液晶电光效应实验
大学物理实验---液晶光电效应

⼤学物理实验---液晶光电效应实验题⽬:液晶电光效应实验⽬的:1、在掌握液晶光开关的基本⼯作原理的基础上,测量液晶光开关的电光特性曲线;2、观察液晶光开关的时间响应曲线,并求出液晶的上升时间和下降时间;3、测量液晶显⽰器的视⾓特性;4、了解⼀般液晶显⽰器件的⼯作原理。
实验原理:TN型液晶光开关⼯作原理两张偏振⽚贴于玻璃的两⾯,上下电极的定向⽅向相互垂直,P1的透光轴与上电极的定向⽅向相同,P2的透光轴与下电极的定向⽅向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来⾃光源的⾃然光经过偏振⽚P1后只剩下平⾏于透光轴的线偏振光,该线偏振光到达输出⾯时,其偏振⾯旋转了90°。
这时光的偏振⾯与P2的透光轴平⾏,因⽽有光通过。
(见原理⽰意图)当施加⾜够电压时(⼀般为1~2伏),在静电场的作⽤下,液晶分⼦趋于平⾏于电场⽅向排列。
原来的扭曲结构被破坏,从P1透射出来的偏振光的偏振⽅向在液晶中传播时不再旋转,保持原来的偏振⽅向到达下电极。
这时光的偏振⽅向与P2正交,因⽽光被关断。
由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常⽩模式。
液晶光开关电光特性曲线液晶驱动电压和时间响应曲线实验步骤:1、校准透过率为100%,2、液晶电光特性的测量:静态模式下使电压从0v到6v记录相应的透射率。
绘制电光曲线图求出阈值电压与关断电压。
3、液晶时间特性曲线测定:静态闪烁状态,透过率为100%,电压为2v,由⽰波器观察到驱动电压波形及时间特性曲线,并求出上升时间与下降时间。
4、液晶视⾓特性的测量(1) ⽔平视⾓的测量电压在0v下,⾓度从-75度⾄+75度,读出每⼀⾓度下透射率的最⼤值。
电压在2v下,⾓度从-75度⾄+75度,读出每⼀⾓度下透射率的最⼩值。
计算对⽐度,绘制曲线图。
(2) 垂直视⾓的测量(同上)电压在0v下,⾓度从-75度⾄+75度,读出每⼀⾓度下透射率的最⼤值。
液晶电光效应实验报告

液晶电光效应实验报告一、实验目的1.通过实验观察液晶电光效应现象,并了解其基本原理;2.掌握液晶显示屏的工作原理和性能特点;3.了解液晶材料的应用领域。
二、实验仪器与材料1.液晶显示器2.外接电源3.实验电路连接线4.直流电压源三、实验原理四、实验步骤1.将液晶显示器与外接电源连接,确保电源正常工作;2.调节电源输出电压,使液晶显示器正常显示;3.逐渐调节电压,观察液晶显示器的显示变化;4.记录电压与显示效果之间的关系。
五、实验结果与分析根据实验记录,我们可得到以下实验结果:1.在无外电场作用下,液晶显示器显示正常;2.当外加电压逐渐增加时,液晶显示器出现逐渐变暗的现象;3.当外加电压达到一定值时,液晶显示器完全变暗。
根据实验结果,我们可以得出以下分析:1.无外电场作用时,液晶分子自由排列,光线可以正常透过;2.外加电压会改变液晶分子的排列方向,导致光线透过程度变化;3.随着电压的增加,液晶分子排列更趋于垂直方向,使得光线几乎无法透过,导致显示变暗。
六、实验结论通过本次实验,我们得到了以下结论:1.外加电场可以改变液晶分子的排列方向,从而改变液晶显示器的显示效果;2.液晶显示器可以通过改变电压来控制光的透过程度,实现显示效果;3.液晶电光效应在液晶显示器等设备中有广泛的应用。
七、实验心得通过这次实验,我深入了解了液晶电光效应的原理和应用。
液晶电光效应是现代光电技术中非常重要的一部分,广泛应用在液晶显示器、液晶电视等设备上。
了解和掌握液晶电光效应的基本原理对于学习液晶显示器等设备的工作原理和性能特点非常有帮助。
实验过程中,我学会了正确连接电路和使用电压源,同时也注意到了实验过程中的细节和注意事项。
通过实际操作,我更加深入地理解了液晶电光效应的原理和应用。
通过实验报告的撰写,我进一步加深了对实验结果的理解和分析,提高了实验报告的写作能力。
总的来说,本次实验使我受益匪浅,对液晶电光效应有了更为具体的认识。
液晶电光效应实验报告

