(完整版)圆的参数方程练习题有答案

合集下载

圆的方程 习题含答案

圆的方程 习题含答案

圆的方程习题(含答案)一、单选题1.以点P(2,-3)为圆心,并且与y轴相切的圆的方程是( )A.(x+2)2+(y-3)2=4B.(x+2)2+(y-3)2=9C.(x-2)2+(y+3)2=4D.(x-2)2+(y+3)2=92.当点在圆上运动时,连接它与定点,线段的中点的轨迹方程是()A.B.C.D.3.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为( )A.9πB.πC.2πD.由m的值而定4.圆的半径是()A.B.2C.D.45.已知圆与圆相交于A、B两点,则线段AB的垂直平分线的方程为A.B.C.D.6.若点为圆上的一个动点,点,为两个定点,则的最大值为()A.B.C.D.7.已知直线:是圆的对称轴.过点作圆的一条切线,切点为,则()A.2B.C.6D.8.若直线l:ax+by+1=0经过圆M:的圆心则的最小值为A.B.5C.D.109.若均为任意实数,且,则的最小值为()A.B.C.D.二、填空题10.如图,扇形的圆心角为90°,半径为1,点是圆弧上的动点,作点关于弦的对称点,则的取值范围为____.11.已知x,y满足-4-4+=0, 则的最大值为____12.若直线l:与x轴相交于点A,与y轴相交于B,被圆截得的弦长为4,则为坐标原点的最小值为______.13.设直线与圆相交于两点,若,则圆的面积为________.14.已知圆的圆心在曲线上,且与直线相切,当圆的面积最小时,其标准方程为_______.15.在平面直角坐标系xOy中,已知过点的圆和直线相切,且圆心在直线上,则圆C的标准方程为______.16.已知圆的圆心在直线上,且经过,两点,则圆的标准方程是__________.17.在平面直角坐标系中,三点,,,则三角形的外接圆方程是__________.18.如图,O是坐标原点,圆O的半径为1,点A(-1,0),B(1,0),点P,Q分别从点A ,B 同时出发,圆O 上按逆时针方向运动.若点P 的速度大小是点Q 的两倍,则在点P 运动一周的过程中,的最大值是_______.三、解答题 19.设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程. 20.已知圆内一点,直线过点且与圆交于,两点.(1)求圆的圆心坐标和面积; (2)若直线的斜率为,求弦的长;(3)若圆上恰有三点到直线的距离等于,求直线的方程.21.已知点在圆上运动,且存在一定点,点为线段的中点.(1)求点的轨迹的方程; (2)过且斜率为的直线与点的轨迹交于不同的两点,是否存在实数使得,并说明理由.22.已知圆经过()()2,5,2,1-两点,并且圆心在直线12y x =上。

圆的方程数学知识点与练习

圆的方程数学知识点与练习

圆的方程●圆的方程的三种形式 (1)圆的标准方程(x-a)2+(y-b)2=r 2,方程表示圆心为(a,b),半径为r 的圆. (2)圆的一般方程对于方程x 2+y 2+Dx+Ey+F=0①当D 2+E 2-4F >0时,表示圆心为(-D 2,-E 2),半径为12②当D 2+E 2-4F=0时,表示一个点(-D 2,-E2);③当D 2+E 2-4F <0时,它不表示任何图形.(3)圆的参数方程x a rcos ,y b rsin θθ=+⎧⎨=+⎩,圆心(a,b ),半径r >0,θ∈R. ●点与圆的位置关系圆的标准方程(x-a )2+(y-b)2=r 2,圆心A (a,b ),半径r ,若点M (x 0,y 0)在圆上,则(x 0-a)2+(y 0-b)2=r 2; 若点M (x 0,y 0)在圆外,则(x 0-a)2+(y 0-b)2>r 2; 若点M (x 0,y 0)在圆内,则(x 0-a)2+(y 0-b)2<r 2. ●确定圆的方程的方法(1)确定圆的方程的主要方法是待定系数法.如果选择标准方程,一般步骤为: ①根据题意,设所求圆的标准方程为(x-a )2+(y-b)2=r 2; ②根据已知条件,建立关于a 、b 、r 的方程组;③解方程组,并把它们代入所设的方程中,整理后,就得到所求方程. 求圆的标准方程时,尽量利用圆的几何性质,可以大大地减少计算量. (2)如果已知条件中圆心的位置不能确定,可考虑选择圆的一般方程,圆的一般方程也含有三个独立的参数,因此,必须具备三个独立的条件,才能确定圆的一般方程,其方法仍采用待定系数法.设所求圆的方程为x 2+y 2+Dx+Ey+F=0,由三个条件得到关于D 、E 、F 的一个三元一次方程组,解方程组,求出参数D 、E 、F 的值即可.