中考数学真题汇编:整式含真题分类汇编解析

合集下载

北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共3小题)1.(2023•北京)计算:4sin60°+()﹣1+|﹣2|﹣.2.(2022•北京)计算:(π﹣1)0+4sin45°﹣+|﹣3|.3.(2021•北京)计算:2sin60°++|﹣5|﹣(π+)0.二.整式的混合运算—化简求值(共2小题)4.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.5.(2021•北京)已知a2+2b2﹣1=0,求代数式(a﹣b)2+b(2a+b)的值.三.分式的值(共1小题)6.(2023•北京)已知x+2y﹣1=0,求代数式的值.四.一元一次方程的应用(共1小题)7.(2023•北京)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)五.解一元二次方程-因式分解法(共1小题)8.(2021•北京)已知关于x的一元二次方程x2﹣4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.六.解一元一次不等式组(共3小题)9.(2023•北京)解不等式组:.10.(2022•北京)解不等式组:.11.(2021•北京)解不等式组:.七.一次函数图象与几何变换(共1小题)12.(2021•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.八.待定系数法求一次函数解析式(共1小题)13.(2022•北京)在平面直角坐标系xOy 中,函数y =kx +b (k ≠0)的图象过点(4,3),(﹣2,0),且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当x >0时,对于x 的每一个值,函数y =x +n 的值大于函数y =kx +b (k ≠0)的值,直接写出n 的取值范围.九.三角形内角和定理(共1小题)14.(2022•北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC ,求证:∠A +∠B +∠C =180°.方法一证明:如图,过点A 作DE ∥BC .方法二证明:如图,过点C 作CD ∥AB.一十.全等三角形的判定与性质(共1小题)15.(2022•北京)在△ABC 中,∠ACB =90°,D 为△ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得CE =DC .(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.一十一.三角形的外接圆与外心(共1小题)16.(2021•北京)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接BO并延长,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE =3,求GC和OF的长.一十二.切线的判定(共1小题)17.(2022•北京)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.一十三.圆的综合题(共1小题)18.(2022•北京)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′,点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上.若点P(﹣2,0),点Q为点P 的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T,求证:NT=OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(<t<1),若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时,直接写出PQ长的最大值与最小值的差(用含t的式子表示).一十四.旋转的性质(共1小题)19.(2021•北京)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC 上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.一十五.折线统计图(共1小题)20.(2022•北京)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析.下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m 根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:在甲、乙两位同学中,评委对 的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是 (填“甲”“乙”或“丙”).一十六.方差(共1小题)21.(2023•北京)某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175;b.16名学生的身高的平均数、中位数、众数:平均数中位数众数166.75m n(1)写出表中m,n的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好,据此推断:在下列两组学生中,舞台呈现效果更好的是 (填“甲组”或“乙组”);甲组学生的身高162165165166166乙组学生的身高161162164165175(3)该舞蹈队要选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为 和 .北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共3小题)1.(2023•北京)计算:4sin60°+()﹣1+|﹣2|﹣.【答案】5.【解答】解:原式=4×+3+2﹣2=2+3+2﹣2=5.2.(2022•北京)计算:(π﹣1)0+4sin45°﹣+|﹣3|.【答案】4.【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.3.(2021•北京)计算:2sin60°++|﹣5|﹣(π+)0.【答案】3+4.【解答】解:原式=2×+2+5﹣1=+2+5﹣1=3+4.二.整式的混合运算—化简求值(共2小题)4.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【答案】2x2+4x+1,原式=5.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.5.(2021•北京)已知a2+2b2﹣1=0,求代数式(a﹣b)2+b(2a+b)的值.【答案】1.【解答】解:原式=a2﹣2ab+b2+2ab+b2=a2+2b2,∵a2+2b2﹣1=0,∴a2+2b2=1,∴原式=1.三.分式的值(共1小题)6.(2023•北京)已知x+2y﹣1=0,求代数式的值.【答案】见试题解答内容【解答】解:∵x+2y﹣1=0,∴x+2y=1,∴====2,∴的值为2.四.一元一次方程的应用(共1小题)7.(2023•北京)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)【答案】边的宽为4cm,天头长为24cm.【解答】解:设天头长为6x,地头长为4x,则左、右边的宽为x,根据题意得,100+10x=4×(27+2x),解得x=4,答:边的宽为4cm,天头长为24cm.五.解一元二次方程-因式分解法(共1小题)8.(2021•北京)已知关于x的一元二次方程x2﹣4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.【答案】见试题解答内容【解答】(1)证明:∵a=1,b=﹣4m,c=3m2,∴Δ=b2﹣4ac=(﹣4m)2﹣4×1×3m2=4m2.∵无论m取何值时,4m2≥0,即Δ≥0,∴原方程总有两个实数根.(2)解:方法一:∵x2﹣4mx+3m2=0,即(x﹣m)(x﹣3m)=0,∴x1=m,x2=3m.∵m>0,且该方程的两个实数根的差为2,∴3m﹣m=2,∴m=1.方法二:设方程的两根为x1,x2,则x1+x2=4m,x1•x2=3m2,∵x1﹣x2=2,∴(x1﹣x2)2=4,∴(x1+x2)2﹣4x1x2=4,∴(4m)2﹣4×3m2=4,∴m=±1,又m>0,∴m=1.六.解一元一次不等式组(共3小题)9.(2023•北京)解不等式组:.【答案】1<x<2.【解答】解:,解不等式①得:x>1,解不等式②得:x<2,∴原不等式组的解集为:1<x<2.10.(2022•北京)解不等式组:.【答案】1<x<4.【解答】解:由2+x>7﹣4x,得:x>1,由x<,得:x<4,则不等式组的解集为1<x<4.11.(2021•北京)解不等式组:.【答案】2<x<4.【解答】解:解不等式4x﹣5>x+1,得:x>2,解不等式<x,得:x<4,则不等式组的解集为2<x<4.七.一次函数图象与几何变换(共1小题)12.(2021•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.【答案】(1)y=x﹣1.(2)≤m≤1.【解答】解:(1)函数y=x的图象向下平移1个单位长度得到y=x﹣1,∵一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到,∴这个一次函数的表达式为y=x﹣1.(2)把x=﹣2代入y=x﹣1,求得y=﹣2,∴函数y=mx(m≠0)与一次函数y=x﹣1的交点为(﹣2,﹣2),把点(﹣2,﹣2)代入y=mx,求得m=1,∵当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=x﹣1的值,∴≤m≤1.八.待定系数法求一次函数解析式(共1小题)13.(2022•北京)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象过点(4,3),(﹣2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.【答案】(1)y=x+1,A(0,1);(2)n≥1.【解答】解:(1)把(4,3),(﹣2,0)分别代入y=kx+b得,解得,∴一次函数的解析式为y=x+1,当x=0时,y=x+1=1,∴A点坐标为(0,1);(2)当n≥1时,当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b (k≠0)的值.九.三角形内角和定理(共1小题)14.(2022•北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC ,求证:∠A +∠B +∠C =180°.方法一证明:如图,过点A 作DE ∥BC .方法二证明:如图,过点C 作CD ∥AB .【答案】(1)见解答过程;(2)见解答过程.【解答】证明:方法一:∵DE ∥BC ,∴∠B =∠BAD ,∠C =∠CAE ,∵∠BAD +∠BAC +∠CAE =180°,∴∠B +∠BAC +∠C =180°;方法二:∵CD ∥AB ,∴∠A =∠ACD ,∠B +∠BCD =180°,∴∠B +∠ACB +∠A =180°.一十.全等三角形的判定与性质(共1小题)15.(2022•北京)在△ABC 中,∠ACB =90°,D 为△ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得CE =DC .(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【答案】见试题解答内容【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.一十一.三角形的外接圆与外心(共1小题)16.(2021•北京)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接BO并延长,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE =3,求GC和OF的长.【答案】(1)证明见解答过程;(2)GC=6,OF=.【解答】(1)证明:∵AD是⊙O的直径,AD⊥BC,∴=,∴∠BAD=∠CAD;(2)解:在Rt△BOE中,OB=5,OE=3,∴BE==4,∵AD是⊙O的直径,AD⊥BC,∴BC=2BE=8,∵BG是⊙O的直径,∴∠BCG=90°,∴GC==6,∵AD⊥BC,∠BCG=90°,∴AE∥GC,∴△AFO∽△CFG,∴=,即=,解得:OF=.一十二.切线的判定(共1小题)17.(2022•北京)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.【答案】见试题解答内容【解答】证明:(1)如图,连接AD,∵AB是⊙O的直径,AB⊥CD,∴,∴∠CAB=∠BAD,∵∠BOD=2∠BAD,∴∠BOD=2∠A;(2)如图,连接OC,∵F为AC的中点,∴DF⊥AC,∴AD=CD,∴∠ADF=∠CDF,∵,∴∠CAB=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠CDF=∠CAB,∵OC=OD,∴∠CDF=∠OCD,∴∠OCD=∠CAB,∵,∴∠CAB=∠CDE,∴∠CDE=∠OCD,∵∠E=90°,∴∠CDE+∠DCE=90°,∴∠OCD+∠DCE=90°,即OC⊥CE,∵OC为半径,∴直线CE为⊙O的切线.一十三.圆的综合题(共1小题)18.(2022•北京)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′,点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上.若点P(﹣2,0),点Q为点P 的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T,求证:NT=OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(<t<1),若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时,直接写出PQ长的最大值与最小值的差(用含t的式子表示).【答案】见试题解答内容【解答】解:(1)①由题意知,P'(﹣2+1,0+1),∴P'(﹣1,1),如图,点Q即为所求;②连接PP',∵∠P'PO=∠MOx=45°,∴PP'∥ON,∵P'N=QN,∴PT=QT,∴NT=PP',∵PP'=OM,∴NT=OM;(2)如图,连接PO,并延长至S,使OP=OS,延长SQ到T,使ST=OM,由题意知,PP'∥OM,PP'=OM,P'N=NQ,∴TQ=2MN,∵MN=OM﹣ON=1﹣t,∴TQ=2﹣2t,∴SQ=ST﹣TQ=1﹣(2﹣2t)=2t﹣1,∵PS﹣QS≤PQ≤PS+QS,∴PQ的最小值为PS﹣QS,PQ的最大值为PS+QS,∴PQ长的最大值与最小值的差为(PS+QS)﹣(PS﹣QS)=2QS=4t﹣2.一十四.旋转的性质(共1小题)19.(2021•北京)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC 上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.【答案】(1)∠BAE=∠CAD,BE+MD=BM;(2)EN=DN.【解答】解:(1)∵∠DAE=∠BAC=α,∴∠DAE﹣∠BAD=∠BAC﹣∠BAD,即∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴BE=CD,∵M为BC的中点,∴BM=CM,∴BE+MD=BM;(2)如图,作EH⊥AB交BC于H,交AB于F,由(1)△ABE≌△ACD得:∠ABE=∠ACD,∵∠ACD=∠ABC,∴∠ABE=∠ABD,在△BEF和△BHF中,,∴△BEF≌△BHF(ASA),∴BE=BH,由(1)知:BE+MD=BM,∴MH=MD,∵MN∥HF,∴,∴EN=DN.一十五.折线统计图(共1小题)20.(2022•北京)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析.下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m 根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:在甲、乙两位同学中,评委对 甲 的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是 丙 (填“甲”“乙”或“丙”).【答案】见试题解答内容【解答】解:(1)m=×(10+10+10+9+9+8+3+9+8+10)=8.6;(2)甲同学的方差S2甲=×[2×(7﹣8.6)2+2×(8﹣8.6)2+4×(9﹣8.6)2+2×(10﹣8.6)2]=1.04,乙同学的方差S2乙=×[4×(7﹣8.6)2+2×(9﹣8.6)2+4×(10﹣8.6)2]=1.84,∵S2甲<S2乙,∴评委对甲同学演唱的评价更一致.故答案为:甲;(3)甲同学的最后得分为×(7+8×2+9×4+10)=8.625;乙同学的最后得分为×(3×7+9×2+10×3)=8.625;丙同学的最后得分为×(8×2+9×3+10×3)=9.125,∴在甲、乙、丙三位同学中,表现最优秀的是丙.故答案为:丙.一十六.方差(共1小题)21.(2023•北京)某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175;b.16名学生的身高的平均数、中位数、众数:平均数中位数众数166.75m n(1)写出表中m,n的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好,据此推断:在下列两组学生中,舞台呈现效果更好的是 甲组 (填“甲组”或“乙组”);甲组学生的身高162165165166166乙组学生的身高161162164165175(3)该舞蹈队要选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为 170 和 172 .【答案】(1)166;165;(2)甲组;(3)170,172.【解答】解:(1)数据按由小到大的顺序排序:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175,则舞蹈队16名学生的中位数为m==166,众数为n=165;(2)甲组学生身高的平均值是:=164.8,甲组学生身高的方差是:×[(164.8﹣162)2+(164.8﹣165)2+(164.8﹣165)2+(164.8﹣166)2+(164.8﹣166)2]=2.16,乙组学生身高的平均值是:=165.4,乙组学生身高的方差是:×[(165.4﹣161)2+(165.4﹣162)2+(165.4﹣164)2+(165.4﹣165)2+(165.4﹣175)2]=25.04,∵25.04>2.6,∴甲组舞台呈现效果更好.故答案为:甲组;(3)∵168,168,172的平均数为(168+168+172)=169,且所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,∴数据的差别较小,可供选择的有170,172,平均数为:(168+168+170+172+172)=170,方差为:[(168﹣170)2+(168﹣170)2+(170﹣170)2+(172﹣170)2+(172﹣170)2]=3.2<,∴选出的另外两名学生的身高分别为170和172.故答案为:170,172.。

