《离散数学》集合的基本概念和运算
离散知识点公式总结

离散知识点公式总结1. 集合论集合是离散数学中的基本概念,它是由一些确定的对象所组成的一个整体。
集合之间的运算包括并集、交集、差集、补集等。
其相关公式如下:- 并集:对于集合A和B,它们的并集定义为包含A和B中所有元素的集合,记作A∪B。
公式:A∪B={x|x∈A或x∈B}- 交集:对于集合A和B,它们的交集定义为同时属于A和B的所有元素的集合,记作A∩B。
公式:A∩B={x|x∈A且x∈B}- 差集:对于集合A和B,A与B的差集定义为属于A但不属于B的元素所组成的集合,记作A-B。
公式:A-B={x|x∈A且x∉B}- 补集:对于集合A,相对于全集合U而言,A的补集定义为全集合中不属于A的元素所组成的集合,记作A'。
公式:A'={x|x∈U且x∉A}2. 关系和函数关系是一种描述元素之间的对应关系的数学工具,而函数则是一种特殊的关系。
在离散数学中,关系和函数的定义和性质是非常重要的内容。
其相关公式如下:- 关系R:对于集合A和B,关系R定义为A和B的笛卡尔积中的元素对所组成的集合。
公式:R={(a,b)|a∈A且b∈B}- 函数f:对于集合A和B,如果f是从A到B的一个映射,那么对于任意元素a∈A,都有唯一的元素b∈B与之对应。
公式:f:A→B3. 图论图论是离散数学中的一个重要分支,它研究的是由顶点和边组成的数学结构。
图论的基本概念包括图的类型、路径和回路、连通性、树等。
其相关公式如下:- 有向图:对于图G=(V,E),如果E中的边是有方向的,则称G为有向图。
公式:G=(V,E),E={(u,v)|u,v∈V,u→v}- 无向图:对于图G=(V,E),如果E中的边是无方向的,则称G为无向图。
公式:G=(V,E),E={{u,v}|u,v∈V,u≠v}- 路径:在图G中,顶点v1,v2,...,vn的一个路径是图G中的一个顶点序列,其中相邻的顶点用一条边连接。
公式:v1,v2, (v)- 回路:在图G中,如果一条路径的起点和终点是同一个顶点,则称其为回路。
离散数学中的集合与运算

离散数学中的集合与运算离散数学是数学中的一个分支,主要研究离散的结构和不连续的对象。
集合与运算是离散数学中的基本概念和操作,它们在离散数学中具有重要的地位和应用。
本文将介绍离散数学中的集合与运算的概念与性质,并举例说明其在现实生活中的应用。
一、集合的定义和表示方法在离散数学中,集合是由一些确定的、互异的对象所构成的整体。
这些对象称为集合的元素,可以是任何事物,如数字、字母、人、物体等。
集合用大写字母表示,元素用小写字母表示。
集合中的元素是无序的,没有重复的。
集合可以通过三种方式来表示:1. 列举法:直接列举出集合中的元素,用大括号{}括起来,元素之间用逗号隔开。
例如,集合A={1, 2, 3, 4}。
2. 描述法:给出一个判断条件,符合条件的元素组成集合。
例如,集合B={x | x是正整数,且x<5},表示所有小于5的正整数构成的集合。
3. 元素特征法:根据元素的特征来表示集合。
例如,集合C={奇数},表示所有奇数构成的集合。
二、集合的运算离散数学中,集合有四种基本运算:并集、交集、差集和补集,下面将对每种运算进行介绍。
1. 并集:集合A和集合B的并集,表示为A∪B,是包含所有属于集合A或集合B的元素的集合。
例如,A={1, 2},B={2, 3},则A∪B={1, 2, 3}。
2. 交集:集合A和集合B的交集,表示为A∩B,是包含所有属于集合A且属于集合B的元素的集合。
例如,A={1, 2},B={2, 3},则A∩B={2}。
3. 差集:集合A和集合B的差集,表示为A-B,是包含所有属于集合A但不属于集合B的元素的集合。