(3)以A (x 1,y 1),B(x 2,y 2)为直径的两端点的圆的方程为(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0. (4)在求圆的方程时,常用到圆的以下几个性质: ①圆心在过切点且与切线垂直的直线上; ②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线. ●与圆有关的最值问题(1)求与圆有关的最值问题多采用几何法,就是利用一些代 数式的几何意义进行转化.如①形如m=y bx a--的最值问题,可转化为动直线斜率的最值问题;②形如t=ax+by 的最值问题,可转化为直线在y 轴上的截距的最值问题;③形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间的距离平方的最值问题. (2)特别要记住下面两个代数式的几何意义:yx表示点(x,y )与原点(0,0)连线的直线斜率表示点(x,y )与原点的距离. 1.方程x 2+y 2+4mx-2y+5m=0表示圆的充要条件是( )A.14<m<1 B.m>1 C.m<14D.m<14或m>1解析:若方程表示圆,则(4m)2+(-2)2-4×5m>0,解得m<14或m>1.答案:D2.若点(4a-1,3a+2)不在圆(x+1)2+(y-2)2=25的外部,则a的取值范围是( )A.|a|B.|a|<1C.|a|D.|a|≤1解析:点(4a-1,3a+2)不在圆(x+1)2+(y-2)2=25的外部,则(4a-1+1)2+(3a+2-2)2≤25,即|a|≤1. 答案:D3.圆(x+2)2+y2=5关于直线y=x对称的圆的方程为( )A.(x-2)2+y2=5B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5D.x2+(y+2)2=5解析:圆(x+2)2+y2=5的圆心(-2,0)关于y=x对称的点的坐标为(0,-2),所以,所求圆的方程是x2+(y+2)2=5.答案:D4.已知x、y满足x2+y2-4x-6y+12=0,则x2+y2的最小值为__________.解析:点(x,y)在圆(x-2)2+(y-3)2=1上,故点(x,y)到原点距离的平方即x2+y2的最小值为2答案:5.已知圆x2+y2+kx+2y=-k2,当该圆的面积取最大值时,圆心坐标为__________.答案:(0,-1)自我诊断①若圆x2+y2+(a2-1)x+2ay-a=0关于直线x-y+1=0对称,则实数a的值为__________.答案:3自我诊断②以点A(-3,0),B(0,-3),C(157,247)为顶点的三角形与圆x2+y2=R2(R>0)没有公共点,则圆半径R的取值范围是())∪,+∞) B.( ) )∪(3,+∞)D.(,3)2解析:如图,若圆与△ABC没有公共点,需考虑两种情况,①圆在三角形内部;②圆在三角形外部.当圆在三角形内部时,圆与BC;当圆在三角形外部时,圆过点C,所以选A.答案:A题型一圆的方程的求法【例1】根据下列条件求圆的方程:(1)经过点P(1,1)和坐标原点,并且圆心在直线2x+3y+1=0上;(2)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2);(3)过三点A(1,12),B(7,10),C(-9,2).规律方法:求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质而求出圆的基本量;(2)代数法,即设出圆的方程,用待定系数法求解. 创新预测1根据下列条件求圆的方程:(1)已知一圆过P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为(2,圆心在直线y=2x上,圆被直线x-y=0截得的弦长为题型二与圆有关的最值问题【例2】已知实数x、y满足方程x2+y2-4x+1=0.(1)求yx的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.规律方法:化x、y满足的关系式为(x-2)2+y2=3,明确yx、y-x、x2+y2的几何意义,数形结合求解.创新预测2已知实数x、y满足方程x2+y2-4x+1=0.(1)求y2x1++的最大值和最小值.(2)求x-2y的最大值和最小值.(3)求点P(x,y)到直线3x+4y+12=0的距离的最大值和最小值.题型三与圆有关的轨迹问题【例3】设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹.\规律方法:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:直接法,直接根据题目提供的条件列出方程;定义法,根据圆、直线等定义列方程;几何法,利用圆与圆的几何性质列方程;代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.创新预测3 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点. (1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求PQ中点的轨迹方程.题型四与圆有关的实际应用问题【例4】有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:A地每千米的运费是B地每千米运费的3倍.已知A、B两地距离为10 km,顾客选择A地或B地购买这件商品的标准是:包括运费和价格的总费用较低.求P地居民选择A地或B地购货总费用相等时,点P所在曲线的形状,并指出曲线上、曲线内、曲线外的居民应如何选择购物地点.规律方法:审清题意,根据题意求轨迹方程.求方程前必须建立平面直角坐标系,否则曲线就不能转化为方程,坐标系选取得当,可使运算过程简单,所得方程也较简单.创新预测4 设有一个半径为3 km的圆形村落,A、B两人同时从村落中心出发,A向东而B向北前进.A出村后不久,改变前进方向,沿着切于村落边界的方向前进,后来恰好与B相遇.设A、B 两人的速度都一定,其比为3∶1,问:两人在何处相遇?精品作业自我测评·技能备考一、选择题:每小题6分,共36分.1.(2009·许昌模拟)P(x,y)是圆x2+y2=1与直线x+y+2m=0(m>0)的公共点,则直线008=0的倾斜角的最大值为( )A.45°B.60°C.90°D.135°答案:A2.(2009·天津汉沽模拟)已知两点A(-2,0),B(0,2),点C 是圆x 2+y 2-2x=0上任意一点,则△ABC 面积的最小值是( )C.3-2D.32 答案:A3.(2009·山东临沂模拟)若直线ax+2by-2=0(a >0,b >0)始终平分圆x 2+y 2-4x-2y-8=0的周长,则1a +2b的最小值为( )A.1B.5 答案:D4.(2008·山东)已知圆的方程为x 2+y 2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )答案:B5.(2009·湖北沙市模拟)直线l:4x-3y-12=0与x、y轴的交点分别为A、B,O为坐标原点,则△AOB内切圆的方程为( )A.(x-1)2+(y+1)2=1B.(x-1)2+(y-1)2=1C.(x-1)2+(y+1)2D.(x-1)2+(y+1)2=2 答案:A解析:A(3,0),B(0,-4),O(0,0),∴内切圆的半径r=OA OB AB2+-=1,由图象知,圆心为(1,-1),∴方程为(x-1)2+(y+1)2=1,故选A.6.(2009·西南师大附中模拟)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2-2y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为( )A.3B.2C.22D.2 答案:D二、填空题:每小题6分,共18分.7.(2009·江苏江宁高级中学3月模拟)直线ax+by=1过点A(b,a),则以坐标原点O为圆心,OA 长为半径的圆的面积的最小值是______.答案:π解析:直线过点A(b,a),∴ab=12,圆面积S=πr2=π(a2+b2)≥2πab=π.8.(2009·广东华南师大附属中学测试)从圆(x-1)2+(y-1)2=1外一点P(2,3)向这个圆引切线,则切线长为____________.答案:2解析:圆心(1,1),则|PC|2=5,∴切线长9.(2009·浙江金华模拟)已知圆O的方程为x2+y2=4,P是圆O上的一个动点,若OP的垂直平分线总是被平面区域|x|+|y|≥a覆盖,则实数a的取值范围是_____________.答案:a≤1解析:易知OP的垂直平分线即为单位圆的切线,当a≤0时,平面区域即坐标平面,显然满足题意;当a>0时,由图象易知0<a≤1,综上,a≤1.三、解答题:10、11题每题15分,12题16分,共46分.10.(2009·江苏通州调研)如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(-4,0),D(0,4),设△AOB的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值.