2023中考数学真题汇编02 整式及其运算(含答案与解析)

2023中考数学真题汇编02 整式及其运算(含答案与解析)

2023中考数学真题汇编·02整式及其运算一、单选题1.(2023·四川乐山)计算:2a a ()A .a B .aC .3aD .12.(2023·湖南)计算: 23a ()A .5aB .23a C .26a D .29a 3.(2023·江西)计算 322m 的结果为()A .68m B .66m C .62m D .52m 4.(2023·江苏苏州)下列运算正确的是()A .32a a aB .325a a a C .321a a D . 23a a5.(2023·云南)下列计算正确的是()A .236a a aB .22(3)6a a C .632a a a D .22232a a a 6.(2023·湖北宜昌)下列运算正确的是().A .4322x x xB . 437x x C .437x x x D .3412x x x 7.(2023·浙江宁波)下列计算正确的是()A .23x x xB .632x x x C . 437x x D .347x x x 8.(2023·湖北荆州)下列各式运算正确的是()A .23232332a b a b a bB .236a a aC .623a a aD . 325a a 9.(2023·四川眉山)下列运算中,正确的是()A .3232a a aB . 222a b a b C .322a b a aD . 2242a b a b 10.(2023·湖南岳阳)下列运算结果正确的是()A .23a a a B .623a a a C .33a a D .222()a b a b 11.(2023·上海)下列运算正确的是()A .523a a a B .336a a a C . 235a a D a12.(2023·浙江绍兴)下列计算正确的是()A .623a a a B .52a a C . 2111a a a D .22(1)1a a 13.(2023·内蒙古赤峰)下列运算正确的是()A . 22346a b a b B .321ab ab C .34()a a a D .222()a b a b 14.(2023·浙江台州)下列运算正确的是().A . 2122a aB . 222a b a b C .2325a a a D . 22ab ab 15.(2023·四川)下列计算正确的是()A .22ab a bB .236a a a C .233ab a aD .222()()4a a a 16.(2023·黑龙江)下列运算正确的是()A .22(2)4a a B .222()a b a b C . 2224m m m D . 257a a 17.(2023·湖南常德)若2340a a ,则2263a a ()A .5B .1C .1D .018.(2023·内蒙古赤峰)已知2230a a ,则2(23)(23)(21)a a a 的值是()A .6B .5C .3D .419.(2023·浙江温州)化简43()a a 的结果是()A .12a B .12a C .7a D .7a 20.(2023·新疆)计算2432a ab ab 的结果是()A .6aB .6abC .26a D .226a b 21.(2023·甘肃武威)计算: 22a a a ()A .2B .2a C .22a a D .22a a22.(2023·江苏扬州)若23( )22a b a b ,则括号内应填的单项式是()A .aB .2aC .abD .2ab23.(2023·湖南)计算2312x的结果正确的是()A .6x B .614xC .514x D .9x 24.(2023·内蒙古)下列各式计算结果为5a 的是()A .23a B .102a a C .4a a D .15(1)a 25.(2023·全国)下列算式中,结果等于5a 的是()A .23a aB .23a aC .23()aD .102a a 二、填空题26.(2023·河南)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.27.(2023·湖南永州)22a 与4ab 的公因式为________.28.(2023·天津)计算 22xy 的结果为________.29.(2023·全国)计算:(3)a b _________.30.(2023·湖北十堰)若3x y ,2y ,则22x y xy 的值是___________________.31.(2023·广东深圳)已知实数a ,b ,满足6a b ,7ab ,则22a b ab 的值为______.三、解答题32.(2023·湖南)先化简,再求值: 233(3)a b a b a b ,其中13,3a b.【参考答案与解析】1.【答案】A【解析】解:2a a a ,故A 正确.故选:A .2.【答案】D【解析】解: 2239a a .故选:D.3.【答案】A【解析】解: 32628m m ,故选:A .4.【答案】B【解析】解:3a 与2a 不是同类项,不能合并,故A 选项错误;33522a a a a ,故B 选项正确;32a a a ,故C 选项错误;236a a ,故D 选项错误;故选:B .5.【答案】D【解析】解:52233a a a a ,故A 错误;2222(3)39a a a ,故B 错误;63633a a a a ,故C 错误; 22223312a a a a ,故D 正确.故选:D .6.【答案】A【解析】解:A.4322x x x ,计算正确,故选项A 符合题意;B.4312x x ,原选项计算错误,故选项B 不符合题意;C.4x 与3x 不是同类项不能合并,原选项计算错误,故选项C 不符合题意;D.347x x x ,原选项计算错误,故选项D 不符合题意.故选:A .7.【答案】D【解析】解:A 、23x x x ,错误,故不符合要求;B 、6332x x x x ,错误,故不符合要求;C 、 43127x x x ,错误,故不符合要求;D 、347x x x ,正确,故符合要求;故选:D .8.【答案】A【解析】解:A.23232332a b a b a b ,故该选项正确,符合题意;B.235a a a ,故该选项不正确,不符合题意;C.624a a a ,故该选项不正确,不符合题意;D.326a a ,故该选项不正确,不符合题意;故选:A .9.【答案】D【解析】解:33a ,2a 不是同类项,不能合并,故A 不符合题意;2222a b a ab b ,故B 不符合题意;3222a b a ab ,故C 不符合题意;2242a b a b ,故D 符合题意;故选:D.10.【答案】A【解析】解:A 、23a a a ,故该选项正确,符合题意;B 、624a a a ,故该选项不正确,不符合题意;C 、32a a a ,故该选项不正确,不符合题意;D 、222()2a b a ab b ,故该选项不正确,不符合题意;故选:A .11.【答案】A【解析】解:A 、523a a a ,故正确,符合题意;B 、3332a a a ,故错误,不符合题意;C 、 236a a ,故错误,不符合题意;D a ,故错误,不符合题意;故选:A .12.【答案】C【解析】解:A .6243a a a a ,原计算错误,不符合题意;B .5210a a a ,原计算错误,不符合题意;C .2111a a a ,原计算正确,符合题意;D .222(1)211a a a a ,原计算错误,不符合题意;故选:C .13.【答案】A 【解析】A.22346a b a b ,正确,符合题意;B.32ab ab ab ,原计算错误,本选项不合题意;C.34()a a a ,原计算错误,本选项不合题意;D.222()2a b a b ab ,原计算错误,本选项不合题意;14.【答案】A【解析】解:A . 2122a a ,计算正确,符合题意;B . 222222a b a ab b a b ,计算错误,不符合题意;C .23255a a a a ,,计算错误,不符合题意;D .2222ab a b ab ,计算错误,不符合题意;故选:A .15.【答案】D【解析】A.22ab a b ,故该选项不正确,不符合题意;B.235a a a ,故该选项不正确,不符合题意;C.233a b a ab ,故该选项不正确,不符合题意;D.222()()4a a a ,故该选项正确,符合题意;16.【答案】C【解析】解:A. 2224a a ,原式计算错误;B.2222a b a ab b ,原式计算错误;C. 2224m m m ,计算正确;D.2510a a ,原式计算错误.故选:C .17.【答案】A【解析】∵2340a a ,∴234a a ∴ 222632332435a a a a ,故选:A .18.【答案】D【解析】解:由2230a a 得:223a a ,∴2(23)(23)(21)a a a 2249441a a a 2848a a 2428a a 438 4 ,故选:D .19.【答案】D【解析】解:43()a a 437a a a ,故选:D .20.【答案】C【解析】解:2432a a b ab3122a b ab故选:C .21.【答案】B【解析】解: 222222a a a a a a a ,故选:B.22.【答案】A【解析】解:∵23( )22a b a b ,∴3222a b a b a .故选:A .23.【答案】B【解析】解:236322112124x x x,故选:B .24.【答案】C【解析】解:A 、 236a a ,不符合题意;B 、1028a a a ,不符合题意;C 、45a a a ,符合题意;D 、515(1)a a ,不符合题意;故选:C .25.【答案】B【解析】解:A 选项,不是同类项,不能进行加减乘除,不符合题意;B 选项,根据同底数幂的乘法可知,底数不变,指数相加,结果是235a a ,符合题意;C 选项,根据幂的乘方可知,底数不变,指数相乘,结果是236a a ,不符合题意;D 选项,根据同底数幂的除法可知,底数不变,指数相减,结果是1028a a ,不符合题意;故选:B .二、填空题26.【答案】3n【解析】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .27.【答案】2a【解析】解:根据确定公因式的方法,可得22a 与4ab 的公因式为2a ,故答案为:2a .28.【答案】24x y 【解析】解: 2224xy x y ,故答案为:24x y .29.【答案】3ab a【解析】解:(3)3a b ab a .故答案为:3ab a .30.【答案】6【解析】解:22x y xy xy x y ,∵3x y ,2y ,∴1x ,∴原式123 6 ,故答案为:6.31.【答案】42【解析】22a b abab a b 7642 .故答案为:42.三、解答题32.【答案】226a ab ,24【解析】 233(3)a b a b a b 2222969a b a ab b 226a ab当13,3a b时,原式 212363324 .。