例如,A={1, 2},B={2, 3},则A-B={1}。
4. 补集:对于给定集合U,集合A在U中的补集,表示为A',是指所有属于U但不属于A的元素构成的集合。
例如,在全集U={1, 2, 3, 4}中,集合A={2, 3},则A'={1, 4}。
三、集合与运算的应用举例集合与运算在离散数学中的应用非常广泛,下面将举几个例子来说明。
离散数学(chapter3集合的基本概念和运算)

以上运算律的证明思路:欲证P=Q,即证 x P x Q。
2013-7-10 离散数学
20
Байду номын сангаас
三、集合算律
证明分配律:A∪(B∩C) = (A∪B)∩(A∪C) 对x, x A∪(B ∩C) (x A ) (x B∩C )
(x A) (x B x C )
Z: 整数集合
Q: 有理数集合
R: 实数集合 C: 复数集合
: 空集(不含任何元素) E: 全集 (在某一问题中,含有所涉及的全部集合的集合。)
2013-7-10 离散数学 6
三、集合的表示方法
列出集合的所有元素,元素之间用逗号 1、列举法: 隔开。如A = { a, b, c } , B = { 1,2,4,6,7,9 } 用谓词概括该集合中元素的属性。 2、描述法: 如:A = { x | xZ 3 < x 6 } A = { x | P (x) },其中P (x)表示x满足的性质。 即A是由所有使P (x)为真的全体x构成。
2013-7-10 离散数学 3
§3.1 集合的基本概念
内容:集合,元素,子集,幂集等。 重点:(1) 掌握集合的概念及两种表示法, (2) 常见的集合N , Z, Q, R, C 和特殊集合 ,E, (3) 掌握子集及两集合相等的概念, (4) 掌握幂集的概念及求法。
2013-7-10 离散数学 4
2013-7-10
离散数学
8
四、集合之间的关系
3、真子集: B A。
B A B A B A
BABA B=A
4、幂 集:集合A的全体子集构成的集合,记作P (A)。 符号化为 P (A) = { x | x A} n 元集A的幂集P (A)含有2n个元素。
离散数学 第1章 集合的基本概念和运算

B A ( x) ( x B x A)
例:设A={1,2,3,4,5,6,}, B={2,4,5,}及C={1,2,3,4,5} 定义3.1.2(外延性原理)设A,B为集合,如果B⊆A且A⊆B, 则称A与B相等,记作A=B。相等的符号化表示为
x 则 x A B或x A C , A且x B或x A且x C ,即 x A且x B C, 于是x A ( B C ) 所以 ( A B) ( A C ) A ( B C ) 因此 ( A B) ( A C ) A ( B C )
离散数学
第一章 集合的基本集合的基本概念和运算
1.1 1.2 1.3 1.4 集合的基本概念 集合的基本运算 集合中元素的计数 笛卡尔乘积
1.1 集合的基本概念
集合是不能精确定义的基本的数学概念,直观地讲,集合是 由某些可以相互区别的事物汇集在一起所组成的整体。对于给定 的集合和事物,应该可以断定这个特定的事物是否属于这个集合。 如果属于,就称它为这个集合的元素。 集合通常用大写的英文字母来表示。 集合有两种表示方法:枚举法和谓词表示法。前一种方法是 将集合中的所有元素罗列出来,元素之间用逗号隔开,并把它们 用花括号括起来。例如 A {a, b, c} , {1, 2, 3, ...}, {春, 秋, },都是合法的表示。 C 夏, 冬 B 谓词表示法是用谓词来概括集合中元素的属性,例如 2 } F D {x | x是学生 , {x | x是整数 , {x | x R x 1 0} } E 一般的 A={x︱R(x)} R(x)表示x具有性质R,表示任何谓词 集合的元素是彼此不同的,如果同一个元素在集合中多次出现 应该认为是一个元素。集合的元素也是无序的,元素的排列顺序 对集合没有影响。