【实验目的】1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。
2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。
3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。
4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。
【实验仪器】液晶电光效应实验仪一台,液晶片一块【实验原理】1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。
玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。
液晶电光实验报告

一、实验目的1. 了解液晶的基本特性和电光效应原理。
2. 掌握液晶电光效应的实验方法与操作步骤。
3. 分析液晶电光效应的实验数据,得出结论。
4. 理解液晶在光显示技术中的应用。
二、实验原理液晶是一种介于液体与固体之间的特殊物质,具有流动性、各向异性和光学各向异性等特性。
液晶的电光效应是指液晶分子在外电场作用下,其排列方向发生变化,从而导致光学性质发生改变的现象。
当液晶分子受到外电场作用时,分子会沿着电场方向排列,从而改变液晶的折射率。
这种折射率的变化会导致液晶对光的传播方向产生偏转,从而实现光调制。
三、实验器材1. 液晶盒2. 偏振片3. 电源4. 光源5. 光电探测器6. 信号发生器7. 示波器四、实验步骤1. 将液晶盒、偏振片、光源、光电探测器和信号发生器连接成实验电路。
2. 打开电源,调节信号发生器输出频率和幅度。
3. 观察光电探测器接收到的光信号,记录数据。
4. 改变液晶盒两端的电压,观察光电探测器接收到的光信号变化,记录数据。
5. 重复步骤3和4,分别记录不同电压下的光信号数据。
五、实验结果与分析1. 实验结果通过实验,我们得到了不同电压下液晶盒的光信号数据,如下表所示:| 电压/V | 光信号强度/au || ------ | -------------- || 0 | 1.0 || 1 | 0.8 || 2 | 0.6 || 3 | 0.4 || 4 | 0.2 || 5 | 0.1 |2. 结果分析根据实验数据,我们可以得出以下结论:(1)随着电压的增加,液晶盒的光信号强度逐渐减弱,说明液晶的电光效应随着电场强度的增加而增强。
(2)当电压为0V时,光信号强度最大,说明此时液晶盒处于正常状态,液晶分子排列整齐,对光的调制作用较弱。
(3)随着电压的增加,液晶分子排列逐渐混乱,对光的调制作用逐渐增强,导致光信号强度减弱。
六、实验总结本次实验成功地验证了液晶的电光效应,并得到了相应的实验数据。
液晶的电光效应实验报告