2022年全国中考数学真题分类汇编专题3:整式解析版

2022年全国中考数学真题分类汇编专题3:整式解析版

2022年全国中考数学真题分类汇编专题3:整式一.选择题(共15小题)1.计算(2x2)3的结果,正确的是()A.8x5B.6x5C.6x6D.8x6【解答】解:(2x2)3=8x6.故选:D.2.下列运算正确的是()A.a2•a3=a5B.(a2)3=a8C.(a2b)3=a2b3D.a6÷a3=a2【解答】解:a2•a3=a5,故A正确,符合题意;(a2)3=a6,故B错误,不符合题意;(a2b)3=a6b3,故C错误,不符合题意;a6÷a3=a3,故D错误,不符合题意;故选:A.3.计算a2•a()A.a B.3a C.2a2D.a3【解答】解:原式=a1+2=a3.故选:D.4.下列运算正确的是()A.a2•a3=a5B.(a3)2=a5 C.(ab)2=ab2D. a3(a≠0)【解答】解:A.因为a2•a3=a2+3=a5,所以A选项运算正确,故A选项符合题意;B.因为(a3)2=a2×3=a6,所以B选项运算不正确,故B选项不符合题意;C.因为(ab)2=a2b2,所以C选项运算不正确,故C选项不符合题意;D.因为 a6﹣2=a4,所以D选项运算不正确,故D选项不符合题意.故选:A.5.计算a3•a2的结果是()A.a B.a6C.6a D.a5【解答】解:a3•a2=a5.故选:D.6.若24×22=2m,则m的值为()A.8B.6C.5D.2【解答】解:∵24×22=24+2=26=2m,∴m=6,故选:B.7.化简(3a2)2的结果是()A.9a2B.6a2C.9a4D.3a4【解答】解:(3a2)2=9a4.故选:C.8.计算a3÷a得a,则“?”是()A.0B.1C.2D.3【解答】解:根据同底数幂的除法可得:a3÷a=a2,∴?=2,故选:C.9.计算﹣a2•a的正确结果是()A.﹣a2B.a C.﹣a3D.a3【解答】解:﹣a2•a=﹣a3,故选:C.10.下列运算正确的是()A.3a﹣2a=1B.a3•a5=a8C.a8÷2a2=2a4D.(3ab)2=6a2b2【解答】解:3a﹣2a=a,故选项A错误,不符合题意;a3•a5=a8,故选项B正确,符合题意;a8÷2a2 a6,故选项C错误,不符合题意;(3ab)2=9a2b2,故选项D错误,不符合题意;故选:B.11.下列计算正确的是()A.m2•m3=m6B.﹣(m﹣n)=﹣m+nC.m(m+n)=m2+n D.(m+n)2=m2+n2【解答】解:A选项,原式=m5,故该选项不符合题意;B选项,原式=﹣m+n,故该选项符合题意;C选项,原式=m2+mn,故该选项不符合题意;D选项,原式=m2+2mn+n2,故该选项不符合题意;故选:B.12.下列计算结果正确的是()A.5a﹣3a=2B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b9【解答】解:A选项,原式=2a,故该选项不符合题意;B选项,原式=3,故该选项不符合题意;C选项,原式=a3,故该选项不符合题意;D选项,原式=8a6b9,故该选项符合题意;故选:D.13.计算(2a4)3的结果是()A.2a12B.8a12C.6a7D.8a7【解答】解:(2a4)3=8a12,故选:B.14.计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1【解答】解:a(a+1)﹣a=a2+a﹣a=a2,故选:B.15.对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m ﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n=x﹣y﹣z ﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.二.填空题(共10小题)16.计算:a•a3=a4.【解答】解:a3•a,=a3+1,=a4.故答案为:a4.17.单项式3xy的系数为3.【解答】解:单项式3xy的系数为3.故答案为:3.18.若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为y2﹣xy+3.【解答】解:由题意得,这个多项式为:(2xy+3y2﹣5)﹣(3xy+2y2﹣8)=2xy+3y2﹣5﹣3xy﹣2y2+8=y2﹣xy+3.故答案为:y2﹣xy+3.19.已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为 或 ..【解答】解:根据题意可得,(2t﹣1)ab=±(2×2)ab,即2t﹣1=±4,解得:t 或t .故答案为: 或 .20.已知x+y=4,x﹣y=6,则x2﹣y2=24.【解答】解:∵x+y=4,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=4×6=24.故答案为:24.21.计算m•m7的结果等于m8.【解答】解:m•m7=m8.故答案为:m8.22.计算:m4÷m2=m2.【解答】解:m4÷m2=m4﹣2=m2.故答案为:m2.23.计算:3a3•a2=3a5.【解答】解:原式=3a3+2=3a5.故答案为:3a5.24.计算:(﹣a3)2=a6.【解答】解:(﹣a3)2=a6.25.已知a+b=4,a﹣b=2,则a2﹣b2的值为8.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.三.解答题(共8小题)26.下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.例:先去括号,再合并同类项:m(A)﹣6(m+1).解:m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6.【解答】解:由题知,m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6,∵m2+6m=m(m+6),∴A为:m+6,故答案为:m2﹣6.27.已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.28.先化简,再求值.(a+b)(a﹣b)+b(2a+b),其中a=1,b=﹣2.【解答】解:(a+b)(a﹣b)+b(2a+b)=a2﹣b2+2ab+b2=a2+2ab,将a=1,b=﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.29.先化简,再求值:(1+x)(1﹣x)+x(x+2),其中x .【解答】解:(1+x)(1﹣x)+x(x+2)=1﹣x2+x2+2x=1+2x,当x 时,原式=1 1+1=2.30.先化简,再求值:(2+a)(2﹣a)+a(a+1),其中a 4.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a 4时,原式=4 4.31.先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y .【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x=x2﹣y2+y2﹣2y=x2﹣2y,当x=1,y 时,原式=12﹣2 0.33.先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x 1.【解答】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x 1时,原式=( 1)2﹣4=﹣2 .。

数学中考《代数式与整式》真题演练中考数学考点试卷分类汇编

数学中考《代数式与整式》真题演练中考数学考点试卷分类汇编

第一章数与式第二节代数式与整式1. (重庆B卷8题4分)若m=-2,则代数式m2-2m-1的值是 ( )A. 9B. 7C. -1D. -92. (重庆A卷6题4分)若a=2,b=-1,则a+2b+3的值为 ( )A. -1B. 3C. 6D. 53. (重庆A卷10题4分)下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为 2 cm2,第(2)个图形的面积为8 cm2,第(3)个图形的面积为18 cm2,…,则第(10)个图形的面积为()第3题图A. 196 cm2B. 200 cm2C. 216 cm2D. 256 cm24. (重庆8题4分)观察下列图形,则第n个图形中三角形的个数是()第4题图A. 2n+2B. 4n+4C. 4n-4D. 4n5. (重庆8题4分)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~图④中相同的是()第5题图A. 图①B. 图②C. 图③D. 图④6. (重庆B卷9题4分)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()第6题图A. 43B. 45C. 51D. 53【拓展猜押】如图,每个图案都由若干个“”组成,其中第①个图案中有7个“”,第②个图案中有13个“”,…,则第⑨个图案中“”的个数为()拓展猜押题图A. 57B. 73C. 91D. 1117. (重庆B卷2题4分)计算5x2-2x2的结果是()A. 3B. 3xC. 3x2D. 3x48. (重庆A卷3题4分)计算a3·a2正确的是()A. aB. a5C. a6D. a99. (重庆2题4分)计算2x3·x2的结果是()A. 2xB. 2x5C. 2x6D. x510. (重庆B卷5题4分)计算(x2y)3的结果是()A. x6y3B. x5y3C. x5yD. x2y311. (重庆A卷2题4分)计算(2x3y)2的结果是()A. 4x6y2B. 8x6y2C. 4x5y2D. 8x5y212. (重庆A卷2题4分)计算2x6÷x4的结果是()A. x2B. 2x2C. 2x4D. 2x1013. (重庆A卷21(1)题5分)计算:y(2x-y)+(x+y)2.14. (重庆A卷21(1)题5分)计算:(a+b)2-b(2a+b).15. (重庆B卷21(1)题5分)计算:(x-y)2-(x-2y)(x+y).16. (重庆B卷21(1)题5分)计算:2(a+1)2+(a+1)(1-2a).17. (重庆12题3分)分解因式:ax-ay=________.答案1. B 【解析】当m=-2时,原式=(-2)2-2×(-2)-1=4+4-1=7.2. B 【解析】当a=2,b=-1时,原式=2-2+3=3.3. B 【解析】第(1)个图形的面积为1×1×2=2;第(2)个图形的面积为2×2×2=8 cm2;第(3)个图形的面积为3×3×2=18 cm2;第(4)个图形的面积为4×4×2=32 cm2;…;由此规律可以看出每一个图形都是由小矩形所组成,共有n×n个小矩形.故第(n)个图形的总面积为n2×2=2n2.故第(10)个图形的面积为102×2=200 cm2.4. D 【解析】从第1个图形开始分别列出所含三角形的个数:第1个图有4个三角形,第2个图有8个三角形,第3个图有12个三角形,…,由此可知三角形的个数是对应的图形序号的4倍,∴第n个图形中有4n个三角形,故选D.5. B 【解析】∵平角为180°,每一次只旋转45°,∴经过180÷45=4次旋转后两个矩形重合如题图④,而10÷4=2……2,则再旋转2次,即第10次旋转后与图②相同.6. C 【解析】图形①的星星颗数为:2=1+(2×1-1);图形②的星星颗数为:6=(1+2)+(2×2-1);图形③的星星颗数为:11=(1+2+3)+(2×3-1);图形④的星星颗数为:17=(1+2+3+4)+(2×4-1);…;则图形n的星星颗数为:(1+2+…+n)+(2n-1)=2)1(+nn+2n-1,所以图形⑧的星星颗数为:2)18(8++2×8-1=51.【拓展猜押】D 【解析】观察所给图形可以发现,图⑧是正三角形,边上有3个,内部有4个,共7个;图⑧是正方形,边上有8个,内部有5个,共13个,图⑧是正五边形,边上有15个,内部有6个,共21个;图⑧是正六边形,边上有24个,内部有7个,共31个,由此推测,第n个图案是正n+2边形,边上有n(n+2)个,内部有(n+3)个,则第⑧个图案中,共有9×11+9+3=111个.7. C 【解析】由合并同类项法则可知,5x2-2x2=(5-2)x2=3x2.8. B 【解析】原式=a3+2=a5.9. B 【解析】原式=2x3+2=2x5.10. A 【解析】原式=x2×3y3=x6y3.11. A 【解析】原式=22·x3×2y2=4x6y2.12. B 【解析】原式=2x6-4=2x2.13. 解:原式=2xy-y2+x2+2xy+y2..............................................................(3分)=x2+4xy. ....................................................................................................(5分) 14. 解:原式=a2+2ab+b2-2ab-b2..............................................................(3分)=a2. ...........................................................................................................(5分) 15. 解:原式=x2-2xy+y2-x2-xy+2xy+2y2........................................ .......(3分)=-xy+3y2. ..................................................................................(5分) 16. 解:原式=2(a2+2a+1)+a-2a2+1-2a ...............................................(2分)=2a2+4a+2+a-2a2+1-2a ...................................... (3分)=3a+3. .....................................................................................(5分) 17. a(x-y) 【解析】直接运用提公因式法提取公因式a即可分解因式,即ax-ay =a(x-y).。