离散数学集合与关系

离散数学集合与关系离散数学是数学中一门独立的分支,它主要研究离散的数学结构和被限制在有限范围的对象。
集合论和关系理论是离散数学的重要组成部分,它们在计算机科学、信息科学等领域具有广泛的应用。
一、集合的概念与基本运算集合是离散数学中最基本的概念之一,它是由确定的元素所组成的整体。
集合的表示通常使用大写字母,元素用小写字母表示,并用花括号{}括起来。
例如,集合A={1,2,3,4}表示由元素1,2,3,4组成的集合A。
在集合论中,集合之间的关系可以通过特定的运算来描述。
常见的集合运算包括并集、交集、差集和补集。
并集是指所有属于被操作的集合的元素的集合。
交集是指同时属于所有被操作的集合的元素的集合。
差集是指属于一个集合而不属于另一个集合的元素的集合。
补集是指在全集中属于一个集合而不属于另一个集合的元素的集合。
二、关系的定义与性质关系是描述集合之间元素之间的某种联系或者规律的数学概念。
在离散数学中,关系可以用二元组的形式表示。
关系的性质包括自反性、对称性和传递性。
自反性是指元素与自身之间存在关系。
对称性是指如果两个元素之间存在关系,那么它们之间的关系是互逆的。
传递性是指如果两个元素之间存在关系,并且与另一元素之间也存在关系,那么这两个元素之间也存在关系。
三、集合的基数与幂集集合的基数是指集合中的元素个数。
若集合A中的元素个数为n,则记作|A|=n。
基数为有限值的集合称为有限集,基数为无限值的集合称为无限集。
幂集是指一个集合的所有子集所组成的集合。
例如,对于集合A={1,2},它的幂集为{{},{1},{2},{1,2}}。
幂集的基数等于原集合的基数的2的幂次方。
四、关系的类型与性质在离散数学中,关系可以分为几种不同的类型。
常见的关系类型包括等价关系、序关系和函数关系。
等价关系是指满足自反性、对称性和传递性的关系。
序关系是指满足自反性、反对称性和传递性的关系。
函数关系是指每个定义域中的元素都有唯一对应的值域中的元素的关系。
离散数学的基础知识

离散数学的基础知识离散数学作为现代数学的一门重要分支,在计算机科学、通信工程、信息技术等领域发挥着重要的作用。
本文将介绍离散数学的基础知识,共分为三个部分:集合论、逻辑和图论。
一、集合论集合是离散数学中的基本概念,它是一个由元素组成的整体。
例如,{1,2,3}就是一个集合,其中1、2、3是元素。
集合的描述通常采用列举法或描述法。
列举法即列举集合中的元素。
例如,{1,2,3}、{a,b,c,d}等都是集合。
描述法则是通过一些规则来描述集合中的元素。
例如,{x | x是正整数且小于10}表示由所有小于10的正整数组成的集合。
集合之间有一些常见的运算:并集:将两个集合中的元素合并起来,形成一个新的集合。
例如,{1,2,3}和{3,4,5}的并集为{1,2,3,4,5}。
交集:取两个集合中相同的元素组合成一个新的集合。
例如,{1,2,3}和{3,4,5}的交集为{3}。
补集:设A为一个集合,A'为其补集,则A'包含所有不在A 中的元素。
除此之外,集合中还有子集、空集、全集等重要概念。
子集指的是一个集合中的所有元素为另一个集合的元素,则前者是后者的子集。
空集指的是一个不包含任何元素的集合,全集则是该领域的所有元素的集合。
二、逻辑逻辑是进行推理和论证的基础。
在离散数学中,布尔代数是逻辑的一种基础形式。
它是一种将推理和论证过程化为运算的数学体系。
