高电压技术 第三版 课后答案 浙江大学 赵智大
高电压技术第三版课后习题答案_

第一章作⏹1-1解释下列术语(1)气体中的自持放电;(2)电负性气体;(3)放电时延;(4)50%冲击放电电压;(5)爬电比距。
答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV。
1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。
所逸出的电子能否接替起始电子的作用是自持放电的判据。
流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。
汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。
1-3在一极间距离为1cm的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1。
今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。
解:到达阳极的电子崩中的电子数目为n a? e?d? e11?1?59874答:到达阳极的电子崩中的电子数目为59874个。
1-5近似估算标准大气条件下半径分别为1cm和1mm的光滑导线的电晕起始场强。
解:对半径为1cm的导线对半径为1mm的导线答:半径1cm导线起晕场强为39kV/cm,半径1mm导线起晕场强为58.5kV/cm1-10 简述绝缘污闪的发展机理和防止对策。
高电压技术第三版本课后习题包括答案.docx

精品文档第一章作业1-1 解释下列术语(1)气体中的自持放电;( 2)电负性气体;(3)放电时延;( 4) 50% 冲击放电电压;( 5)爬电比距。
答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50% 冲击放电电压:使间隙击穿概率为 50% 的冲击电压,也称为50% 冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV 。
.精品文档1-2 汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。
所逸出的电子能否接替起始电子的作用是自持放电的判据。
流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。
汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。
1-3 在一极间距离为1cm 的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1 。
今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。
解:到达阳极的电子崩中的电子数目为n a e d e11 159874答:到达阳极的电子崩中的电子数目为59874 个。
.精品文档1-5 近似估算标准大气条件下半径分别为1cm 和 1mm 的光滑导线的电晕起始场强。
(完整版)《高电压技术》习题解答

1《高电压技术》习题解答第一章1—1 气体中带电质点是通过游离过程产生的。
游离是中性原子获得足够的能量气体中带电质点是通过游离过程产生的。
游离是中性原子获得足够的能量气体中带电质点是通过游离过程产生的。
游离是中性原子获得足够的能量((称游离能称游离能))后成为正、负带电粒子的过程。
根据游离能形式的不同,气体中带电质点的产生有四种不同方式:1.1.碰撞游离方式碰撞游离方式碰撞游离方式 在这种方式下,游离能为与中性原子在这种方式下,游离能为与中性原子在这种方式下,游离能为与中性原子((分子分子))碰撞瞬时带电粒子所具有的动能。
虽然正、负带电粒子都有可能与中性原子正、负带电粒子都有可能与中性原子((分子分子))发生碰撞,但引起气体发生碰撞游离而产生正、负带电质点的主要是自由电子而不是正、负离子。
2.光游离方式光游离方式 在这种方式下,游离能为光能。
由于游离能需达到一定的数值,因此引起光游离的光在这种方式下,游离能为光能。
由于游离能需达到一定的数值,因此引起光游离的光主要是各种高能射线而非可见光。
3.热游离方式热游离方式 在这种方式下,游离能为气体分子的内能。
由于内能与绝对温度成正比,因此只有温在这种方式下,游离能为气体分子的内能。
由于内能与绝对温度成正比,因此只有温度足够高时才能引起热游离。
4.金属表面游离方式金属表面游离方式 严格地讲,应称为金属电极表面逸出电子,因这种游离的结果在气体中只得到严格地讲,应称为金属电极表面逸出电子,因这种游离的结果在气体中只得到带负电的自由电子。
使电子从金属电极表面逸出的能量可以是各种形式的能。
气体中带电质点消失的方式有三种:1.扩散 带电质点从浓度大的区域向浓度小的区域运动而造成原区域中带电质点的消失,扩散是一种自然规律。
2.复合 复合是正、负带电质点相互结合后成为中性原子复合是正、负带电质点相互结合后成为中性原子((分子分子))的过程。
复合是游离的逆过程,因此在复合过程中要释放能量,一般为光能。
高电压技术第三版课后答案