数学中考试题分类汇编(整式、因式分解)

数学中考试题分类汇编(整式、因式分解)

图7以下是山东任梦送的分类(梅州)考察了分式方程的解法,注意不要忘记验根。

如图7所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1) 用a ,b ,x 表示纸片剩余部分的面积;(2) 当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长. (茂名)下列运算正确的是( )A.-22=4 B.22-=-4C. a ·a 2 = a 2 D.a +2a =3a (茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )m 平方 -m ÷m +2 结果A.m B.m2C.m +1 D.m -1分解因式:3x 2-27= .3(x +3)(x -3) 以下是河南省高建国分类:(巴中市)把多项式32244x x y xy -+分解因式,结果为 . (巴中市)大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += . (自贡市)先化简,再求值。

其中3=x ,2=y222)11(y xy x xy x y +--以下是湖北孔小朋分类:10.(福建福州)已知抛物线21y x x =--与x 轴的一个交点为(0)m ,, 则代数式22008m m -+的值为( )A .B .C .D .11.(福建福州)因式分解:244x x ++= .11 1 12 1 13 3 1 14 64 1 ......................................... Ⅰ 1222332234432234()()2()33()464a b a b a b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++ Ⅱ以下是河北省柳超的分类(贵阳市)11.分解因式:24x -= .(遵义市)9.计算:2(2)a a -÷= .(遵义市)19.(6分)现有三个多项式:2142a a +-,21542a a ++,212a a -,以下是江西康海芯的分类:1. (郴州市)因式分解:24x -=____________辽宁省 岳伟 分类郴州市1、因式分解:24x -=____________郴州市2、下列计算错误的是( )A .-(-2)=2B 822=.22x +32x =52x D .235()a a = 2.(湖州市)当1x =时,代数式1x +的值是( ) A .1 B .2 C .3 D ,45.(湖州市)计算23()x x -所得的结果是( ) A .5x B .5x -C .6xD .6x -以下是安徽省马鞍山市成功中学的汪宗兴老师的分类1.(·东莞市)下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a2.(•南宁市)下列运算中,结果正确的是:(A )a a a =÷33 (B )422a a a =+ (C )523)(a a = (D )2a a a =⋅3.(•南宁市)因式分解:=-x x 34.(•南宁市)计算:4245tan 21)1(10+-︒+--。

整式及其运算(50题)2023年中考数学真题分项汇编(全国通用)(解析版)

整式及其运算(50题)2023年中考数学真题分项汇编(全国通用)(解析版)