常见的布尔运算有与(AND)、或(OR)、非(NOT)。
与运算表示只有两个值同时为真,结果才为真。
例如,1 AND 1 为真,1 AND 0 为假。
或运算表示两个值中至少一个值为真,结果才为真。
例如,1 OR 0 为真,0 OR 0 为假。
非运算表示取反,将真变为假,将假变为真。
例如,NOT 1 为假,NOT 0 为真。
布尔代数的一个重要应用是逻辑电路的设计。
逻辑电路是指由逻辑门和连线构成的电路,其中逻辑门实现着不同的布尔运算。
三、图论图论是离散数学中的重要分支。
离散数学知识点

离散数学知识点摘要:离散数学是计算机科学和数学的一个分支,它专注于非连续结构的研究。
本文旨在概述离散数学的核心知识点,包括集合论、逻辑、关系、函数、图论、组合数学和递归等。
1. 集合论- 集合的基本概念:集合是离散数学的基础,它是一组明确的、无重复的对象的集合。
- 集合运算:包括并集、交集、差集、补集等。
- 幂集:一个集合所有子集的集合。
- 笛卡尔积:两个集合所有可能的有序对的集合。
2. 逻辑- 命题逻辑:研究命题(声明的真值)和它们之间的关系,如合取、析取、否定等。
- 谓词逻辑:使用量词(如全称量词和存在量词)来表达更复杂的逻辑关系。
- 逻辑推理:包括直接证明、间接证明和归谬法等。
3. 关系- 关系的定义:一个集合到另一个集合的有序对的集合。
- 关系的类型:自反性、对称性和传递性等。
- 关系的闭包:在给定关系下,集合的最小闭包。
4. 函数- 函数的定义:一个集合到另一个集合的映射,每个元素有唯一的像。
- 函数的类型:单射、满射和双射。
- 复合函数:两个函数可以组合成一个新的函数。
5. 图论- 图的基本概念:由顶点(节点)和边组成的结构。
- 图的类型:无向图、有向图、连通图、树等。
- 图的算法:如最短路径、最小生成树、图的着色等。
6. 组合数学- 排列和组合:从n个不同元素中取出r个元素的不同排列和组合的数量。
- 二项式定理:描述了二项式的幂展开的系数。
- 生成函数:一种编码序列的方法,用于解决复杂的计数问题。
7. 递归- 递归定义:一个对象通过引用比自己更小的版本来定义。
- 递归函数:在计算机程序中,一个函数调用自身来解决问题。
结论:离散数学为理解和设计计算机系统提供了基础工具和理论。
它的知识点广泛应用于算法设计、数据结构、编程语言理论和数据库等领域。
掌握离散数学对于任何希望在计算机科学领域取得进展的人来说都是至关重要的。
本文提供了一个简洁的离散数学知识点概述,每个部分都直接针对一个主题,避免了不必要的背景信息和解释。
离散数学第三章集合的基本概念和运算知识点总结

离散数学第三章集合的基本概念和运算知识点总结集合论部分第三章、集合的基本概念和运算3.1 集合的基本概念集合的定义与表⽰集合与元素集合没有精确的数学定义理解:⼀些离散个体组成的全体组成集合的个体称为它的元素或成员集合的表⽰列元素法A={ a, b, c, d }谓词表⽰法B={ x | P(x) }B 由使得P(x) 为真的x构成常⽤数集N, Z, Q, R, C 分别表⽰⾃然数、整数、有理数、实数和复数集合,注意0 是⾃然数.元素与集合的关系:⾪属关系属于∈,不属于?实例A={ x | x∈R∧x2-1=0 }, A={-1,1}1∈A, 2?A注意:对于任何集合A 和元素x (可以是集合),x∈A和x?A 两者成⽴其⼀,且仅成⽴其⼀.集合之间的关系包含(⼦集)A?B??x (x∈A→x∈B)不包含A?B??x (x∈A∧x?B)相等A = B?A?B∧B?A不相等A≠B真包含A?B?A?B∧A≠B不真包含A?B思考:≠和?的定义注意∈和?是不同层次的问题空集?