和为210元.(1)求A、B两种礼盒的单价分别是多少元?(2)该商店购进这两种礼盒恰好用去9900元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利12元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?【分析】(1)利用A、B两种礼盒的单价比为3:4,单价和为210元,得出等式求出即可;(2)利用两种礼盒恰好用去9900元,结合(1)中所求,得出等式,利用两种礼盒的数量关系求出即可;(3)首先表示出店主获利,进而利用w,m关系得出符合题意的答案.【解答】解(1)设A种礼盒单价为3x元,B种礼盒单价为4x元,则:3x+4x=2107x=210X=30所以A种礼盒单价为3×30=90元,B种礼盒单价为4×30=120元.(2)设A种礼盒购进a个,购进B种礼盒b个,则:90a+120b=9900,可列不等式组为:解得:30≤a≤36因为礼盒个数为整数,所以符合的方案有2种,分别是:第一种:A种礼盒30个,B种礼盒60个,第二种:A种礼盒34个,B种礼盒57个.(3)设该商店获利w元,由(2)可知:w=12a+(18﹣m)b,则w=(2﹣m)b+1320若使所有方案都获利相同,则令2﹣m=0得m=2,此时店主获利1320元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2019,永州)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税
纳税办法如下:
一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;
二.个人所得税纳税税率如下表所示
纳税级数个人每月应纳税所得额纳税税率
1 不超过1500元的部分3%
2 超过1500元至4500元的部分10%
3 超过4500元至9000元的部分20%
4 超过9000元至35000元的部分25%
5 超过35000元至55000元的部分30%
6 超过55000元至80000元的部分35%
7 超过80000元的部分45%
(1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人的
每月应缴纳的个人所得税;
(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?
(2019?株洲)一元一次方程2x=4的解是()
A.x=1 B.x=2 C.x=3 D.x=4
考点:解一元一次方程.
分析:方程两边都除以2即可得解.
解答:解:方程两边都除以2,系数化为1得,x=2.
故选B.
点评:本题考查了解一元一次方程,是基础题.
(2019凉山州)购买一本书,打八折比打九折少花2元钱,那么这本书的原价是元.考点:一元一次方程的应用.
专题:经济问题.
分析:等量关系为:打九折的售价﹣打八折的售价=2.根据这个等量关系,可列出方程,再
求解.
解答:解:设原价为x元,
由题意得:0.9x ﹣0.8x=2 解得x=20.
点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方
程,再求解.
(2019?绵阳)朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还3个,如果每人
2个又
多2个,请问共有多少个小朋友?()
A .4个 B
.5个 C
.10个 D
.12个
(2019?潜江)某文化用品商店用 1 000元购进一批“晨光”套尺,很快销售一空;商店
又用 1 500元购进第二批该款套尺,购进时单价是第一批的4
5倍,所购数量比第一
批多100套.
(1)求第一批套尺购进时单价是多少?(2)若商店以每套
4元的价格将这两批套尺全部售出,可以盈利多少元?
(2019?宜昌)【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为
35公斤
/时,大约是一个人手工采摘的
3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘
1公斤棉花a 元的标准支付雇工工资,雇工每天工作8小时.
【问题解决】(1)一个雇工手工采摘棉花,一天..能采摘多少公斤?(2)一个雇工手工采摘棉花
7.5天获得的全部工钱正好购买一台采棉机,求
a 的值;
(3)
在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数
是张家的2倍.张家雇人手工采摘,王家所雇的人中有
32的人自带采棉机采摘,3
1
的人手工采摘.两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400
元.王家这次采摘棉花的总重量是多少?
(2019?苏州)苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游.已知这两个旅
游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?
(2019山东滨州,3,3分)把方程1
2
x=1变形为x=2,其依据是
A.等式的性质 1 B.等式的性质 2
C.分式的基本性质 D.不等式的性质 1
【答案】B.
(2019济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()
A.60元B.80元C.120元D.180元
考点:一元一次方程的应用.
分析:设这款服装的进价为x元,就可以根据题意建立方程300×0.8﹣x=60,就可以求出进价,再用标价减去进价就可以求出结论.
解答:解:设这款服装的进价为x元,由题意,得
300×0.8﹣x=60,
解得:x=180.
300﹣180=120,
∴这款服装每件的标价比进价多120元.
故选C.
点评:本题时一道销售问题.考查了列一元一次方程解实际问题的运用,利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.
(2019济宁)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫
“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有盏灯.
考点:一元一次方程的应用.
分析:根据题意,假设顶层的红灯有x盏,则第二层有2x盏,依次第三层有4x盏,第四层有8x盏,第五层有16x盏,第六层有32x盏,第七层有64x盏,总共381盏,列出等式,解方程,即可得解.
解答:解:假设尖头的红灯有x盏,由题意得:x+2x+4x+8x+16x+32x+64x=381,
127x=381,
x=3(盏);
答:塔的顶层是3盏灯.
故答案为:3.
点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
(2019?日照)甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是
A.8
B.7
C.6
D.5
答案:A
解析:假设每天工作量是1,甲单独工作x天完成。

工作总量等于
1×x,实际工作中甲做的1×(x -3);乙做的1×(x -2-3)
1×x=1×(x -3)+1×(x -2-3),解得:x=8
(2019?潍坊)对于实数x ,我们规定
x 表示不大于x 的最大整数,例如12
.1,33,
35.2,若
510
4
x ,则x 的取值可以是(
).
A.40
B.45
C.51
D.56 (2019?枣庄)某种商品每件的标价是
330元,按标价的八折销售时,仍可获利
10%,则
这种商品每件的进价为A.240元 B.250元C.280元 D.300元
(2019?淄博)把一根长
100cm 的木棍锯成两段,使其中一段的长比另一段的
2倍少5cm ,
则锯出的木棍的长不可能为(A )70cm (B )65cm (C )35cm
(D )35cm 或65cm
(2019?牡丹江)小明星期天到体育用品商店购买一个篮球花了120元,已知篮球按标价打
八折,那么篮球的标价是
150 元.
考点:有理数的除法.分析:先篮球的标价是
x 元,根据篮球按标价打八折并花了
120元,列出方程,求出
x 的值
即可.
解答:解:设篮球的标价是
x 元,根据题意得:
80%x=120,解得:x=150,则篮球的标价
150元;
故答案为:150.
点评:此题考查了有理数的除法,
掌握有理数的除法法则和打折的定义并列出方程是本题的
关键,是一道基础题.
(2019?柳州)解方程:3(x+4)=x .
考点:解一元一次方程专题:计算题.
分析:方程去分母,移项合并,将x 系数化为1,即可求出解.
解答:解:去括号得:3x+12=x ,
移项合并得:2x=﹣12,解得:x=﹣6.
点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数
化为1,求出解.
(2019?大兴安岭)小明星期天到体育用品商店购买一个篮球花了
120元,已知篮球按标价
打八折,那么篮球的标价是元.
(2019?红河)一件外衣的进价为
200元,按标价的
8折销售时,利润率为
10%,求这件外
衣的标价为多少元?(注:=
100%售价-进价利润率进价

解:设这件外衣的标价为
x 元,依题意得:……………………………1分0.8200
20010%x .……………………………
3分
0.820
200x .
0.8220x .275x

……………………………
5分
答:这件外衣的标价为
275元.。

相关文档
最新文档