高电压技术第三版课后答案【篇一:高电压技术(周泽存)课后作业与解答】t>p11,1-1 解答:电介质极化种类及比较在外电场的作用下,介质原子中的电子运动轨道将相对于原子核发生弹性位移,此为电子式极化或电子位移极化。
离子式结构化合物,出现外电场后,正负离子将发生方向相反的偏移,使平均偶极距不再为零,此为离子位移极化。
极性化合物的每个极性分子都是一个偶极子,在电场作用下,原先排列杂乱的偶极子将沿电场方向转动,显示出极性,这称为偶极子极化。
在电场作用下,带电质点在电介质中移动时,可能被晶格缺陷捕获或在两层介质的界面上堆积,造成电荷在介质空间中新的分布,从而产生电矩,这就是空间电荷极化。
1-6解答:由于介质夹层极化,通常电气设备含多层介质,直流充电时由于空间电荷极化作用,电荷在介质夹层界面上堆积,初始状态时电容电荷与最终状态时不一致;接地放电时由于设备电容较大且设备的绝缘电阻也较大则放电时间常数较大(电容较大导致不同介质所带电荷量差别大,绝缘电阻大导致流过的电流小,界面上电荷的释放靠电流完成),放电速度较慢故放电时间要长达5~10min。
补充:1、画出电介质的等效电路(非简化的)及其向量图,说明电路中各元件的含义,指出介质损失角。
图1-4-2中,rlk为泄漏电阻;ilk为泄漏电流;cg为介质真空和无损极化所形成的电容;ig为流过cg的电流;cp为无损极化所引起的电容;rp为无损极化所形成的等效电阻;ip为流过rp-cp支路的电流,可以分为有功分量ipr和无功分量ipc。
jg为真空和无损极化所引起的电流密度,为纯容性的;jlk为漏导引起的电流密度,为纯阻性的;jp为有损极化所引起的电流密。
度,它由无功部分jpc和有功部分jpr组成。
容性电流jc与总电容电流密度向量j之间的夹角为?,称为介质损耗角。
介质损耗角简称介损角?,为电介质电流的相角领先电压相角的余角,功率因素角?的余角,其正切tg?称为介质损耗因素,常用%表示,为总的有功电流密度与总无功电流密度之比。
高电压技术课后习题答案详解

高电压技术课后习题答案详-标准化文件发布号:(9456・EUATWK・MWUB・WUNN・INNUL・DDQTY・KII 1-1气体放电过程中产生带电质点最重要的方式是什么,为什么?答:碰撞电离是气体放电过程中产生带电质点最重要的方式。
这是因为电子体积小,其自曲行程(两次碰撞间质点经过的距离)比离子大得多,所以在电场中获得的动能比离子大得多。
其次.山于电子的质量远小于原子或分子,因此当电子的动能不足以使中性质点电离时,电子会遭到弹射而儿乎不损失其动能;而离子因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减小,影响其动能的积累。
1-2简要论述汤逊放电理论。
答:设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于&过程,电子总数增至£炉个。
假设每次电离撞出一个正离子,故电极空间共有(疋"一1)个正离子。
这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数卩的定义,此(出^一“个正离子在到达阴极表面时可撞出了(^-1)个新电子,则(^-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。
即汤逊理论的自持放电条件可表达为r(^-l)=l或了严=1。
「3为什么棒一板间隙中棒为正极性时电晕起始电压比负极性时略高?答:(1)当棒具有正极性时,间隙中出现的电子向棒运动,进入强电场区,开始引起电离现象而形成电子崩。
随着电压的逐渐上升,到放电达到自持、爆发电晕之前,在间隙中形成相当多的电子崩。
当电子崩达到棒极后,其中的电子就进入棒极,而正离子仍留在空间,相对来说缓慢地向板极移动。
于是在棒极附近,积聚起正空间电荷,从而减少了紧贴棒极附近的电场,而略为加强了外部空间的电场。
这样,棒极附近的电场被削弱,难以造成流柱,这就使得自持放电也即电晕放电难以形成。
(2)当棒具有负极性时,阴极表面形成的电子立即进入强电场区,造成电子崩。
高电压技术(赵智大)1-2章总结讲诉

绪论高电压技术是一门重要的专业技术基础课;随着电力行业的发展,高压输电问题越来越得到人们的重视;高电压、高场强下存在着一些特殊的物理现象;高电压试验在高电压工程中起着重要的作用。
气体的绝缘特性与介质的电气强度研究气体放电的目的:了解气体在高电压(强电场)作用下逐步由电介质演变成导体的物理过程掌握气体介质的电气强度及其提高方法高压电气设备中的绝缘介质有气体、液体、固体以及其它复合介质。
气体放电是对气体中流通电流的各种形式统称。
由于空气中存在来自空间的辐射,气体会发生微弱的电离而产生少量的带电质点。
正常状态下气体的电导很小,空气还是性能优良的绝缘体;在出现大量带电质点的情况下,气体才会丧失绝缘性能。
自由行程长度单位行程中的碰撞次数Z的倒数λ即为该粒子的平均自由行程长度。
()λ-=xexP令x=λ,可见粒子实际自由行程长度大于或等于平均自由行程长度的概率是36.8%。
带电粒子的迁移率k=v/E它表示该带电粒子单位场强(1V/m)下沿电场方向的漂移速度。
电子的质量比离子小得多,电子的平均自由行程长度比离子大得多热运动中,粒子从浓度较大的区域运动到浓度较小的区域,从而使分布均匀化,这种过程称为扩散。
电子的热运动速度大、自由行程长度大,所以其扩散速度比离子快得多。
产生带电粒子的物理过程称为电离,是气体放电的首要前提。
光电离i W h ≥νc λν=气体中发生电离的分子数与总分子数的比值m 称为该气体的电离度。
碰撞电离附着:当电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,而且也可能会发生电子与中性分子相结合形成负离子的情况。
电子亲合能:使基态的气体原子获得一个电子形成负离子时所放出的能量,其值越大则越易形成负离子。
电负性:一个无量纲的数,其值越大表明原子在分子中吸引电子的能力越大带电粒子的消失1到达电极时,消失于电极上而形成外电路中的电流2带电粒子因扩散而逸出气体放电空间3带电粒子的复合复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
高电压技术(赵智大)1-2章总结.(DOC)