不含任何元素的集合实例{x | x2+1=0∧x∈R} 就是空集定理空集是任何集合的⼦集Ax (x∈?→x∈A) ?T推论空集是惟⼀的.证假设存在?1和?2,则?1??2 且?1??2,因此?1=?2全集E 相对性在给定问题中,全集包含任何集合,即?A (A?E )幂集定义P(A) = { x | x?A }实例P(?) = {?},P({?}) = {?,{?}}P({1,{2,3}})={?,{1},{{2,3}},{1,{2,3}}}计数如果|A| = n,则|P(A)| = 2n3.2 集合的基本运算集合基本运算的定义??-~⊕并A?B = { x | x∈A∨x∈B }交A?B = { x | x∈A∧x∈B }相对补A-B = { x | x∈A∧x?B }对称差A⊕B = (A-B)?(B-A)= (A?B)-(A?B)绝对补~A = E-A⽂⽒图(John Venn)关于运算的说明运算顺序:~和幂集优先,其他由括号确定并和交运算可以推⼴到有穷个集合上,即A1?A2?…A n= {x | x∈A1∨x∈A2∨…∨x∈A n}A1?A2?…A n= {x | x∈A1∧x∈A2∧…∧x∈A n}某些重要结果A-B?AA?B ?A-B=?(后⾯证明)A?B=??A-B=A命题演算法证X?Y:任取x ,x∈X?… ?x∈Y 例3 证明A?B?P(A)?P(B)任取xx∈P(A) ?x?A?x?B ? x∈P(B)任取xx∈A ? {x}?A ? {x}∈P(A) ? {x}∈P(B){x}B x∈B包含传递法证X?Y:找到集合T 满⾜X?T 且T?Y,从⽽有X?Y例4 A-B ? A?B证A-B ? AA ? A?B所以A-B ? A?B利⽤包含的等价条件证X?Y:例5 A?C∧B?C ?A?B?C证A?C?A?C=CB?C?B?C=C(A?B)?C=A?(B?C)=A?C=C(A?B)?C=C ?A?B?C命题得证反证法证X?Y:欲证X?Y, 假设命题不成⽴,必存在x 使得x∈X 且x?Y. 然后推出⽭盾.例6 证明A?C ∧ B?C ? A?B?C证假设A?B ? C 不成⽴,则?x (x∈A?B∧x?C)因此x∈A 或x∈B,且x?C若x∈A, 则与A?C ⽭盾;若x∈B, 则与B?C ⽭盾.利⽤已知包含式并交运算:由已知包含式通过运算产⽣新的包含式X?Y ?X?Z?Y?Z, X?Z?Y?Z 例7 证明A?C?B?C ∧ A-C?B-C ? A?B证A?C?B?C,A-C ? B-C上式两边求并,得(A?C)?(A-C) ? (B?C)?(B-C)(AC)(A~C) (BC)(B~C)A(C~C) B(C~C)AE BEA B命题演算法证明X=Y:任取x ,x∈X ?… ?x∈Yx∈Y ?… ?x∈X或者x∈X ?… ? x∈Y例8 证明A?(A?B)=A (吸收律)证任取x,x∈A?(A?B) ? x∈A∨ x∈A?Bx∈A ∨ (x∈A ∧ x∈B) ? x∈A等式替换证明X=Y:不断进⾏代⼊化简,最终得到两边相等例9 证明A?(A?B)=A (吸收律)证(假设交换律、分配律、同⼀律、零律成⽴)A?(A?B)=(A?E)?(A?B) 同⼀律=A?(E?B) 分配律=A?(B?E) 交换律=A?E 零律=A 同⼀律反证法证明X=Y:假设X=Y 不成⽴,则存在x 使得x∈X且x?Y,或者存在x 使得x∈Y且x?X,然后推出⽭盾.例10 证明以下等价条件A?B ? A?B=B ? A?B=A ? A-B=?(1) (2) (3) (4)证明顺序:(1) ?(2), (2) ?(3), (3) ?(4), (4) ?(1)(1) ?(2)显然B?A?B,下⾯证明A?B?B.