高等代数基本概念50页PPT

合集下载

《高等代数》PPT课件

《高等代数》PPT课件

命题5.1.2 对于任意向量和任意数a都有:
0=0, a0=0.
a()=(a) = a.
a=0a=0 或 =0.
2021/8/17
15
三. 约定
设V是数域F上的一个向量空间. 如果a是F中的一个数, 是V中的一个向量, 我们约定 a=a. 设1, 2,…, n,是V中的n个向量, 以它们为元素写成一个1n矩阵 (1, 2,…, n). 再设A是F上的一个nm阶矩阵. 则我们可以像普通矩 阵的乘法一样, 将(1, 2,…, n)和A相乘, 但是 (1, 2,…, n)A的结果 是一个以向量为元素的矩阵, 即:
3) 0+ = 4) 对任意 ,存在 ,使得 + = 0, 称为的负元素; 5) a( +) = a +a ; 6) (a+b) =a +b ; 7) a (b)=(ab) ;
8) 1 = .
2021/8/17
8
二、向量空间的定义
定义1 设V是一个非空集合,F是一个数域. 我们
把V中的元素用小写希腊字母, ,,…来表示,
2021/8/17
4
例2 在平面上建立直角坐标系后,把从原点出发的一切向
量组成的集合记为V2. 对V2中任意向量X和Y, 用平行四边形法则,有X+YV2. 对
任意实数k以及V2中任一向量X,有kXV2. 并且对任意的X, Y,
ZV2,a, bR,有
1) X+Y=Y+X;
2) (X+Y)+Z=X+(Y+Z);
高等代数课件
2021/8/17
1
第五章 向量空间
5.1 向量空间的定义 5.2 向量的线性相关性 5.3 基维数和坐标 5.4 子空间 5.5 向量空间的同构

高等代数知识点总结课件

高等代数知识点总结课件
详细描述
二阶行列式计算较为简单,直接按照定义进行计算即可。三 阶行列式可以利用代数余子式展开,也可以利用对角线法则 进行计算。高阶行列式可以利用递推法或化简法进行计算。
矩阵的秩的定义与性质
总结词
矩阵的秩是矩阵中线性无关的行(或列) 向量的个数,具有一些重要的性质。
VS
详细描述
矩阵的秩具有一些重要的性质,如秩的传 递性、秩的唯一性、秩的性质等。矩阵的 秩可以用来判断线性方程组的解的情况, 如当系数矩阵的秩等于增广矩阵的秩时, 线性方程组有解。
利用秩判断线性方程组解的情况
总结词
利用矩阵的秩可以判断线性方程组解的情况。
详细描述
当系数矩阵的秩等于增广矩阵的秩时,线性 方程组有解;当系数矩阵的秩小于增广矩阵 的秩时,线性方程组无解;当系数矩阵的秩 大于增广矩阵的秩时,线性方程组有无穷多 解。此外,利用矩阵的秩还可以判断线性方 程组解的个数和类型。
逆矩阵的性质
逆矩阵是唯一的;逆矩阵与原矩阵的乘积为单位矩阵;逆矩阵的逆矩阵是原矩阵。
逆矩阵的求法
高斯消元法、伴随矩阵法、初等变换法等。
线性方程组的解法
高斯消元法
将增广矩阵转化为上三角矩阵,从而得到解。
回带求解
将得到的上三角矩阵的解回代到原方程组中, 得到未知数的值。
克拉默法则
当方程组系数行列式不为0时,可以用克拉默 法则求解唯一解。
准型有助于简化二次型的计算和性质研究。
二次型的正定性判断
总结词
正定性判断是确定二次型是否为正定的过程, 正定的二次型具有一些重要的性质。
详细描述
正定性判断是二次型研究中的一个重要问题。 一个二次型被称为正定的,如果它对应于一 个正定矩阵。正定的二次型具有一些重要的 性质,如存在唯一的极小值点,且该极小值 点是全局最小值点。此外,正定的二次型还 具有一些几何意义,如对应于一个凸多面体