(2)设点P在⊙E上,使△PCD的面积等于12的点P有且只有三个,试问:这样的⊙E是否存在?若存在,求出⊙E的标准方程;若不存,说明理由.11.(2009·江苏盐城模拟)已知以点C(t,2t)(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(1)求证:△OAB的面积为定值;(2)设直线y=-2x+4与圆C交于点M、N,若OM=ON,求圆C的方程.\12.设O 为坐标原点,曲线x 2+y 2+2x-6y+1=0上有两点P 、Q ,满足关于直线x+my+4=0对称,又满足OP ·OQ =0.(1)求m 的值;(2)求直线PQ 的方程.。

(完整word版)参数方程直线、圆专题练习

(完整word版)参数方程直线、圆专题练习

参数方程直线、圆专题练习.。

评卷人得分一.选择题(共9小题)1.曲线C的参数方程为(θ为参数),直线l的方程为x﹣y﹣2=0,P、M分别为曲线C和直线l上的点,则|PM|的最小值为()A.0 B.C. D.22.直线l的参数方程为(t为参数),则l的倾斜角大小为()A. B. C.D.3.直线(t为参数)与曲线(θ为参数)相交的弦长为()A.1 B.2 C.3 D.44.已知曲线的参数方程为(0≤t≤5),则曲线为( )A.线段B.双曲线的一支 C.圆弧D.射线5.参数方程(t为参数,且0≤t≤3)所表示的曲线是( )A.直线B.圆弧C.线段D.双曲线的一支6.椭圆的参数方程为(θ为参数),则它的两个焦点坐标是()A.(±4,0) B.(0,±4) C.(±5,0) D.(0,±3)7.已知α是锐角,则直线(t为参数)的倾斜角是( )A.αB.α﹣C.α+D.α+8.已知M为曲线C:(θ为参数)上的动点.设O为原点,则|OM|的最大值是()A.1 B.2 C.3 D.49.已知椭圆的参数方程(t为参数),点M在椭圆上,对应参数t=,点O为原点,则直线OM的斜率为()A. B.﹣C.2D.﹣2评卷人得分二.填空题(共16小题)10.参数方程(α为参数)化成普通方程为.11.已知椭圆的参数方程为,则该椭圆的普通方程是.12.椭圆(θ为参数)的右焦点坐标为13.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是.14.若直线(t为参数)与曲线(θ为参数)相切,则实数m的值为.15.设点A是曲线是参数)上的点,则点A到坐标原点的最大距离是.16.直线(t为参数)与曲线(θ为参数)的公共点个数为.17.参数方程(θ为参数)化为普通方程是.:18.直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1 (θ为参数),曲线C:ρcos(θ+)=t,若两曲线有公共点,则t的取值范围2是.19.直线(t为参数)对应的普通方程是.20.直线(t为参数)的倾斜角的大小为.21.将参数方程(t为参数)化为普通方程是.22.直线(t为参数)被圆(θ为参数)所截得的弦长为.23.直线(t为参数)与曲线(θ为参数)的交点个数是.24.已知直线C1:(t为参数),C2:(θ为参数),当α=时,则C1与C2的交点坐标为.25.若直线l的参数方程为,t∈R,则直线l在y轴上的截距是.评卷人得分三.解答题(共5小题)26.在直角坐标系xOy中,曲线C1:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2:ρ2﹣10ρcosθ﹣6ρsinθ+25=0.(Ⅰ)求C1的普通方程与曲线C2的直角坐标方程,并说明方程所表示的曲线名称;(Ⅱ)判断曲线C1与曲线C2的位置关系,若相交,求出弦长.27.已知直线l参数方程:(t为参数),曲线C1:.(1)求直线l的直角坐标方程和曲线C1的参数方程;(2)若点M在曲线C1上运动,求M到直线l距离的最小值.28.已知直线l:(t为参数),曲线C1:,(θ为参数).(1)设l与C1相交于A,B两点,求|AB|;(2)曲线C2为(θ为参数),点P是曲线C2上的一个动点,求它到直线l的距离的最小值.29.在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.30.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.参数方程直线、圆专题练习参考答案与试题解析一.选择题(共9小题)1.