绪论高电压技术是一门重要的专业技术基础课;随着电力行业的发展,高压输电问题越来越得到人们的重视;高电压、高场强下存在着一些特殊的物理现象;高电压试验在高电压工程中起着重要的作用。
气体的绝缘特性与介质的电气强度研究气体放电的目的:了解气体在高电压(强电场)作用下逐步由电介质演变成导体的物理过程掌握气体介质的电气强度及其提高方法高压电气设备中的绝缘介质有气体、液体、固体以及其它复合介质。
气体放电是对气体中流通电流的各种形式统称。
由于空气中存在来自空间的辐射,气体会发生微弱的电离而产生少量的带电质点。
正常状态下气体的电导很小,空气还是性能优良的绝缘体;在出现大量带电质点的情况下,气体才会丧失绝缘性能。
自由行程长度单位行程中的碰撞次数Z的倒数λ即为该粒子的平均自由行程长度。
()λ-=xexP令x=λ,可见粒子实际自由行程长度大于或等于平均自由行程长度的概率是36.8%。
带电粒子的迁移率k=v/E它表示该带电粒子单位场强(1V/m)下沿电场方向的漂移速度。
电子的质量比离子小得多,电子的平均自由行程长度比离子大得多热运动中,粒子从浓度较大的区域运动到浓度较小的区域,从而使分布均匀化,这种过程称为扩散。
电子的热运动速度大、自由行程长度大,所以其扩散速度比离子快得多。
产生带电粒子的物理过程称为电离,是气体放电的首要前提。
光电离i W h ≥νc λν=气体中发生电离的分子数与总分子数的比值m 称为该气体的电离度。
碰撞电离附着:当电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,而且也可能会发生电子与中性分子相结合形成负离子的情况。
电子亲合能:使基态的气体原子获得一个电子形成负离子时所放出的能量,其值越大则越易形成负离子。
电负性:一个无量纲的数,其值越大表明原子在分子中吸引电子的能力越大带电粒子的消失1到达电极时,消失于电极上而形成外电路中的电流2带电粒子因扩散而逸出气体放电空间3带电粒子的复合复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
高电压技术课后习题答案详解

1-1气体放电过程中产生带电质点最重要的方式是什么,为什么?答: 碰撞电离是气体放电过程中产生带电质点最重要的方式。
这是因为电子体积小,其自由行程(两次碰撞间质点经过的距离)比离子大得多,所以在电场中获得的动能比离子大得多。
其次.由于电子的质量远小于原子或分子,因此当电子的动能不足以使中性质点电离时,电子会遭到弹射而几乎不损失其动能;而离子因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减小,影响其动能的积累。
1-2简要论述汤逊放电理论。
答: 设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于α过程,电子总数增至d eα个。
假设每次电离撞出一个正离子,故电极空间共有(deα-1)个正离子。
这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数γ的定义,此(deαeα-1)个正离子在到达阴极表面时可撞出γ(d -1)个新电子,则(deα-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。
即汤逊理论的自持放电条件可表达为r(deα=1。
eα-1)=1或γd1-3为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高?答:(1)当棒具有正极性时,间隙中出现的电子向棒运动,进入强电场区,开始引起电离现象而形成电子崩。
随着电压的逐渐上升,到放电达到自持、爆发电晕之前,在间隙中形成相当多的电子崩。
当电子崩达到棒极后,其中的电子就进入棒极,而正离子仍留在空间,相对来说缓慢地向板极移动。
于是在棒极附近,积聚起正空间电荷,从而减少了紧贴棒极附近的电场,而略为加强了外部空间的电场。
这样,棒极附近的电场被削弱,难以造成流柱,这就使得自持放电也即电晕放电难以形成。
(2)当棒具有负极性时,阴极表面形成的电子立即进入强电场区,造成电子崩。
当电子崩中的电子离开强电场区后,电子就不再能引起电离,而以越来越慢的速度向阳极运动。
一部份电子直接消失于阳极,其余的可为氧原子所吸附形成负离子。