整式及其运算一、单选题 1.(2023·四川乐山·统考中考真题)计算:2a a −=( )A .aB .a −C .3aD .1 【答案】A【分析】根据合并同类项法则进行计算即可.【详解】解:2a a a −=,故A 正确.故选:A .【点睛】本题主要考查了合并同类项,解题的关键是熟练掌握合并同类项法则,准确计算.2.(2023·四川眉山·统考中考真题)下列运算中,正确的是( )A .3232a a a −=B .()222a b a b +=+C .322a b a a ÷=D .()2242a b a b = 【答案】D【分析】根据合并同类项可判断A ,根据完全平方公式可判断B ,根据单项式除以单项式可判断C ,根据积的乘方与幂的乘方运算可判断D ,从而可得答案.【详解】解:33a ,2a 不是同类项,不能合并,故A 不符合题意; ()2222a b a ab b +=++,故B 不符合题意;3222a b a ab ÷=,故C 不符合题意;()2242a b a b =,故D 符合题意;故选:D.【点睛】本题考查的是合并同类项,完全平方公式的应用,单项式除以单项式,积的乘方与幂的乘方运算的含义,熟记基础运算法则是解本题的关键. 3.(2023·江西·统考中考真题)计算()322m 的结果为( ) A .68mB .66mC .62mD .52m【答案】A 【分析】根据积的乘方计算法则求解即可.【详解】解:()32628m m =,故选:A . 【点睛】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键. 4.(2023·江苏苏州·统考中考真题)下列运算正确的是( )A .32a a a −=B .325a a a ⋅=C .321a a ÷=D .()23a a = 【答案】B【分析】根据合并同类项法则、同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则分别计算即可.【详解】解:3a 与2a 不是同类项,不能合并,故A 选项错误;33522a a a a +⋅==,故B 选项正确;32a a a ÷=,故C 选项错误; ()236a a =,故D 选项错误;故选:B .【点睛】本题考查合并同类项、同底数幂的乘法、同底数幂的除法、幂的乘方,熟练掌握各项运算法则是解题的关键.【答案】A【分析】根据同底数幂的乘法可判断A ,根据幂的乘方可判断B ,根据积的乘方可判断C ,根据整数指数幂的运算可判断D ,从而可得答案.【详解】解:235a a a ⋅=,运算正确,故A 符合题意; ()326a a =,原运算错误,故B 不符合题意;333()ab a b =,原运算错误,故C 不符合题意;231a a a ÷=,原运算错误,故D 不符合题意;故选:A .【点睛】本题考查的是同底数幂的乘法,幂的乘方,积的乘方,同底数幂的除法运算,负整数指数幂的含义,整数指数幂的运算,熟记运算法则是解本题的关键. 6.(2023·湖南·统考中考真题)计算:()23a =( )A .5aB .23aC .26aD .29a 【答案】D【分析】根据积的乘方法则计算即可. 【详解】解:()2239a a =.故选:D. 【点睛】此题考查了积的乘方,积的乘方等于各因数乘方的积,熟练掌握积的乘方法则是解题的关键. 7.(2023·湖南常德·统考中考真题)若2340a a +−=,则2263a a +−=( )A .5B .1C .1−D .0【答案】A【分析】把2340a a +−=变形后整体代入求值即可. 【详解】∵2340a a +−=,∴234+=a a∴()222632332435a a a a +−=+−=⨯−=,故选:A .【点睛】本题考查代数式求值,利用整体思想是解题的关键.8.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是( )A .23a a +B .23a a ⋅C .23()aD .102a a ÷ 【答案】B【分析】根据同底数幂的运算法则即可求解.【详解】解:A 选项,不是同类项,不能进行加减乘除,不符合题意;B 选项,根据同底数幂的乘法可知,底数不变,指数相加,结果是235a a +=,符合题意;C 选项,根据幂的乘方可知,底数不变,指数相乘,结果是236a a ⨯=,不符合题意;D 选项,根据同底数幂的除法可知,底数不变,指数相减,结果是1028a a −=,不符合题意;故选:B .【点睛】本题主要考查同底数幂的混合运算法则,掌握同底数幂的运算法则是解题的关键. 9.(2023·浙江宁波·统考中考真题)下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅=【答案】D【分析】根据同底数幂的乘法、除法,幂的乘方,合并同类项进行运算,然后判断即可.【详解】解:A 、23x x x +≠,错误,故不符合要求; B 、6332x x x x ÷=≠,错误,故不符合要求;C 、()43127x x x =≠,错误,故不符合要求;D 、347x x x ⋅=,正确,故符合要求;故选:D .【点睛】本题考查了同底数幂的乘法、除法,幂的乘方,合并同类项.解题的关键在于正确的运算. 10.(2023·云南·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a −=【答案】D【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ⨯⋅==A 错误; 2222(3)39a a a ==,故B 错误;63633a a a a −÷==,故C 错误;()22223312a a a a −=−=,故D 正确.故选:D . 【点睛】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键. 11.(2023·新疆·统考中考真题)计算2432a a b ab ⋅÷的结果是( )A .6aB .6abC .26aD .226a b【答案】C【分析】先计算单项式乘以单项式,然后根据单项式除以单项式进行计算即可求解.【详解】解:2432a a b ab ⋅÷3122a b ab =÷26a =,故选:C .【点睛】本题考查了单项式除以单项式,熟练掌握单项式除以单项式的运算法则是解题的关键. 12.(2023·湖南怀化·统考中考真题)下列计算正确的是( )A .235a a a ⋅=B .623a a a ÷=C .()2329ab a b =D .523a a −=【答案】A【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项分别计算后,即可得到答案.【详解】解:A .235a a a ⋅=,故选项正确,符合题意; B .624a a a ÷=,故选项错误,不符合题意;C .()2326ab a b =,故选项错误,不符合题意;D .523a a a −=,故选项错误,不符合题意.故选:A .【点睛】此题考查了同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项,熟练掌握运算法则是解题的关键.【答案】B【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()222222a a a a a a a +−=+−=,故选:B.【点睛】此题考查了整式的四则混合运算,熟练掌握单项式乘以多项式的运算法则是解题的关键. 14.(2023·浙江温州·统考中考真题)化简43()a a ⋅−的结果是( )A .12aB .12a −C .7aD .7a − 【答案】D【分析】根据积的乘方以及同底数幂的乘法进行计算即可求解.【详解】解:43()a a ⋅−()437a a a =⨯−=−,故选:D .【点睛】本题考查了积的乘方以及同底数幂的乘法,熟练掌握积的乘方以及同底数幂的乘法的运算法则是解题的关键. 15.(2023·山东烟台·统考中考真题)下列计算正确的是( )A .2242a a a +=B .()32626a a =C .235a a a ⋅=D .824a a a ÷=【答案】C【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答.【详解】解:A.2222a a a +=,故该选项不正确,不符合题意; B.()32628a a =,故该选项不正确,不符合题意;C.235a a a ⋅=,故该选项正确,符合题意;D.826a a a ÷=,故该选项不正确,不符合题意.故选:C .【点睛】本题主要考查了合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法等知识,掌握运算法则是解题的关键.【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,进行计算即可求解.【详解】解:A 、 23a a a ⋅=,故该选项正确,符合题意; B 、 624a a a ÷=,故该选项不正确,不符合题意;C 、 32a a a −=,故该选项不正确,不符合题意;D 、222()2a b a ab b −=−+,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,完全平方公式,熟练掌握同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式是解题的关键.17.(2023·江苏扬州·统考中考真题)若23( )22a b a b ⋅=,则括号内应填的单项式是( )A .aB .2aC .abD .2ab【答案】A【分析】将已知条件中的乘法运算可以转化为单项式除以单项式进行计算即可解答.【详解】解:∵23( )22a b a b ⋅=, ∴()3222a b a b a =÷=.故选:A .【点睛】本题主要考查了整式除法的应用,弄清被除式、除式和商之间的关系是解题的关键.【答案】A【分析】根据同底数幂的除法,合并同类项,幂的乘方,二次根式的化简等计算即可.【详解】解:A 、523a a a ÷=,故正确,符合题意; B 、3332a a a +=,故错误,不符合题意;C 、()236a a =,故错误,不符合题意;D a =,故错误,不符合题意;故选:A .【点睛】本题考查了同底数幂的除法,合并同类项,幂的乘方,二次根式的化简,熟练掌握幂的运算法则是解题的关键.19.(2023·浙江绍兴·统考中考真题)下列计算正确的是( )A .623a a a ÷=B .()52a a −=−C .()()2111a a a +−=−D .22(1)1a a +=+【答案】C【分析】根据同底数幂相除法则判断选项A ;根据幂的乘方法则判断选项B ;根据平方差公式判断选项C ;根据完全平方公式判断选项D 即可.【详解】解:A . 6243a a a a ÷=≠,原计算错误,不符合题意; B . ()5210a a a −=−≠−,原计算错误,不符合题意;C . ()()2111a a a +−=−,原计算正确,符合题意;D .222(1)211a a a a +=++≠+,原计算错误,不符合题意; 故选:C .【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键. 20.(2023·浙江台州·统考中考真题)下列运算正确的是( ).A .()2122a a −=−B .()222a b a b +=+C .2325a a a +=D .()22ab ab = 【答案】A【分析】根据去括号法则判断A ;根据完全平方公式判断B ;根据合并同类项法则判断C ;根据积的乘方法则判断D 即可.【详解】解:A .()2122a a −=−,计算正确,符合题意;B .()222222a b a ab b a b +=++≠+,计算错误,不符合题意; C .23255a a a a +=≠,,计算错误,不符合题意;D . ()2222ab a b ab =≠,计算错误,不符合题意;故选:A .【点睛】本题考查了去括号法则,合并同类项法则,积的乘方法则,完全平方公式等知识,熟练掌握各运算法则是解题的关键.【答案】B 【分析】运用积的乘方法则、幂的乘方法则即可得出结果.【详解】解:()236322112124x xx ⎛⎫== ⎪⎝⎭⎛⎫ ⎪⎝⎭,故选:B .【点睛】本题考查了积的乘方法则、幂的乘方法则,熟练运用积的乘方法则、幂的乘方法则是解题的关键. 22.(2023·山东临沂·统考中考真题)下列运算正确的是( )A .321a a −=B .222()a b a b −=−C .()257a a =D .325326a a a ⋅=.【答案】D【分析】根据合并同类项,完全平方公式,幂的乘方,单项式乘单项式法则,进行计算后判断即可.【详解】解:A 、32a a a −=,故选项错误,不符合题意;B 、222()2a b a ab b −=−+,故选项错误,不符合题意;C 、()2510a a =,故选项错误,不符合题意;D 、325326a a a ⋅=,故选项正确,符合题意;故选:D .【点睛】本题考查整式的运算,熟练掌握相关运算法则,是解题的关键.23.(2023·山东枣庄·统考中考真题)下列运算结果正确的是( )A .4482x x x +=B .()32626x x −=−C .633x x x ÷=D .236x x x ⋅=【答案】C【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A 、4442x x x +=,选项计算错误,不符合题意; B 、()32628x x −=−,选项计算错误,不符合题意;C 、633x x x ÷=,选项计算正确,符合题意;D 、235x x x ×=,选项计算错误,不符合题意;故选:C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.24.(2020春·云南玉溪·八年级统考期末)下列计算正确的是( )A .3a +4b =7abB .x 12÷x 6=x 6C .(a +2)2=a 2+4D .(ab 3)3=ab 6【答案】B【分析】根据同类项的定义、同底数幂的除法性质、完全平方公式、积的乘方公式进行判断.【详解】解:A 、3a 和4b 不是同类项,不能合并,所以此选项不正确;B 、x12÷x6=x6,所以此选项正确;C 、(a+2)2=a2+4a+4,所以此选项不正确;D 、(ab3)3=a3b9,所以此选项不正确;故选:B .【点睛】本题主要考查了合并同类项、同底数幂的除法、完全平方公式、积的乘方,熟练掌握运算法则是解题的关键. 25.(2023·山西·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()2236a b a b −=−C .632a a a ÷=D .()326a a = 【答案】D【分析】根据同底数幂乘除法法则、积的乘方及幂的乘方法则逐一计算即可得答案.【详解】A .235a a a ⋅=,故该选项计算错误,不符合题意, B .()2362a b a b −=,故该选项计算错误,不符合题意,C .633a a a ÷=,故该选项计算错误,不符合题意,D .()326a a =,故该选项计算正确,符合题意,故选:D .【点睛】本题考查同底数幂乘除法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键. 26.(2023·湖北宜昌·统考中考真题)下列运算正确的是( ).A .4322x x x ÷=B .()437x x =C .437x x x +=D .3412x x x ⋅=【答案】A【分析】根据单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法法则计算后再判断即可.【详解】解:A. 4322x x x ÷=,计算正确,故选项A 符合题意; B. ()4312x x =,原选项计算错误,故选项B 不符合题意;C. 4x 与3x 不是同类项不能合并,原选项计算错误,故选项C 不符合题意;D. 347x x x ⋅=,原选项计算错误,故选项D 不符合题意.故选:A .【点睛】本题主要考查单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法,解答的关键是对相应的运算法则的掌握. 27.(2023·湖南郴州·统考中考真题)下列运算正确的是( )A .437a a a ⋅=B .()325a a =C .2232a a −=D .()222a b a b −=− 【答案】A【分析】根据同底数幂的乘法,幂的乘方,合并同类项,完全平方公式进行计算,即可得出结论.【详解】解:A 、437a a a ⋅=,选项计算正确,符合题意; B 、()326a a =,选项计算错误,不符合题意;C 、22232a a a −=选项计算错误,不符合题意;D 、()2222a b a ab b −=−+,选项计算错误,不符合题意;故选:A .【点睛】本题考查整式的运算.熟练掌握相关运算法则,是解题的关键.【答案】B【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方进行计算即可.【详解】A. 347a a a +≠,故该选项不符合题意; B. 347a a a ⋅=,故该选项符合题意;C. 437a a a a ÷=≠,故该选项不符合题意;D. ()43127a a a =≠,故该选项不符合题意;故选:B .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握以上运算法则是解题的关键.29.(2023·四川·统考中考真题)下列计算正确的是( )A .22ab a b −=B .236a a a ⋅=C .233a b a a ÷=D .222()()4a a a +−=−【答案】D【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式进行计算即可求解.【详解】A. 22ab a b −≠ ,故该选项不正确,不符合题意;B. 235a a a ⋅=,故该选项不正确,不符合题意;C. 233a b a ab ÷=,故该选项不正确,不符合题意;D. 222()()4a a a +−=−,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式,熟练掌握以上知识是解题的关键. 30.(2023·湖北荆州·统考中考真题)下列各式运算正确的是( )A .23232332a b a b a b −=B .236a a a ⋅=C .623a a a ÷=D .()325a a = 【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A. 23232332a b a b a b −=,故该选项正确,符合题意; B. 235a a a ⋅=,故该选项不正确,不符合题意;C. 624a a a ÷=,故该选项不正确,不符合题意;D. ()326a a =,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.31.(2023·山东·统考中考真题)下列各式运算正确的是( )A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x y x y =【答案】D【分析】根据同底数幂的乘除、完全平方公式、积的乘方逐个计算即可.【详解】A .235x x x ×=,所以A 选项不符合题意;B .12210x x x ÷=,所以B 选项不符合题意;C .222()2x y x y xy +=++,所以C 选项不符合题意;D .()3263x y x y =,所以D 选项符合题意.故选:D .【点睛】此题主要考查了同底数幂的乘除、完全平方公式、积的乘方,熟记运算法则是解题关键. 32.(2023·山东·统考中考真题)下列运算正确的是( )A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+ 【答案】B【分析】利用同底数幂的乘除法、积的乘方与幂的乘方以及完全平方公式分别判断即可.【详解】解:A 、633a a a ÷=,故选项错误; B 、235a a a ⋅=,故选项正确;C 、()23624a a =,故选项错误;D 、()2222a b a ab b +=++,故选项错误; 故选:B .【点睛】此题主要考查了整式的混合运算,同底数幂的乘除法、积的乘方、幂的乘方以及完全平方公式,正确掌握相关乘法公式是解题关键. 33.(2023·湖南张家界·统考中考真题)下列运算正确的是( )A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=【答案】C【分析】根据完全平方公式及合并同类项、积的乘方运算依次判断即可.【详解】解:A 、22(2)44x x x +=++,选项计算错误,不符合题意; B 、246a a a ⋅=,选项计算错误,不符合题意;C 、()23624x x =,计算正确,符合题意;D 、222235x x x +=,选项计算错误,不符合题意;故选:C .【点睛】题目主要考查完全平方公式及合并同类项、积的乘方运算,熟练掌握运算法则是解题关键. 34.(2023·黑龙江·统考中考真题)下列运算正确的是( )A .22(2)4a a −=−B .222()a b a b −=−C .()()2224m m m −+−−=−D .()257a a = 【答案】C【分析】分别根据积的乘方,完全平方公式,平方差公式和幂的乘方法则进行判断即可.【详解】解:A.()2224a a −=,原式计算错误;B.()2222a b a ab b −=−+,原式计算错误; C.()()2224m m m −+−−=−,计算正确; D. ()2510a a =,原式计算错误.故选:C .式是解题的关键.35.(2023·黑龙江齐齐哈尔·统考中考真题)下列计算正确的是( )A .22434b b b +=B .()246a a =C .()224x x −=D .326a a a ⋅=【答案】C【分析】根据单项式乘以单项式,幂的乘方,积的乘方,合并同类项,进行计算即可求解.【详解】解:A. 22234b b b +=,故该选项不正确,不符合题意; B. ()248a a =,故该选项不正确,不符合题意;C. ()224x x −=,故该选项正确,符合题意; D. 2326a a a ⋅=,故该选项不正确,不符合题意;故选:C .【点睛】本题考查了单项式乘以单项式,幂的乘方,积的乘方,合并同类项,熟练掌握以上运算法则是解题的关键. 36.(2023·湖南·统考中考真题)下列计算正确的是( )A .824a a a ÷=B .23a a a +=C .()325a a =D .235a a a ⋅=【答案】D【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A. 826a a a ÷=,故该选项不正确,不符合题意; B. 23a a a +≠,故该选项不正确,不符合题意;C. ()326a a =,故该选项不正确,不符合题意;D. 235a a a ⋅=,故该选项正确,符合题意;故选:D .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.【分析】根据同底数幂的乘除法及幂的乘方运算法则即可判断. 【详解】解:A 、()236a a =,不符合题意;B 、1028a a a ÷=,不符合题意;C 、45a a a ⋅=,符合题意;D 、515(1)a a −−=−,不符合题意;故选:C .【点睛】题目主要考查同底数幂的乘除法及幂的乘方运算法则,熟练掌握运算法则是解题关键. 38.(2023·内蒙古赤峰·统考中考真题)已知2230a a −−=,则2(23)(23)(21)a a a +−+−的值是( ) A .6B .5−C .3−D .4【答案】D【分析】2230a a −−=变形为223a a −=,将2(23)(23)(21)a a a +−+−变形为()2428a a −−,然后整体代入求值即可.【详解】解:由2230a a −−=得:223a a −=,∴2(23)(23)(21)a a a +−+−2249441a a a =−+−+2848a a =−−()2428a a =−−438=⨯−4=, 故选:D .【点睛】本题主要考查了代数式求值,解题的关键是熟练掌握整式混合运算法则,将2(23)(23)(21)a a a +−+−变形为()2428a a −−. 39.(2023·内蒙古赤峰·统考中考真题)下列运算正确的是( )A .()22346a b a b =B .321ab ab −=C .34()a a a −⋅=D .222()a b a b +=+【答案】A【分析】根据幂的运算法则,乘法公式处理.【详解】A. ()22346a b a b =,正确,符合题意;B. 32ab ab ab −=,原计算错误,本选项不合题意;C. 34()a a a −⋅=−,原计算错误,本选项不合题意;D.222()2a b a b ab +=++ 【点睛】本题考查幂的运算法则,整式的运算,完全平方公式,掌握相关法则是解题的关键. 40.(2023·福建·统考中考真题)下列计算正确的是( )A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a −=【答案】A【分析】根据幂的乘方法、同底数幂的除法法则、同底数幂的乘法以及合并同类项逐项判断即可.【详解】解:A .()23236a a a ⨯==,故A 选项计算正确,符合题意;B .62624a a a a −÷==,故B 选项计算错误,不合题意;C .34347a a a a +==⋅,故C 选项计算错误,不合题意;D .2a 与a −不是同类项,所以不能合并,故D 选项计算错误,不合题意.故选:A .【点睛】本题主要考查同底数幂的乘除运算、幂的乘方运算以及整式的加减运算等知识点,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘. 41.(2023·广东深圳·统考中考真题)下列运算正确的是( )A .326a a a ⋅=B .44ab ab −=C .()2211a a +=+D .()236a a −= 【答案】D【分析】根据同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则进行计算即可.【详解】解:∵325a a a ⋅=,故A 不符合题意; ∵4=3ab ab ab −,故B 不符合题意;∵()22211a a a ++=+,故C 不符合题意;∵()236a a −=,故D 符合题意; 故选:D .【点睛】本题考查同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则,熟练掌握相关法则是解题的关键.二、填空题【答案】2a【分析】根据确定公因式的确定方法:系数取最大公约数;字母取公共字母;字母指数取最低次的,即可解答.【详解】解:根据确定公因式的方法,可得22a 与4ab 的公因式为2a ,故答案为:2a .【点睛】本题考查了公因式的确定,掌握确定公因式的方法是解题的关键.43.(2023·天津·统考中考真题)计算()22xy 的结果为________. 【答案】24x y【分析】直接利用积的乘方运算法则计算即可求得答案.【详解】解:()2224xy x y =故答案为:24x y .【点睛】本题考查了积的乘方运算,解题的关键是熟练掌握运算法则. 44.(2023·河南·统考中考真题)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【分析】根据总共配发的数量=年级数量⨯每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式. 45.(2023·全国·统考中考真题)计算:(3)a b +=_________.【答案】3ab a +【分析】根据单项式乘多项式的运算法则求解.【详解】解:(3)3a b ab a +=+.故答案为:3ab a +.【点睛】本题主要考查了单项式乘多项式的运算法则,掌握单项式乘多项式的运算法则是解答关键. 46.(2022秋·上海·七年级专题练习)计算:2232a a −=________.【答案】2a【分析】直接根据合并同类项法则进行计算即可得到答案.【详解】解:222232(32)a a a a −=−= 故答案为:2a .【点睛】本题主要考查了合并同类项,掌握合并同类项运算法则是解答本题的关键.47.(2023·湖北十堰·统考中考真题)若3x y +=,2y =,则22x y xy +的值是___________________.【答案】6【分析】先提公因式分解原式,再整体代值求解即可.【详解】解:22x y xy +()xy x y =+, ∵3x y +=,2y =,∴1x =,∴原式123=⨯⨯6=,故答案为:6.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法,利用整体思想方法是解答的关键. 48.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为______.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab+()ab a b =+76=⨯42=. 故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.49.(2023春·广东梅州·八年级校考阶段练习)计算:(a 2b )3=___.【答案】a6b3【详解】试题分析:根据积的乘方运算法则可得 (a2b )3= a6b 3.故答案为:a6b3.三、解答题【答案】226a ab −,24 【分析】先展开,合并同类项,后代入计算即可.【详解】()()233(3)a b a b a b −++−2222969a b a ab b =−+−+226a ab =−当13,3a b =−=时,原式()()2123633=⨯−−⨯−⨯24=.【点睛】本题考查了平方差公式,完全平方公式的计算,熟练掌握两个公式是解题的关键.。