曲线C的参数方程为(θ为参数),直线l的方程为x﹣y﹣2=0,P、M分别为曲线C和直线l上的点,则|PM|的最小值为()A.0 B.C. D.2【分析】直接利用三角函数关系式的恒等变变换和正弦型函数的性质及点到直线的距离公式的应用求出结果.【解答】解:曲线C的参数方程为(θ为参数),设P(2c osθ,sinθ),则:点P到直线x﹣y﹣2=0的距离d==,当sin(θ+α)=1时,|PM|的最小值为.故选:B.【点评】本题考查的知识要点:点到直线的距离公式的应用,三角函数关系式的恒等变变换,正弦型函数性质的应用.2.直线l的参数方程为(t为参数),则l的倾斜角大小为( )A. B. C.D.【分析】根据题意,将直线的参数方程变形为普通方程,由直线的方程形式分析可得答案.【解答】解:根据题意,直线l的参数方程为(t为参数),则到直线的方程为,所以直线的斜率为,倾斜角为,故选:C.【点评】本题考查直线的参数方程及倾斜角,注意将直线的参数方程变形为普通方程.3.直线(t为参数)与曲线(θ为参数)相交的弦长为()A.1 B.2 C.3 D.4【分析】分别化直线与圆的参数方程为普通方程,再由圆心在直线上可得弦长.【解答】解:由,得x﹣,由,得(x﹣1)2+y2=1.∴圆(x﹣1)2+y2=1的圆心坐标为(1,0),半径为1.而圆心(1,0)在直线x﹣上,∴直线与曲线相交的弦长为2.故选:B.【点评】本题考查参数方程化普通方程,考查直线与圆位置关系的应用,是基础题.4.已知曲线的参数方程为(0≤t≤5),则曲线为()A.线段B.双曲线的一支 C.圆弧D.射线【分析】曲线的参数方程消去参数t,得x﹣3y=5.再由0≤t≤5,得﹣1≤y≤24.从而求出该曲线是线段.【解答】解:由(0≤t≤5),消去参数t,得x﹣3y=5.又0≤t≤5,故﹣1≤y≤24.故该曲线是线段.故选:A.【点评】本题考查曲线形状的判断,考查极坐标方程、参数方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是基础题.5.参数方程(t为参数,且0≤t≤3)所表示的曲线是()A.直线B.圆弧C.线段D.双曲线的一支【分析】根据题意,由参数方程中t的范围分析可得x、y的范围,结合参数方程消去参数可得x ﹣3y=10,结合x、y的范围分析可得答案.【解答】解:根据题意,参数方程,若0≤t≤3,则有:4≤x≤31,﹣2≤y≤7,又由参数方程,则y+2=(x﹣4),即x﹣3y=10,又由4≤x≤31,﹣2≤y≤7,则参数方程表示的是线段;故选:C.【点评】本题考查参数方程与普通方程的转化,注意t的取值范围.6.椭圆的参数方程为(θ为参数),则它的两个焦点坐标是()A.(±4,0) B.(0,±4)C.(±5,0)D.(0,±3)【分析】根据题意,将椭圆的参数方程变形为普通方程,分析a、b的值,计算可得c的值,即可得答案.【解答】解:根据题意,椭圆的参数方程为(θ为参数),则其普通方程为+=1,其中a=5,b=3,则c==4,其它的两个焦点坐标是(±4,0);故选:A.【点评】本题考查椭圆的参数方程,关键是将椭圆的方程变形为普通方程.7.已知α是锐角,则直线(t为参数)的倾斜角是()A.αB.α﹣C.α+D.α+【分析】设直线的倾斜角为θ,则tanθ==,α锐角,化简即可得出.【解答】解:设直线的倾斜角为θ,则tanθ====,α锐角.∴θ=,故选:C.【点评】本题考查了直线的倾斜角与斜率之间的关系、诱导公式的应用,考查了推理能力与计算能力,属于中档题.8.已知M为曲线C:(θ为参数)上的动点.设O为原点,则|OM|的最大值是( ) A.1 B.2 C.3 D.4【分析】直接把圆的参数方程转化为直角坐标方程,进一步利用两点间的距离公式求出结果.【解答】解:曲线C:(θ为参数)转化为:(x﹣3)2+y2=1,则:圆心(3,0)到原点(0.0)的距离为3,故点M到原点的最大值为:3+1=4.故选:D.【点评】本题考查的知识要点:参数方程和直角坐标方程的转化,两点间的距离公式的应用.9.已知椭圆的参数方程(t为参数),点M在椭圆上,对应参数t=,点O为原点,则直线OM的斜率为()A. B.﹣C.2D.﹣2【分析】将点对应的参数代入椭圆的参数方程得到M的坐标,再利用直线的斜率公式即可求出答案.【解答】解:当t=时,点M的坐标为(2cos,4sin),即M(1,2),∴OM的斜率为k=2.故选:C.【点评】本题主要考查了椭圆的参数方程,直线的斜率等基本知识,属于基础题.二.填空题(共16小题)10.参数方程(α为参数)化成普通方程为x2+(y﹣1)2=1 .【分析】欲将参数方程(α为参数)化成普通方程,只须消去参数即可,利用三角函数的同角公式中的平方关系即得.【解答】解:∵(α为参数)∴x2+(y﹣1)2=cos2α+sin2α=1.