任取x,x∈A?B ? x∈A∨x∈B ? x∈B∨x∈B ? x∈B因此有A?B?B. 综合上述(2)得证.(2) ?(3)A=A?(A?B) ? A=A?B(将A?B⽤B代⼊)(3) ?(4)假设A-B≠?, 即?x∈A-B,那么x∈A且x?B. ⽽x?B ? x?A?B.从⽽与A?B=A⽭盾.(4) ?(1)假设A?B不成⽴,那么x (x∈A ∧ x?B) ? x∈A-B ? A-B≠?与条件(4)⽭盾.集合运算法证明X=Y:由已知等式通过运算产⽣新的等式X=Y ? X?Z=Y?Z, X?Z=Y?Z,X-Z=Y-Z 例11 证明A?C=B?C ∧ A?C=B?C ? A=B证由A?C=B?C 和A?C=B?C 得到(A?C)-(A?C)=(B?C)-(B?C)从⽽有A⊕C=B⊕C因此A⊕C=B⊕C ? (A⊕C)⊕C =(B⊕C)⊕CA⊕(C⊕C) =B⊕(C⊕C) ?A⊕?=B⊕?? A=B3.3 集合中元素的计数集合的基数与有穷集合集合A 的基数:集合A中的元素数,记作card A有穷集A:card A=|A|=n,n为⾃然数.有穷集的实例:A={ a,b,c}, card A=|A|=3;B={ x | x2+1=0, x∈R}, card B=|B|=0⽆穷集的实例:N, Z, Q, R, C 等包含排斥原理:定理设S 为有穷集,P1, P2, …, P m是m 种性质,A i 是S中具有性质P i的元素构成的⼦集,i=1, 2,…, m.则S中不具有性质P1, P2, …, P m 的元素数为证明要点:任何元素x,如果不具有任何性质,则对等式右边计数贡献为1,否则为0证设x不具有性质P1, P2, … , P m ,x?A i, i= 1, 2, … , mx?A i?A j, 1≤i < j ≤m…x?A1?A2?…?A m,x 对右边计数贡献为1 - 0 + 0 -0 + … + (-1)m· 0 = 1例1 求1到1000之间(包含1和1000在内)既不能被5 和6 整除,也不能被8 整除的数有多少个?解:S ={ x | x∈Z, 1≤x ≤1000 },如下定义S的3 个⼦集A, B, C:A={ x | x∈S, 5 | x },B={ x | x∈S, 6 | x },C={ x | x∈S, 8 | x }对上述⼦集计数:|S|=1000,|A|= ?1000/5? =200, |B|=?1000/6?=133,|C|= ?1000/8? =125,|A?B|= ?1000/30? =33, |B?C| = ?1000/40? =25,|B?C|= ?1000/24? =41,|A?B?C| = ?1000/120? =8,代⼊公式N = 1000-(200+133+125)+(33+25+41)-8=600例224名科技⼈员,每⼈⾄少会1门外语.英语:13;⽇语:5;德语:10;法语:9英⽇:2; 英德:4;英法:4;法德:4 会⽇语的不会法语、德语求:只会1 种语⾔⼈数,会3 种语⾔⼈数x+2(4-x)+y1+2=13x+2(4-x)+y2=10x+2(4-x)+y3=9x+3(4-x)+y1+y2+y3=19x=1, y1=4, y2=3, y3=2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若AB,BC,则AC
解 错误。举反例如下:设A={a},
B={{a},b},C={{a},b,{c}},显然AB, BC,但A不是C的子集。因为aA,但aC。
定义3.7 A、B是任意集合,由属于A或属于B的
所有元素组成的集合称为A与B的并集,记
3.2 作 A B 。即
集
A B u | u A或u B