2022年全国中考数学真题分项汇编专题2:专题02 整式与因式分解(含解析)

专题02 整式与因式分解一.选择题1.(2022·浙江温州)计算的结果是A.6 B.C.3D.2.(2022·江苏宿迁)下列运算正确的是()A. B. C. D.3.(2022·陕西)计算:()A.B.C.D.4.(2022·浙江嘉兴)计算a2·a()A.a B.3a C.2a2D.a35.(2022·四川眉山)下列运算中,正确的是()A.B.C.D.6.(2022·江西)下列计算正确的是()A. B. C. D.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形的面积 C.的面积 D.的面积8.(2022·浙江温州)化简的结果是()A.B.C.D.9.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.1210.(2022·浙江绍兴)下列计算正确的是()A. B. C. D.11.(2022·云南)按一定规律排列的单项式:x,3x²,5x³,7x,9x,……,第n个单项式是()A.(2n-1)B.(2n+1)C.(n-1)D.(n+1)12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.913.(2022·安徽)下列各式中,计算结果等于的是()A.B.C.D.14.(2022·四川成都)下列计算正确的是()A. B. C. D.15.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.4117.(2022·湖南湘潭)下列整式与为同类项的是()A.B.C.D.18.(2022·江苏苏州)下列运算正确的是()A.B.C.D.19.(2022·重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3二.填空题20.(2022·江苏苏州)已知,,则______.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.22.(2022·四川乐山)已知,则______.23.(2022·湖南邵阳)已知,则_________.24.(2022·天津)计算的结果等于___________.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.28.(2022·山东滨州)若,,则的值为_______.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)30.(2022·四川德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=___.31.(2022·浙江嘉兴)分解因式:m2-1=_____.32.(2022·湖南怀化)因式分解:_____.33.(2022·浙江绍兴)分解因式:= ______.34.(2022·浙江宁波)分解因式:x2-2x+1=__________.35.(2022·江苏连云港)若关于的一元二次方程的一个解是,则的值是___.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,且.(1)若a,b是整数,则的长是___________;(2)若代数式的值为零,则的值是___________.37.(2022·四川德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是,第三个三角形数是,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是,第三个正方形数是,……由此类推,图④中第五个正六边形数是______.38.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,24 68 10 1214 16 18 20……则第27行的第21个数是______.三.解答题39.(2022·江苏苏州)已知,求的值.40.(2022·江苏宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为元;乙超市的购物金额为元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?41.(2022·湖南衡阳)先化简,再求值:,其中,.42.(2022·浙江金华)如图1,将长为,宽为的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形. (1)用关于a的代数式表示图2中小正方形的边长.(2)当时,该小正方形的面积是多少?43.(2022·安徽)观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.44.(2022·浙江丽水)先化简,再求值:,其中.45.(2022·重庆)若一个四位数的个位数字与十位数字的平方和恰好是去掉个位与十位数字后得到的两位数,则这个四位数为“勾股和数”.例如:,∵,∴2543是“勾股和数”;又如:,∵,,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”的千位数字为,百位数字为,十位数字为,个位数字为,记,.当,均是整数时,求出所有满足条件的.46.(2022·重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵,∴247是13的“和倍数”.又如:∵,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且.在a,b,c中任选两个组成两位数,其中最大的两位数记为,最小的两位数记为,若为整数,求出满足条件的所有数A.47.(2022·浙江嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.专题02 整式与因式分解一.选择题1.(2022·浙江温州)计算的结果是A.6 B.C.3D.【答案】A【分析】根据有理数的加法法则计算即可.【详解】解:.故选:A.【点评】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值是解题的关键.2.(2022·江苏宿迁)下列运算正确的是()A. B. C. D.【答案】C【分析】由合并同类项可判断A,由同底数幂的乘法可判断B,由积的乘方运算可判断C,由幂的乘方运算可判断D,从而可得答案.【详解】解:,故A不符合题意;,故B不符合题意;,故C符合题意;,故D不符合题意;故选:C【点睛】本题考查的是合并同类项,同底数幂的乘法,积的乘方运算,幂的乘方运算,掌握以上基础运算是解本题的关键.3.(2022·陕西)计算:()A.B.C.D.【答案】C【分析】利用单项式乘单项式的法则进行计算即可.【详解】解:.故选:C.【点睛】本题考查了单项式乘单项式的运算,正确地计算能力是解决问题的关键.4.(2022·浙江嘉兴)计算a2·a()A.a B.3a C.2a2D.a3【答案】D【分析】根据同底数幂的乘法法则进行运算即可.【详解】解:故选D【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法,底数不变,指数相加”是解本题的关键.5.(2022·四川眉山)下列运算中,正确的是()A.B.C.D.【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. ,根据同底数幂的乘法法则可知:,故选项计算错误,不符合题意;B. ,和不是同类项,不能合并,故选项计算错误,不符合题意;C. ,根据完全平方公式可得:,故选项计算错误,不符合题意;D. ,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.6.(2022·江西)下列计算正确的是()A. B. C. D.【答案】B【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意.故选:B.【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和的应用是解题的关键.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形的面积 C.的面积 D.的面积【答案】C【分析】设正方形纸片边长为x,小正方形EFGH边长为y,得到长方形的宽为x-y,用x、y表达出阴影部分的面积并化简,即得到关于x、y的已知条件,分别用x、y列出各选项中面积的表达式,判断根据已知条件能否求出,找到正确选项.【详解】根据题意可知,四边形EFGH是正方形,设正方形纸片边长为x,正方形EFGH边长为y,则长方形的宽为x-y,所以图中阴影部分的面积=S正方形EFGH+2S△AEH+2S△DHG==2xy,所以根据题意,已知条件为xy的值,A.正方形纸片的面积=x2,根据条件无法求出,不符合题意;B.四边形EFGH的面积=y2,根据条件无法求出,不符合题意;C.的面积=,根据条件可以求出,符合题意;D.的面积=,根据条件无法求出,不符合题意;故选 C.【点睛】本题考查整式与图形的结合,熟练掌握正方形、长方形、三角形等各种形状的面积公式,能正确用字母列出各种图形的面积表达式是解题的关键.8.(2022·浙江温州)化简的结果是()A.B.C.D.【答案】D【分析】先化简乘方,再利用单项式乘单项式的法则进行计算即可.【详解】解:,故选:D.【点睛】本题考查单项式乘单项式,掌握单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式是解题的关键.9.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H的个数,找到规律:每个图形比上一个图形多2个H是解题的关键.10.(2022·浙江绍兴)下列计算正确的是()A. B. C. D.【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A、,原式计算正确;B、,原式计算错误;C、,原式计算错误;D、,原式计算错误;故选:A.【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.11.(2022·云南)按一定规律排列的单项式:x,3x²,5x³,7x,9x,……,第n个单项式是()A.(2n-1)B.(2n+1)C.(n-1)D.(n+1)【答案】A【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示.【详解】解:依题意,得第n项为(2n-1)xn,故选:A.【点睛】本题考查的是单项式,根据题意找出规律是解答此题的关键.12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C【分析】根据第①个图案中菱形的个数:;第②个图案中菱形的个数:;第③个图案中菱形的个数:;…第n个图案中菱形的个数:,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:;第②个图案中菱形的个数:;第③个图案中菱形的个数:;…第n个图案中菱形的个数:,∴则第⑥个图案中菱形的个数为:,故C正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.13.(2022·安徽)下列各式中,计算结果等于的是()A.B.C.D.【答案】B【分析】利用整式加减运算和幂的运算对每个选项计算即可.【详解】A.,不是同类项,不能合并在一起,故选项A不合题意;B.,符合题意;C.,不是同类项,不能合并在一起,故选项C不合题意;D.,不符合题意,故选B【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键.14.(2022·四川成都)下列计算正确的是()A. B. C. D.【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.,故该选项错误,不符合题意;B.,故该选项错误,不符合题意;C.,故该选项错误,不符合题意;D.,故该选项正确,符合题意;故选:D.【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.15.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.【答案】C【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、,该选项错误;B、,该选项错误;C、,该选项正确;D、,该选项错误;故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.17.(2022·湖南湘潭)下列整式与为同类项的是()A.B.C.D.【答案】B【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.【详解】解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与不是同类项,故选项不符合题意.故选:B.【点睛】此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.18.(2022·江苏苏州)下列运算正确的是()A.B.C.D.【分析】通过,判断A选项不正确;C选项中、不是同类项,不能合并;D 选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B选项正确.【详解】A. ,故A不正确;B. ,故B正确;C. ,故C不正确;D. ,故D不正确;故选B.【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.19.(2022·重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【答案】D【分析】给添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵∴①说法正确∵又∵无论如何添加括号,无法使得的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是、、、;当括号中有三个字母,共有3种情况,分别是、、;当括号中有四个字母,共有1种情况,∴共有8种情况∴③说法正确∴正确的个数为3故选D.【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.20.(2022·江苏苏州)已知,,则______.【答案】24【分析】根据平方差公式计算即可.【详解】解:∵,,∴,故答案为:24.【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.【答案】5【分析】设正方形a、b、c、d的边长分别为a、b、c、d,分别求得b=c,c=d,由“优美矩形”ABCD的周长得4d+2c=26,列式计算即可求解.【详解】解:设正方形a、b、c、d的边长分别为a、b、c、d,∵“优美矩形”ABCD的周长为26,∴4d+2c=26,∵a=2b,c=a+b,d=a+c,∴c=3b,则b=c,∴d=2b+c=c,则c=d,∴4d+d =26,∴d=5,∴正方形d的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.22.(2022·四川乐山)已知,则______.【答案】【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得的值,进而代入代数式即可求解.【详解】解:,,即,,,故答案为:.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.23.(2022·湖南邵阳)已知,则_________.【答案】2【分析】将变形为即可计算出答案.【详解】∵∴故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.24.(2022·天津)计算的结果等于___________.【答案】【分析】根据同底数幂的乘法即可求得答案.【详解】解:,故答案为:.【点睛】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.【答案】1000【分析】分别求出震级为8级和震级为6级所释放的能量,然后根据同底数幂的除法即可得到答案.【详解】解:根据能量与震级的关系为(其中为大于0的常数)可得到,当震级为8级的地震所释放的能量为:,当震级为6级的地震所释放的能量为:,,震级为8级的地震所释放的能量是震级为6级的地震所释放能量的1000倍.故答案为:1000.【点睛】本题考查了利用同底数幂的除法底数不变指数相减的知识,充分理解题意并转化为所学数学知识是解题的关键.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=;n=2时,“○”的个数是,n=3时,“○”的个数是,n=4时,“○”的个数是,……∴第n个“○”的个数是,由图形中的“○”的个数和“.”个数差为2022①,②解①得:无解解②得:故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.28.(2022·山东滨州)若,,则的值为_______.【答案】90【分析】将变形得到,再把,代入进行计算求解.【详解】解:∵,,∴.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)【答案】7.1×10-7【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【详解】∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10-7.故答案是:7.1×10-7.【点睛】本题主要考查了用科学记数法表示数的除法与有效数字,正确掌握运算法则是解题关键.30.(2022·四川德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=___.【答案】4【分析】根据完全平方公式的运算即可.【详解】∵,∵+=4=16,∴=4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用. 31.(2022·浙江嘉兴)分解因式:m2-1=_____.【答案】【分析】利用平方差公式进行因式分解即可.【详解】解:m2-1=故答案为:【点睛】本题考查的是利用平方差公式分解因式,掌握“平方差公式的特点”是解本题的关键.32.(2022·湖南怀化)因式分解:_____.【答案】【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:,故答案为:【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.33.(2022·浙江绍兴)分解因式:= ______.【答案】【分析】利用提公因式法即可分解.【详解】,故答案为:.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.34.(2022·浙江宁波)分解因式:x2-2x+1=__________.【答案】(x-1)2【详解】由完全平方公式可得:故答案为.【点睛】错因分析容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.35.(2022·江苏连云港)若关于的一元二次方程的一个解是,则的值是___.【答案】1【分析】根据一元二次方程解的定义把代入到进行求解即可.【详解】∵关于x的一元二次方程的一个解是,∴,∴,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,且.(1)若a,b是整数,则的长是___________;(2)若代数式的值为零,则的值是___________.【答案】【分析】(1)根据图象表示出PQ即可;(2)根据分解因式可得,继而求得。