液晶的电光效应实验报告液晶的电光效应实验报告引言液晶是一种特殊的物质,具有晶体和液体的特性。
它在电场的作用下会发生电光效应,这一现象在现代科技领域中有着广泛的应用。
本实验旨在研究液晶的电光效应,并探究其在液晶显示器等设备中的应用。
实验材料与仪器本实验所需材料包括液晶样品、电源、电极板、电压调节器等。
实验仪器包括显微镜、光源、示波器等。
实验步骤1. 准备工作:将液晶样品放置在显微镜下,调节显微镜的焦距,使样品清晰可见。
2. 搭建电路:将电源与电极板连接,通过电压调节器调节电压大小。
3. 观察现象:逐渐增加电压,观察液晶样品的变化。
记录不同电压下的观察结果。
4. 测量光强:使用光源照射液晶样品,通过示波器测量光强的变化。
记录不同电压下的光强数值。
实验结果与分析在实验过程中,我们观察到了液晶样品的电光效应。
随着电压的增加,液晶样品的透明度发生了明显的变化。
当电压较小时,液晶样品呈现出较高的透明度;而当电压较大时,液晶样品的透明度明显降低。
这种变化是由于电场的作用导致液晶分子的排列发生改变,进而影响了光的传播。
通过测量光强的变化,我们发现随着电压的增加,光强逐渐减小。
这是因为在电场的作用下,液晶分子的排列发生了改变,使得光的传播受到阻碍,从而导致光强减小。
这一现象在液晶显示器中得到了广泛的应用,通过调节电压,可以控制液晶的透明度,从而实现图像的显示和隐藏。
液晶的电光效应是基于液晶分子的特殊排列结构。
液晶分子具有长而细长的形状,可以自由旋转和移动。
在无电场作用下,液晶分子呈现出无序排列的液态状态;而在电场作用下,液晶分子会被电场所约束,呈现出有序排列的晶态状态。
这种有序排列会导致光的传播路径发生改变,从而产生电光效应。
液晶的电光效应在现代科技领域中有着广泛的应用。
最典型的应用就是液晶显示器。
液晶显示器利用液晶的电光效应,通过控制电场的大小和方向,实现图像的显示和隐藏。
液晶显示器具有体积小、能耗低、分辨率高等优点,已经成为了电子产品领域中不可或缺的一部分。
实验3 液晶的电光效应

• 液晶的分类
根据排列的方式不同,液晶一般被分为三大类:
图1 近晶相液晶 图2 向列相液晶 图3 胆甾相液晶 1、近晶相液晶(如图1):分子分层排列,每一层内的分子长轴相互平行且 垂直或倾斜于层面。 2、向列相液晶(如图2):分子的位置比较杂乱,不再分层排列,但各分子 的长轴方向仍大致相同,光学性质上有点像单轴晶体。 3、胆甾相液晶(如图3):分子也是分层排列,每一层内的分子长轴方向基 本相同并平行于分层面,但相邻的两个层中分子长轴的方向逐渐转过一个角度,总 体来看分子长轴方向呈现一种螺旋结构。
1888年,奥地利植物学家Reinitzer在做有机物溶解实验时,在一 定的温度范围内观察到液晶。 1961年美国RCA公司的Heimeier发现了液 晶的一系列电光效应,并制成了显示器件。从70年代开始,日本公司将 液晶与集成电路技术结合,制成了一系列的液晶显示器件,并至今在这 一领域保持领先地位。液晶显示器件由于具有驱动电压低(一般为几伏), 功耗极小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件 的竞争中有独领风骚之势。
• 扭曲向列型液晶显示(TN-LCD)
结构
将液晶材料夹在两个玻璃基片之间, 并对四周进行密封(如上图)。将基片 的内表面进行适当的处理,紧靠玻璃基 片的液晶分子平行于基片并特定方向排 列。如果我们使上下两个基片的取向成 一定角度,则两个基片间的液晶分子就 会形成许多层。
• 扭曲向列型液晶显示(TN-LCD)
1. 工作原理
正显示和负显示
• 扭曲向列型液晶显示(TN-LCD)
2. TN-LCD的电光特性
阈值电压 饱和电压 陡度 陡-LCD)
3. TN-LCD的时间特性
• 扭曲向列型液晶显示(TN-LCD)
液晶电光效应实验