即:参数方程(α为参数)化成普通方程为:x2+(y﹣1)2=1.故答案为:x2+(y﹣1)2=1.【点评】本小题主要考查参数方程的概念的应用、圆的参数方程的概念、三角函数的同角公式等基础知识,考查运算求解能力、化归与转化思想.属于基础题.11.已知椭圆的参数方程为,则该椭圆的普通方程是.【分析】根据题意,由椭圆的参数方程可得=cosα,=sinα,进而可得,即可得答案.【解答】解:根据题意,椭圆的参数方程为,则有=cosα,=sinα,则有,即该椭圆的普通方程为:,故答案为:.【点评】本题考查椭圆的参数方程,注意椭圆的参数方程的形式,属于基础题.12.椭圆(θ为参数)的右焦点坐标为(1,0)【分析】根据题意,将椭圆的参数方程变形为标准方程,分析可得a、b的值,计算可得c的值,即可得椭圆的右焦点坐标,即可得答案.【解答】解:根据题意,椭圆(θ为参数)的普通方程为+=1,其中a=2,b=,则c=1;故椭圆的右焦点坐标为(1,0);故答案为:(1,0)【点评】本题考查椭圆的参数方程,注意将椭圆的参数方程变形为普通方程.13.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是.【分析】利用弦长=,(其中d为弦心距)公式即可计算出.【解答】解:直线l的极坐标方程为ρsinθ+ρcosθ=1,化为直角坐标系下的普通方程为y+x=1;由圆C的参数方程为(θ为参数),消去参数θ化为普通方程x2+(y﹣2)2=1,其圆心C(0,2),半径r=1.直线l截圆C所得的弦长=2=.故答案为.【点评】熟练弦长、弦心距及半径三者之间的关系是解题的关键.14.若直线(t为参数)与曲线(θ为参数)相切,则实数m的值为﹣3或7 .【分析】把参数方程化为普通方程,根据圆心到直线的距离等于半径,求得m的值.【解答】解:直线l:(t为参数)即 2x﹣y+m﹣2=0.曲线C:曲线(θ为参数) 即 x2+y2=5,表示以(0,0)为圆心,半径等于的圆.再根据圆心到直线的距离等于半径,可得==,求得 m=﹣3或7,故答案为:﹣3或7.【点评】本题主要考查把参数方程化为普通方程的方法,点到直线的距离公式的应用,直线和圆的位置关系,属于基础题.15.设点A是曲线是参数)上的点,则点A到坐标原点的最大距离是 3 .【分析】设A(,1+sinθ),原点O(0,0),|AO|==,由此能求出点A到坐标原点取最大距离.【解答】解:∵点A是曲线是参数)上的点,∴设A(,1+sinθ),原点O(0,0),|AO|===,∴当sin()=1时,点A到坐标原点取最大距离3.故答案为:3.【点评】本题考查两点间距离的最大值的求法,考查勇数方程、两点间距离公式、三角函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.16.直线(t为参数)与曲线(θ为参数)的公共点个数为 2 .【分析】直线消去参数t,得x﹣2y=0,曲线消去参数,得(x﹣2)2+y2=1,联立,能求出交点个数.【解答】解:直线(t为参数)消去参数t,得x﹣2y=0,曲线(θ为参数)消去参数,得(x﹣2)2+y2=1,联立,得或.∴直线(t为参数)与曲线(θ为参数)的公共点个数为2.故答案为:2.【点评】本题考查直线与曲线的交点个数的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.17.参数方程(θ为参数)化为普通方程是(x﹣3)2+y2=1 .【分析】由参数方程可得,结合sin2θ+cos2θ=1可得答案.【解答】解:由参数方程可得,两边平方作和得(x﹣3)2+y2=1.故答案为:(x﹣3)2+y2=1.【点评】本题主要考查参数方程与普通方程的相互转化,属于基础题.:18.直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1(θ为参数),曲线C:ρcos(θ+)=t,若两曲线有公共点,则t的取值范围是2t<﹣1或t>3 .【分析】分别化直线和圆的方程为普通方程,由直线和圆的位置关系可得t的不等式,解不等式可得.【解答】解:由C:可得cosθ=x﹣1,sinθ=y,1两式平方相加可得(x﹣1)2+(y)2=1,整理可得(x﹣2)2+y2=4,表示圆心为(2,0)半径为2的圆,:ρcos(θ+)=t可得ρcosθ﹣ρsinθ=t,由C2即x﹣y=t,即x﹣y﹣2t=0,表示一条直线,由两曲线有公共点可得直线与圆相离,∴圆心到直线的距离d大于半径,即>2,解得t<﹣1或t>3故答案为:t<﹣1或t>3【点评】本题考查圆的参数方程和直线的极坐标方程,化为普通方程并利用直线和圆的位置关系是解决问题的关键,属基础题.19.