中考数学真题分类解析(三)整式考题汇编及解析

3•a2的结果是( )
A.aB.a6C.6aD.a5
【解析】选D.a3•a2=a5.
0301
(2022•丽水中考)计算﹣a2•a的正确结果是( )
A.﹣a2B.aC.﹣a3D.a3
【解析】选C.﹣a2•a=﹣a3.
0301
(2022•绍兴中考)下列计算正确的是( )
0301
(2022•遂宁中考)下列计算中正确的是( )
A.a3•a3=a9B.(﹣2a)3=﹣8a3C.a10÷(﹣a2)3=a4D.(﹣a+2)(﹣a﹣2)=a2+4
【解析】选B.A.原式=a6,故该选项不符合题意;B.原式=﹣8a3,故该选项符合题意;
C.原式=a10÷(﹣a6)=﹣a4,故该选项不符合题意;D.原式=(﹣a)2﹣22=a2﹣4,故该选项不符合题意.
【解析】选D.A.m+m=2m,故本选项不合题意;
B.2(m﹣n)=2m﹣2n,故本选项不合题意;
C.(m+2n)2=m2+4mn+4n2,故本选项不合题意;
D.(m+3)(m﹣3)=m2﹣9,故本选项符合题意;
0301
(2022•德阳中考)下列计算正确的是( )
A.(a﹣b)2=a2﹣b2B. 1C.a÷a• aD.( ab2)3 a3b6
0301
(2022•自贡中考)下列运算正确的是( )
A.(﹣1)2=﹣2 B.( )( )=1 C.a6÷a3=a2D.( )0=0
【解析】选B.A.原式=1,故该选项不符合题意;B.原式=( )2﹣( )2=3﹣2=1,故该选项符合题意;
C.原式=a3,故该选项不符合题意;D.原式=1,故该选项不符合题意.
【解析】选A.A.a3+a3=2a3≠2a6,故选项A计算不正确;B.(﹣a3)2=a6,故选项B计算正确;