因。 3)液晶板与光线的夹角与仪器上所标识的不一定相同,这可能是导致实验数据中出现了透 射率大于 100%的情况。 3. 关于液晶的应用前景的分析: 以液晶作为显示的最大优点正是其耗能少, 从实验中可以看到, 只需加上电压改变液晶的 形态从而改变光的通透, 以达到显示的目的。 而传统显示器是依靠自身表面的发光来实现显 示的目的的。 这确实可以证明在有着日光或是环境光的情况下, 液晶确实是一个显示的绝佳 材料,譬如计算器。然而,在夜晚,由于液晶本身并不发光,显示的作用是达不到的。因此, 绝大部分应用液晶显示的机器为了使其能在夜晚也能实现显示, 显示板下方是配有背景照明 的,譬如电视,计算机,手机中的亮度调节,正是用于调节此背景光的。通过我的观察,显 示器的电能消耗大部分还是消耗于这种背景照明上, 而不是液晶。 另外液晶在强日光下的显 示效果也不是很好。因此,我们应该考虑液晶在夜晚显示的另一种方式,这种方式将比背景 光更加节能。比如,可以将液晶加入某种荧光材料,夜晚通过荧光材料显示,而白天依然通 过普通液晶显示。但是荧光材料的荧光性会慢慢减弱。对于计算器,由于其太阳能所充的能 量远大于其使用的电量,而其余电量正好用于荧光材料的恢复。至于其他机器,则需要考虑 一些其他的办法了。
100 100 100 100 1.5 31.8 31.9 31.9 31.87
100 100 100 100 1.6 20.7 20.6 20.5 20.6
99.9 99.9 99.9 99.9 1.7 12.8 12.7 12.5 12.67
98.4 98.3 98.4 98.37 2 4 4.1 4 4.03
四、实验思考题
1. 如何确定本实验使用的液晶样品是常黑型还是长白型 答:在加上电压时,透射率骤减,说明入射偏振光在没有旋转的情况下未能通过,说明是长 白型。实际应用中可以根据需求选择长白型或是常黑型,若是长期需要光通过,则选择长白 型,反之选择常黑型,以节省电能。 2. 在液晶开关视角特性的测量中,可以发现图像和数据关于 0 并不是十分的对称,分析其 原因如下: 1) 角度的齿轮肯定存在一些误差,因此随着转动角度的增大,角度误差也会越来越大,因 此可能会导致图像的整体偏移,即 0 度角所对应的点并不是真正的 0 度。 2) 实验中注意到,在放置实验仪器而不作任何操作的时候(静态工作) ,透射率会慢慢减 小。这一现象可能与透射率的测量、光源的稳定性、外界光源都有关系,这也可能是一个原
液晶电光效应实验报告.doc

液晶电光效应实验报告【实验目的】1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。
2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。
3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。
4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。
【实验仪器】液晶电光效应实验仪一台,液晶片一块【实验原理】1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。
玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4 液晶板方向
(1)将模式转换开关置于静态模式,液晶转盘的转角置于0度,保持当前转盘状态。
在供电电压为0V,透过率显示大于250时,按住“透过率校准”按键3秒以上,将透过率校准为100%。
(2)调节“供电电压调节”按键,按照表4中的数据逐步增大供电电压,记录下每个电压值下对应的透过率值。
(3)将供电电压重新调回0V(此时若透过率不为100%,则需重新校准)。
重复步骤2,完成3次测量。
实验所用到表格
仪器用具
(报告):液晶光开关电光特性综合实验仪(ZKY-LCDEO 型) DS-5000型数字式存储示波器 实验目的(预习):1、 在掌握液晶光开关的基本工作原理的
基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阀值电压和关断电压;
2、 观察测量驱动电压周期变化时,液晶光开关的
时间响应曲线,并求出液晶的上升时间和下降时间;
3、 测量液晶显示器的视角特性;
4、 了解液晶光开关构成矩阵式图像显示的原理
实验原理及数据图(预习): 1液晶光开关工作原理
两张偏振片贴于玻璃的两面,上下电极的定向方向相互垂直,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。
这时光的偏振面与P2的透光轴平行,因而有光通过(参照下图)
当施加足够电压时(一般为1~2伏),在静电场的作用下,液晶分子趋于平行于电场方向排列。
原来的扭曲结构被破坏,从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。
这时光的偏振方向与P2正交,因而光被关断。
由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常白模式。
液晶光开关电光特性曲线
液晶驱动电压和时间响应曲线
原始实验数据粘贴处
图1
图2
图3。