高代

高代

后续内容介绍
线性方程组及其解法是线性代数的基本内容之一, 同时线 性代数的其它内容, 像矩阵、线性空间等, 都与它有着十分密 切的内在联系。 关于线性方程组需要解决的问题有: 线性方程组是否有解? 如果有解, 它有多少个解? 如何求出这些解? 在初等代数中我们已经知道, 二、三元线性方程组可用系 数行列式判断是否有唯一解, 而且在有唯一解时还可用行列 式表示出这个唯一的解。 对一般的n元线性方程组是否也可 用行列式判断它是否有唯一的解并用行列式表示出这个唯一 的解? 回答是肯定的。本章将首先把二、三阶行列式的定义 推广到一般的n阶行列式并讨论其性质, 然后给出线性方程组 有唯一解的条件及这个唯一解的求解公式。在下一章我们将 讨论一般的线性方程组的解法。二章 多项式 第六章 向量空间
第七章 线性变换
第八章 欧氏空间
第三章 行列式
第五章 矩阵
第四章 线性方程组 第九章 二次型
唐山师专数学系制作
第一章 基本概念
第二章 多项式
第三章 行列式
第一节 线性方程组与行列式 第二节 排列 第三节 n阶行列式 第四节 余子式与行列式展开 第五节 克莱姆规则
三. 例4,5,6
一. 基本定义
1.子式: 在行列式D中任意选定k行和k列, 位于这些行和列的 相交处的元素所构成的k阶行列式叫做行列式D的一个k阶子式.
例1. 在四阶行列式
a11 a D 21 a31 a41 a12 a22 a32 a42 a31 a23 a33 a43 a14 a24 a34 a44
由若干个含有n个未知数的一次方程构成的方程组称为n元线性 方程组. 线性方程组中方程的个数未必等于未知数的个数. n元线性 方程组的一般形式是: a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 (1) am1 x1 am 2 x2 amn xn bm 其中, x1, x2,,xn表示未知数, aij, bi (i=1,2,,m, j=1,2, ,n)表示已知 的常数, 称为aij未知数的系数, 称bi为常数项. 方程组(1)的一个解是指这样的一组数(k1, k2,,kn), 用它们依 次代替方程组(1)的未知数x1, x2,,xn后, (1)中的每一个方程都成为 恒等式.

高等代数第一讲代数系统PPT课件

高等代数第一讲代数系统PPT课件
带余除法; 带余除法;
称K为F的子域,F称 而为K的扩域。 则有 deg (fg)=deg f+deg g
C的子域被称作数域,
有理数Q域 是最小的数 --是 域任意数域的子
II Polynomial form
§1- 1基本概念与运算
定义1:(i)设F为一个域X是 ,不属F于 的 任一个符号,则形如
例3:n阶可逆方阵的全体通(常按矩阵的 乘法)是乘法群。一称般为线性.- 群- generallineargrou简 p 记为 GLn(F).
而 SLn(F= ) {AMn(F)detA=1} 称为特殊线性群S- pe- ciaLl ineargroup
定义中的恒元和逆是元乘都在左边的, 可以证明,乘在右有边相也同的性质。 即 aa-1=e, ae=a.
X5 4 X 4 3 X 3 2 X 2 X 1
4X 3
4 45
23 X 2
23 X 3
117 X
23 5 23
586
117 X 2
117 5 117
586 X 586 5 586
r(X)= 2931
于是 q(X)4X323 X211X758,r6(X)29,3 f(X)q(X)(X5)r(X) . r(X)f(5)
若 defgdegg ,则 q令 0。 rf即可
记 fanXnan 1Xn 1 a1Xa0, an0
gbm Xmbm 1Xm 1 b1Xb0,令
q1
an bm
Xnm,
则gq1与f 的首项相同
q1
an bm
Xnm,
则gq1与f 的首项相
f gq1 f1的次数 f 低 比,f1对 同样讨
存在 q1,,qs使 de r0 g de g或 g r00

高等代数ppt课件

高等代数ppt课件
1)如果f(x)与g(x)都等于0,那么0就是f(x)和g(x)的一个最大公因 式;
2)如果g(x) ︳f(x),那么g(x)就是f(x)与g(x)的一个最大公因式;
§4.2 最大公因式
一、最大公因式的概念
1、公因式:如果多项式(x) 即是 f (x)的因式,又是g(x)的因式, 则称(x)为 f (x) 和 g(x) 的公因式。
3) f (x)g(x) = g(x) f (x);
4) (f (x)g(x)) h(x)=f (x)(g(x) h(x)); 5) f (x)(g(x)+h(x))=f (x)g(x)+f (x) h(x).
关于多项式的和与积的次数,我们有
引理4.1.1 设f (x),g(x)是F[x]中非零多项式.则 (i) 当f (x)+g(x)≠0时,
deg( f (x)+g(x))≤max{deg f (x),deg g(x)}. (ii) deg( f (x)g(x)) = deg f (x)+deg g(x). 推论4.1.2 设f (x), g(x) , h(x) ∈F[x]. (i) 如果f (x) g(x)=0,那么f (x) =0,或者 g(x)=0; (ii) 如果f (x) g(x) = f (x) h(x),且f (x)≠0,那么g(x) =h(x).
这里当m<n时, bm+1=…=bn= 0.
多项式f (x)与g(x)的积f (x)g(x)是指多项式 c0+c1x+c2x2+…+ckxk+…+cn+mxn+m,
其中 ck= aibj i jk
k=1,2,3, …,n+m.
对多项式g(x) = b0+b1x+b2x2+…+b m1x m1+bmxm, 所谓g(x) 的负多项式-g(x) 是指多项式