推论 空集是惟一的. 证 假设存在1和2,则12 且12,因此
1=2 全集 在一个具体问题中,如果所涉及的集合都是某个
集合的子集,则称这个集合为全集,记作E
全集具有相对性
在给定问题中,全集包含任何集合,即A (AE )
三、幂集(PowerSet)
定义1.2.2 给定集合A,以A的所有子集为元素
- 命题演算法 - 包含传递法
的
- 等价条件法
基
- 反证法
(A B) A B
算 对偶原理:把一个等式中的中的∪,∩,E和
的分别代以∩,∪,和E后得到另一等式
二、对称差运算的性质:
① AA= ②A =A ③ A E= A
3.2 ④A B=B A
集 ⑤(A B) C A (B C)
合 ⑥A I (B C) (A I B) (A I C)
一、集合运算的十条定律
3.2
对于全集合E的任意子集A、B、C,有:
集 交换律 AB B A AB B A
合 的 结合律 A(B C) (A B) C
基
A(B C) (A B) C
本 分配律 A(B C) (A B) (AC)
运 算
A(B C) (A B) (AC)
概 念
(5)A ( )
(6)bA ( )
(11)cA (12){c}A (13){c}A
( ) ( ) ( )
(7){b}A ( )
(14){a,b,c}A ( )
练习2 列出集合A={1,{2}}的全部子集。
典
解 因为是任何集合的子集,所以
型 习 题
是A的子集。由A中任意一个元素所组成的 集合是A的子集,所以{1}和{{2}}是A的子 集。由A中任意两个元素所组成的集合是A 的子集,所以{1,{2}}是A的子集。因为A中
3.2
集
A B (A B) U(B A)
合
的
A
B
基
AB B A
本
运
算
AB
关于运算的说明
运算顺序: 和幂集优先,其他由括号确定 并和交运算可以推广到有穷个集合上,即
A1A2…An= {x | xA1xA2…xAn} A1A2…An= {x | xA1xA2…xAn}
{2x|x∈Z且x≤100}
(2) B={2,4,8,…,1024}
{2n|n∈N且n≤10}
集合与元素
元素与集合的关系:隶属关系 属于,不属于
实例 A={ x | xRx2-1=0 }, A={-1,1} 1A, 2A
注意:对于任何集合A和元素x(可以是集合), xA和 xA 两者成立其一,且仅成立其一.
第3章 集合的概念
集合的概念
集合是数学中最重要的概念,集合理论是数
学中最重要的理论。
第
十九世纪七十年代,威尔斯特拉斯、戴德金
3
、康托尔等人深入研究实数理论,建立起极限
章
论的基本定理,不仅为微积分建立起严格的理
集
论基础,也导致了集合论的诞生。
合
集合论分朴素集合论和公理化集合论。
的
集合论被广泛应用在计算机科学中,如数据
的
所组成,也就是说a∈A 当且仅当a 满
基
足性质P。
本
概
念
练习
3.1 1. 用列举法表示下列集合
集 合
(1)A={a|a∈P且a<20}
{2,3,5,7,11,13,17,19}
的
(2)B={a||a|<4且a为奇数}
{-3,-1,1,3}
基
本
概 2. 用描述法表示下列集合
念
(1) A={0,2,4,…,200}
某些重要结果
ABA AB AB=(后面证明) AB= AB=A
例
F:一年级大学生的集合
S:二年级大学生的集合
R:计算机系学生的集合
M:数学系学生的集合
T:选修离散数学的学生的集合
L:爱好文学学生的集合
P:爱好体育运动学生的集合
所有计算机系二年级学生都选修离散数学
数学系一年级的学生都没有选修离散数学
概
结构、操作系统、数据库、知识库、编译原理
念
、形式语言、程序设计、人工智能、信息检索
与
、CAD 等。
运
算
一、什么是集合?