直线(t为参数)对应的普通方程是x+y﹣1=0 .【分析】利用加减消元法消去参数t,即可得到直线的普通方程.【解答】解:两个方程相加得x+y﹣1=0,故答案为:x+y﹣1=0.【点评】本题考查了参数方程与普通方程的转化,属于基础题.20.直线(t为参数)的倾斜角的大小为.【分析】化参数方程为普通方程,求出斜率,即可求得倾斜角.【解答】解:(t为参数)化参数方程为普通方程,两方程相加可得x+y=2,则直线的斜率为﹣1,故倾斜角为.故答案为:.【点评】本题考查直线的斜率与倾斜角的关系,解题的关键是化参数方程为普通方程,属于基础题.21.将参数方程(t为参数)化为普通方程是2x+y﹣3=0 .【分析】2x=2+2,与y=1﹣2相加即可得出.【解答】解:2x=2+2,与y=1﹣2相加可得:2x+y=3.故答案为:2x﹣y﹣3=0.【点评】本题考查了参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.22.直线(t为参数)被圆(θ为参数)所截得的弦长为.【分析】分别化直线与圆的参数方程为普通方程,由点到直线的距离公式求出圆心到直线的距离,再由垂径定理得答案.【解答】解:由,得x+y﹣8=0,由,得,两式平方作和得:(x﹣3)2+(y+1)2=25.∴圆心坐标为(3,﹣1),半径为5.圆心到直线的距离d=.∴直线被圆所截弦长为2.故答案为:.【点评】本题考查参数方程化普通方程,考查了直线与圆位置关系的应用,考查垂径定理的应用,是基础题.23.直线(t为参数)与曲线(θ为参数)的交点个数是 2 .【分析】直线与曲线的参数方程,化为普通方程,联立可得13x2﹣18x﹣27=0,即可得出结论.【解答】解:直线(t为参数)与曲线(θ为参数),普通方程分别为x+y﹣1=0,=1,联立可得13x 2﹣18x ﹣27=0,△=(﹣18)2﹣4×13×(﹣27)>0, ∴交点个数是2, 故答案为:2.【点评】本题考查直线的参数方程与普通方程的转化,考查方程思想,比较基础.24.已知直线C 1:(t 为参数),C 2:(θ为参数),当α=时,则C 1与C 2的交点坐标为 (1,0),(,﹣) .【分析】先消去参数将曲线C 1与C 2的参数方程化成普通方程,再联立方程组求出交点坐标即可. 【解答】解:(Ⅰ)当α=时,C 1的普通方程为y=(x ﹣1),C 2的普通方程为x 2+y 2=1. 联立方程组,解得C 1与C 2的交点为(1,0),(,﹣).故答案为(1,0),(,﹣).【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,比较基础.25.若直线l 的参数方程为,t ∈R ,则直线l 在y 轴上的截距是 1 .【分析】令x=0,可得t=1,y=1,即可得出结论. 【解答】解:令x=0,可得t=1,y=1, ∴直线l 在y 轴上的截距是1. 故答案为1.【点评】本题考查参数方程的运用,考查学生的计算能力,比较基础.三.解答题(共5小题)26.在直角坐标系xOy中,曲线C1:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2:ρ2﹣10ρcosθ﹣6ρsinθ+25=0.(Ⅰ)求C1的普通方程与曲线C2的直角坐标方程,并说明方程所表示的曲线名称;(Ⅱ)判断曲线C1与曲线C2的位置关系,若相交,求出弦长.【分析】(Ⅰ)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(Ⅱ)利用点到直线的距离公式的应用求出结果.【解答】解:(Ⅰ)曲线C1:(t为参数).转换为直角坐标方程为:x﹣2y﹣4=0.(x≥2).故该曲线表示一条射线.曲线C2:ρ2﹣10ρcosθ﹣6ρsinθ+25=0.转换为直角坐标方程为:x2+y2﹣10x﹣6y+25=0,整理得:(x﹣5)2+(y﹣3)2=9,该曲线表示以(5,3)为圆心,3为半径的圆.(Ⅱ)由于该圆是以(5,3)为圆心,3为半径,所以与射线x﹣2y﹣4=0.(x≥2)有两个交点.圆心到射线的距离d=,所以弦长l=2=4.【点评】本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,点到直线的距离公式的应用.27.已知直线l参数方程:(t为参数),曲线C1:.(1)求直线l的直角坐标方程和曲线C1的参数方程;(2)若点M在曲线C1上运动,求M到直线l距离的最小值.【分析】(1)直接利用转换关系式,把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用三角函数关系式的恒等变换和点到直线的距离公式求出结果.