高等代数课件PPT之第1章多项式

高等代数课件PPT之第1章多项式

2.多项式的运算 设f (x),g(x)为数域P上的一元多项式,不妨令
f ( x ) ai x i , g( x ) b j x j
n m i 0 j 0
加法: f (x)g(x) (ai bi ) x i , 当n m 乘法:f (x)g(x) anbm x n m (anbm1 an1bm ) x n m1 a0b0
其中r(x)=0或 (r(x))< ( g(x) ).
余式
称上式中的q(x) 为g(x) 除f (x)的商, r(x)为g(x) 除f (x)的余式.
(带余除法)定理证明
存在性 若f(x)=0 , 取q(x)=r(x) =0即可.以下设f (x)0. (f(x))=n,( g(x) )=m. 对 f (x) 的次数n作数学归纳法. 当n<m时,取q(x)=0, r(x) = f (x), 有 f (x) = q(x) g(x) + r(x) ,结论成立.
例1
a b 2 (a、b是有理数)的数 所有形如 Q( 2 ) . 构成一个数域
(ii)对四则运算封闭.事实上
解 (i) 0,1 Q( 2 );
, Q( 2 ),设 a b 2 , c d 2 , 有 (a c) (b d ) 2 Q( 2 ) (ac 2bd) (ad bc) 2 Q( 2 ) 设 a b 2 0,则a b 2 0且 c d 2 (c d 2)(a b 2) a b 2 (a b 2)(a b 2) ac 2bd ad bc 2 2 2 Q( 2) 2 2 a 2b a 2b
i 0
n m s0

高等代数知识点总结课件

高等代数知识点总结课件

行列式的展开定理
• 总结词:行列式的展开定理是行列式计算的核心,它提供了计算行列式 值的有效方法。
• 详细描述:行列式的展开定理指出,一个$n$阶行列式等于它的主对角线上的元素的乘积与其它元素乘积的代数和的相 反数。具体来说,对于一个$n$阶行列式$|\begin{matrix} a{11} & a{12} & \cdots & a{1n} \ a{21} & a{22} & \cdots & a{2n} \ \vdots & \vdots & \ddots & \vdots \ a{n1} & a{n2} & \cdots & a{nn} \end{matrix}|$,其值等于 $a{11}A{11} + a{21}A{21} + \cdots + a{n1}A{n1}$,其中$A{ii}$表示去掉第$i$行和第$i$列后得到的$(n-1)$阶行列 式的值。
04
线性函数与双线性函数
线性函数的定义与性质
线性函数的定义
线性函数是数学中的一种函数,其图 像为一条直线。在高等代数中,线性 函数是指满足 f(ax+by)=af(x)+bf(y) 的函数。
线性函数的性质
线性函数具有一些重要的性质,如加 法性质、数乘性质、零元素性质和负 元素性质等。这些性质在解决实际问 题中具有广泛的应用。
欧几里得空间与酉空间
欧几里得空间
欧几里得空间是一个几何空间,它满足 欧几里得几何的公理。在欧几里得空间 中,向量的长度和角度都可以用实数表 示。
VS
酉空间
酉空间是一种特殊的线性空间,它满足酉 几何的公理。在酉空间中,向量的长度和 角度都可以用复数表示。酉空间在量子力 学、信号处理等领域有广泛应用。

高等代数(绪论)讲解PPT课件

高等代数(绪论)讲解PPT课件

开方术”里,充分研究了数字高次方程的求正根法,
也就是说,秦九韶那时候就得到了高次方程的一般
解法。
17
2020年9月28日
在西方,直到十六世纪初的文艺复兴时期,才由 有意大利的数学家发现一元三次方程解的公式—— Cardan公式。
在数学史上,三次方程的根的公式应归功于从 1496到1526年在意大利的波伦亚(Bologna)大学当教 授的Scipione del Ferro.他发现的精确年代并不知道, 但是我们知道在1541年前不久,意大利数学家塔塔里 亚(Niccolo Tartaglia)或许已知道有del Ferro的解但又 独自地发现了它。
序结构: 集合上的顺序关系,----如: 数的大小, 个子的高矮等 → 序代数, 格论等;
拓扑结构: 集合上连续性等----如: 曲线与直线 的关系 →数学分析,点集拓扑,代数拓扑等
三大结构的相互重叠, 组合构成各个不同 的数学分支,构成现代数学这座高楼大厦.
10
2020年9月28日
数学发展到现在,已经成为科学世界中拥有100多 个主要分支学科的庞大的“共和国”。
2020年9月28日
高等代数
1
任课教师
汪仲文,教授,博士,硕士研究生导师,数统学院副院长, 喀什师范学院首届“教学名师” 。
本科,1994年毕业于喀什师范学院数学系
硕士,2006年毕业于新疆大学数学与系统科学学院
博士, 2010年毕业于南开大学数学科学学院
办公地点:3号楼210室 办公电话:2891005 电子信箱:
12
2020年9月28日
二、代数发展简史
“代数”一词最初来源于公元9世纪阿拉伯数学家、
天文学家阿尔•花拉子米(约780-850,唐朝)一本著
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档