-只能给予直观的描述。所谓集合(Set),
3.1
就是把人们直观的或想象中的某些确定的能 够区分的对象汇合在一起组成的一个整体。
集
-组成集合的各个对象,称为这个集合的元素
合
(Element)或成员(Member)。
时又属于B的所有元素组成的集合称为A与B的交
集,记作 A B 。即
3.2 集
A B u | u A且u B
合 例1.3.2 设A={a,b,c,d}, B={d,f,a}, C={e,f,g}
的则
基 A B d, a
本 运
A C
算
B C {f}
A
B
A B
3.1
的集合称为A的幂集,记作P(A)。
集 例3 A=,B={,a,{a}}
合
P(A)=
的
P(B)={,{},{a},{{a}},{
基
,a},{,{a}},{a,{a}},{
本
,a,{a}}}
概
念
集合的基数
设A 为任一集合,用|A|(或#A)表示A中不同
3.1
元素的个数,称为集合A的基数,有:
的
▪①通常,用大写字母A,B,C,…表示集
基
合,用小写字母a,b,c,…表示元素。
本
▪②集合与元素之间的关系-“属于”关系
概
- aA aB
念
二、集合的表示
⑴列举法
3.1
- 将集合中的元素一一列举出来,或者列出
集
足够多的元素以反映集合中成员的特征,
合
并用花括号将元素括起来,其表示形如:
的
▪ A={a1,a2,…,an}
只有两个元素,故A再没有其他的子集。
由上可知,A有四个子集:,{1}, {{2}},{1,{2}}。
练习3 设有集合A,B,C和D, 下述论断是否
正确?说明理由。
典 (1)若AB,BC,则AC
型 解 正确。因为BC,所以集合B的每一
习 个元素也是集合C的元素,由AB知A是B的
题
一个元素,因此A也是C的一个元素,故 AC。
算
则B-A={ f }, C-A={ e ,f , g }=C
定义3.8 E为全集,A为E的子集,E-A称为A的
绝对补集,记作 ~ A。即
3.2 集
~ A E A x E且x A
合
的
基
A
本
~A
运
算
例如 设U={1,2,3,4,…,10},
A={2,4,6,8,10} 3.2
集 合
恒等律 A A A E A
互补律 A A U A A
否定律 (A) A
3.2 集
幂等律
AA A
AA A
合 零一律 AU U A
的
基 吸收律 A (A B) A A (A B) A
本 运
德•摩根律 ( A B) A B
隶属关系的层次结构
例 3.1 A={ a, {b,c}, d, {{d}} } {b,c}A bA {{d}}A {d}A dA
一、集合之间的关系
包含(子集) A B x (xA xB)
3.1 集 合 的 基 本 概 念
不包含
A ⊈ B x (xA xB)
基 本 概 念
▪ A={a1,a2,a3, …}
- 列举法必须把元素的全体尽列出来,不能 遗漏任何一个,并且集合中的元素没有顺 序之分且不重复。
⑵谓词表示法
- 用一个谓词来描述集合中元素具有的共同
3.
性质。
1
▪ 表示形式如A={x|P(x)}
集
▪ 意义是:
合
▪ 集合A 由且仅由满足性质P 的那些对象
2n
2A
3.1 集
练习1 设A={a,b,{c},{a},{a,b}},试指出下 列论断是否正确?
合 (1)aA ( )
(8){b}A
( )
的 (2){a}A ( )
(9){a,b}A
( )
基 (3){a}A ( )
(10){a,b}A ( )
本 (4)A ( )
则~ A U A 1,3,5,7,9
的
基 本
又例如 设U=I(I是整数集),
运
A i | i I,且i 0
算
则 ~ A U A i | i I且i 0
定义1.4.1 A、B为任意两个集合,所有属于A而
不属于B或属于B而不属于A的元素组成的集合,
称为A与B的对称差,记作 A B 。即
集
▪ 若|A|=0,则称A 为空集合(Empty
合
Set),记为;
的
▪ 若|A|为某自然数,则称A 为有限集合
基
(Finite Set);