2020年中考数学真题分类汇编第三期专题3整式与因式分解试题含解析

整式与因式分解一.选择题1. (2018·广西贺州·3分)下列运算正确的是()A.a2•a2=2a2B.a2+a2=a4C.(a3)2=a6D.a8÷a2=a4【解答】解:A.a2•a2=a4,错误;B.a2+a2=2a2,错误;C.(a3)2=a6,正确;D.a8÷a2=a6,错误;故选:C.2. (2018·广西贺州·3分)下列各式分解因式正确的是()A.x2+6xy+9y2=(x+3y)2B.2x2﹣4xy+9y2=(2x﹣3y)2C.2x2﹣8y2=2(x+4y)(x﹣4y)D.x(x﹣y)+y(y﹣x)=(x﹣y)(x+y)【解答】解:A.x2+6xy+9y2=(x+3y)2,正确;B.2x2﹣4xy+9y2=无法分解因式,故此选项错误;C.2x2﹣8y2=2(x+2y)(x﹣2y),故此选项错误;D.x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项错误;故选:A.3. (2018·广西梧州·3分)下列各式计算正确的是()A.a+2a=3a B.x4•x3=x12C.()﹣1=﹣D.(x2)3=x5【分析】根据同底数幂的乘法、幂的乘方、负指数幂和合并同类项法则逐个判断即可.【解答】解:A.a+2a=3a,正确;B.x4•x3=x7,错误;C.,错误;D.(x2)3=x6,错误;故选:A.【点评】此题考查同底数幂的乘法、幂的乘方、负指数幂和合并同类项,关键是根据法则计算.4. (2018·湖北荆州·3分)下列代数式中,整式为()A.x+1 B. C.D.【解答】解:A.x+1是整式,故此选项正确;B.,是分式,故此选项错误;C.是二次根式,故此选项错误;D.,是分式,故此选项错误;故选:A.5. (2018·湖北荆州·3分)下列计算正确的是()A.3a2﹣4a2=a2B.a2•a3=a6C.a10÷a5=a2 D.(a2)3=a6【解答】解:A.3a2﹣4a2=﹣a2,错误;B.a2•a3=a5,错误;C.a10÷a5=a5,错误;D.(a2)3=a6,正确;故选:D.6. (2018·湖北十堰·3分)下列计算正确的是()A.2x+3y=5xy B.(﹣2x2)3=﹣6x6C.3y2•(﹣y)=﹣3y2 D.6y2÷2y=3y【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x+3y,故A错误;(B)原式=﹣8x6,故B错误;(C)原式=﹣3y3,故C错误;故选:D.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.7.(2018·四川省攀枝花·3分)下列运算结果是a5的是()A.a10÷a2B.(a2)3C.(﹣a)5D.a3•a2解:A.a10÷a2=a8,错误;B.(a2)3=a6,错误;C.(﹣a)5=﹣a5,错误;D.a3•a2=a5,正确;故选D.8.(2018·云南省曲靖·4分)下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣)3=﹣【解答】解:A.原式=a3,不符合题意;B.原式=a4,不符合题意;C.原式=﹣a2b,符合题意;D.原式=﹣,不符合题意,故选:C.9.(2018·云南省·4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【分析】观察字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.【点评】考查了单项式,数字的变化类,注意字母a的系数为奇数时,符号为正;系数字母a的系数为偶数时,符号为负.10.(2018·辽宁省沈阳市)(2.00分)下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a7【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答】解:A.(m2)3=m6,正确;B.a10÷a9=a,正确;C.x3•x5=x8,正确;D.a4+a3=a4+a3,错误;故选:D.【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.11.(2018·辽宁省盘锦市)下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【解答】解:A.3x、4y不是同类项,不能合并,此选项错误;B.(﹣a)3•a2=﹣a5,此选项错误;C.(x3y)5=x15y5,此选项错误;D.m10÷m7=m3,此选项正确;故选D.12.(2018·辽宁省葫芦岛市) 下列运算正确的是()A.﹣2x2+3x2=5x2B.x2•x3=x5C.2(x2)3=8x6D.(x+1)2=x2+1【解答】解:A.﹣2x2+3x2=x2,错误;B.x2•x3=x5,正确;C.2(x2)3=2x6,错误;D.(x+1)2=x2+2x+1,错误;故选B.13.(2018·辽宁省抚顺市)(3.00分)下列运算正确的是()A.2x+3y=5xy B.(x+3)2=x2+9 C.(xy2)3=x3y6D.x10÷x5=x2【分析】根据同底数幂的乘除法,完全平方公式,以及合并同类项的•法则解答即可.【解答】解:A.原式不能合并,错误;B.(x+3)2=x2+6x+9,错误;C.(xy2)3=x3y6,正确;D.x10÷x5=x5,错误;故选:C.【点评】此题考查了同底数幂的乘除法,完全平方公式,以及合并同类项,熟练掌握公式及运算法则是解本题的关键.14. (2018•乐山•3分)已知实数A.b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a ﹣b=±1.故选C.15. (2018•广安•3分)下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a3【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.【解答】解:A.(b2)3=b6,故此选项错误;B.x3÷x3=1,故此选项错误;C.5y3•3y2=15y5,正确;D.a+a2,无法计算,故此选项错误.故选:C.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.16. (2018•陕西•3分)下列计算正确的是A. a2·a2=2a4B. (-a2)3=-a6C. 3a2-6a2=3a2D. (a-2)2=a2-4【答案】B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.17. (2018·湖北咸宁·3分)下列计算正确的是()A. a3•a3=2a3B. a2+a2=a4C. a6÷a2=a3D. (﹣2a2)3=﹣8a6【答案】D【解析】【分析】根据同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方的运算法则逐一计算可得.【详解】A.a3•a3=a6,故A选项错误;B.a2+a2=2a2,故B选项错误;C.a6÷a2=a4,故C选项错误;D.(﹣2a2)3=﹣8a6,故D选项正确,故选D.【点睛】本题考查了同底数幂的乘除法、合并同类项、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.18.(2018·江苏常州·2分)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.D.2m【分析】根据苹果每千克m元,可以用代数式表示出2千克苹果的价钱.【解答】解:∵苹果每千克m元,∴2千克苹果2m元,故选:D.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.19.(2018·辽宁大连·3分)计算(x3)2的结果是()A.x5B.2x3C.x9D.x6解:(x3)2=x6.故选D.二.填空题1. (2018·湖北荆州·3分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是.【解答】解:∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是5,…,∴第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数),∴第2018次输出的结果是5.故答案为:5.2.(2018·四川省攀枝花·4分)分解因式:x3y﹣2x2y+xy= .解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2.3.(2018·云南省·3分)分解因式:x2﹣4= (x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.4.(2018·辽宁省沈阳市)(3.00分)因式分解:3x3﹣12x= 3x(x+2)(x﹣2).【分析】首先提公因式3x,然后利用平方差公式即可分解.【解答】解:3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案是:3x(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.5.(2018·辽宁省盘锦市)因式分解:x3﹣x= x(x+1)(x﹣1).【解答】解:原式=x(x2﹣1)=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).6.(2018·辽宁省葫芦岛市) 分解因式:2a3﹣8a= 2a(a+2)(a﹣2).【解答】解:原式=2a(a2﹣4)=2a(a+2)(a﹣2).故答案为:2a(a+2)(a﹣2).7.(2018·辽宁省抚顺市)(3.00分)分解因式:xy2﹣4x= x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8. (2018·湖北咸宁·3分)因式分解:ab2﹣a=_____.【答案】a(b+1)(b﹣1)【解析】分析:首先提取公因式,再用公式法分解因式即可.详解:原式故答案为:点睛:考查因式分解,本题是提取公因式法和公式法相结合.注意分解一定要彻底. 9.(2018·江苏常州·2分)分解因式:3x2﹣6x+3= 3(x﹣1)2.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3=3(x2﹣2x+1)=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.(2018·辽宁大连·3分)因式分解:x2﹣x= .解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).11.(2018·江苏镇江·2分)计算:(a2)3= a6.【解答】解:(a2)3=a6.故答案为:a6.12.(2018·江苏镇江·2分)分解因式:x2﹣1= (x+1)(x﹣1).【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).13.(2018·吉林长春·3分)计算:a2•a3= a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.三.解答题1(2018·重庆市B卷)21.(10.00分)计算:(1)(x+2y)2﹣(x+y)(x﹣y);【分析】(1)原式利用完全平方公式,平方差公式化简,去括号合并即可得到结果;【解答】解:(1)原式=x2+4xy+4y2﹣x2+y2=4xy+5y2;2. (2018•乐山•10分)先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m﹣1).∵m是方程x2+x﹣2=0的根,∴m2+m﹣2=0,即m2+m=2,则原式=2×(2﹣1)=2.3.(2018·江苏镇江·4分)(2)化简:(a+1)2﹣a(a+1)﹣1.【解答】解:(2)原式=a2+2a+1﹣a2﹣a﹣1=a.4. (2018·湖北咸宁·8分)(2)化简:(a+3)(a﹣2)﹣a(a﹣1).【答案】(2)2a﹣6.【解析】(2)按顺序先利用多项式乘多项式、单项式乘多项式的法则进行展开,然后再合并同类项即可得.【详解】(2)(a+3)(a﹣2)﹣a(a﹣1)=a2﹣2a+3a﹣6﹣a2+a=2a﹣6.【点睛】本题考查了整式的混合运算,熟练掌握各运算的运算顺序以及运算法则是解题的关键.。

八年级上册数学 整式的乘法与因式分解中考真题汇编[解析版]


式.
10.已知三个实数 a,b,c 满足 a-2b+c=0,a+2b+c<0,则( )
A.b>0,b2-ac≤0
B.b<0,b2-ac≤0
C.b>0,b2-ac≥0
D.b<0,b2-ac≥0
【答案】D
【解析】
【分析】
根据题意得 a+c=2b,然后将 a+c 替换掉可求得 b<0,将 b2-ac 变形为 a c2 ,可根据平
A. (2a2 5a)cm2 【答案】D
B. (3a 15)cm2
C. (6a 9)cm2
D. (6a 15)cm2
【解析】 【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算. 【详解】 矩形的面积为: (a+4)2-(a+1)2 =(a2+8a+16)-(a2+2a+1) =a2+8a+16-a2-2a-1 =6a+15. 故选 D.
3.把 2a2 8 分解因式,结果正确的是( A. 2(a2 4)
)
B. 2(a 2)2
C. 2(a 2)(a 2)
D. 2(a 2)2
【答案】C 【解析】 【分析】
先提公因式 2,然后再利用平方差公式进行分解即可. 【详解】
2a2 8
= 2(a2 4)
= 2(a 2)(a 2) ,
6.已知 4y2+my+9 是完全平方式,则 m 为( )
A.6
B.±6
C.±12
【答案】C
【解析】
【分析】
原式利用完全平方公式的结构特征求出 m 的值即可.
【详解】
∵4y2+my+9 是完全平方式,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年中考数学真题汇编:整式(31题)
一、选择题
1. (四川内江)下列计算正确的是()
A. B. C. D.
【答案】D
2.(2018广东深圳)下列运算正确的是( )
A. B. C. D.
【答案】B
3.(2018浙江义乌)下面是一位同学做的四道题:①.② .③
.④ .其中做对的一道题的序号是()
A. ①
B. ②
C. ③
D. ④
【答案】C
4.下列运算正确的是()
A. B. C. D.
【答案】A
5.下列运算正确的是()。

A. B. C. D.
【答案】C
6.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()
A. 1
B. 2
C. 3
D. 4
【答案】B
7.下列运算正确的是()
A. B. C. D.
【答案】C
8.计算的结果是()
A. B. C. D.
【答案】B
9.下列运算正确的是()
A. B. C. D.
【答案】C
10.计算的结果是()
A. B. C. D. 【答案】C
11.下列计算正确的是()
A. B. C. D. 【答案】D
12.下列计算结果等于的是()
A. B. C. D. 【答案】D
13.下列运算正确的是()
A.
B.
C.
D.
【答案】C
14.下列运算正确的是()
A. B. C. D. 【答案】D
15.下列计算正确的是()。

A.(x+y)2=x2+y2
B.(-xy2)3=-x3y6
C.x6÷x3=x2
D.=2
【答案】D
16.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=-4a4,③a5÷a3=a2,
④a3·a4=a12。

其中做对的一道题的序号是()
A. ①
B. ②
C. ③
D. ④
【答案】C
17.下列计算正确的是()
A.a3+a3=2a3
B.a3·a2=a6
C.a6÷a2=a3
D.(a3)2=a5
【答案】A
18.计算结果正确的是()
A. B. C. D.
【答案】B
19.下列计算正确的是( )
A. B. C. D.
【答案】C
20.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为()
A.2a
B.2b
C.2a-2b
D.-2b
【答案】B
二、填空题(共6题;共6分)
21.计算:________.
【答案】-4x7
22.计算的结果等于________.
【答案】
23.已知x,y满足方程组,则x2-4y2的值为________。

【答案】-15
24.计算:a-3a=________。

【答案】-2a
25.化简的结果是________.
【答案】
26.分解因式:________·
【答案】(x+3)(x-3)
三、计算题(共4题;共35分)
27.计算或化简.
(1);
(2).
【答案】(1)解:()-1+| −2|+tan60°
=2+(2- )+
=2+2- +
=4
(2)解:(2x+3)2-(2x+3)(2x-3)
=(2x)2+12x+9-[(2x2)-9]
=(2x)2+12x+9-(2x)2+9
=12x+18
28.先化简,再求值:(x-1)2+x(3-x),其中x= .
【答案】解:原式=x2-2x+1+3x-x2,
=x+1,
∵x= 时,
∴原式= +1= .
29.计算:
(1)
(2)
【答案】(1)解:原式= =
(2)解:原式=
=
=
30.
(1)计算:
(2)化简:
【答案】(1)=4- +1=5-
(2)=m2+4m+4+8-4=m2+12
四、解答题(共1题;共5分)
31.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:
小明发现这三种方案都能验证公式:
a2+2ab+b2=(a+b)2,
对于方案一,小明是这样验证的:
a2+ab+ab+b2=a2+2ab+b2=(a+b)2
请你根据方案二,方案三,写出公式的验证过程。

【答案】方案二:a2+ab+b(a+b)=a2+ab+ab+b2=a2+2ab+b2=(a+b)2方案三:a2+b(a +a+b)×2=a2+ab+ab+b2=a2+2abtb2=(a+b)2。

相关文档
最新文档