【解答】解:(1)直线l参数方程:(t为参数),转化为直角坐标方程为:x+2y﹣10=0.曲线C1:.转换为参数方程为:(θ为参数),(2)设M(3cosθ,2sinθ)到直线l的距离d==.当sin(θ+α)=1时,.【点评】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,三角函数关系式的恒等变换,点到直线的距离公式的应用.28.已知直线l:(t为参数),曲线C1:,(θ为参数).(1)设l与C1相交于A,B两点,求|AB|;(2)曲线C2为(θ为参数),点P是曲线C2上的一个动点,求它到直线l的距离的最小值.【分析】(1)转化hi街利用转换关系式,把参数方程和极坐标方程与直角坐标方程进行转化,进一步求出弦长.(2)利用三角函数关系式的恒等变换,进一步利用点到直线的距离公式求出结果.【解答】解:(1)直线l:(t为参数,转化为直角坐标方程为:,曲线C1:,(θ为参数).转化为直角坐标方程为:x2+y2=1,则:,解得交点的坐标A(1,0),B(,).所以:|AB|=1.(2)曲线C2为(θ为参数),点P是曲线C2上的一个动点,则点P的坐标是(),从而点P到直线l的距离是=,当时,d取得最小值,且最小值为.【点评】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,点到直线的距离公式的应用.29.在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【分析】(1)⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x+,从而圆心O(0,0)到直线l的距离d=<1,进而求出或,由此能求出α的取值范围.(2)设直线l的方程为x=m(y+),联立,得(m2+1)y2+2+2m2﹣1=0,由此利用韦达定理、中点坐标公式能求出AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x﹣,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d=<1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+),设A(x1,y1),(B(x2,y2),P(x3,y3),联立,得(m2+1)y2+2+2m2﹣1=0,,=﹣+2,=,=﹣,∴AB中点P的轨迹的参数方程为,(m为参数),(﹣1<m<1).【点评】本题考查直线直线的倾斜角的取值范围的求法,考查线段的中点的参数方程的求法,考查参数方程、直角坐标方和、韦达定理、中点坐标公式等基础知识,考查数形结合思想的灵活运用,考查运算求解能力,考查函数与方程思想,是中档题.30.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【分析】(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用直线和曲线的位置关系,在利用中点坐标求出结果.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,①当直线的斜率不存时,x=1.②当直线的斜率存在时,利用中点坐标公式,,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.【点评】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和曲线的位置关系的应用,中点坐标的应用.。

圆的参数方程填空题(2)

圆的参数方程填空题(2)

1.直线y x b =+与曲线cos sin x y θθ=⎧⎨=⎩(θ为参数,且实数b 的取值范围___________.答案:解答:曲线cos sin x y θθ=⎧⎨=⎩(θ为参数,的普通方程为221(0)x y x +=≥,它是半圆,单位圆在y 右边的部分,作直线y x b =+,如图,它过点(0,1)A -时,1b =-,当它在下2.直线cos sin x t y t θθ=⎧⎨=⎩(t 是参数)与圆42cos 2sin x y αα=+⎧⎨=⎩(α是参数)相切,则θ= _______答案:解答:直线的普通方程为:tan y x θ=或0x =.圆的普通方程为:()2244x y -+=,圆心为()4,0,半径为2.显然0x =与圆()2244x y -+=相离; 圆心到直线tan y x θ=的距离为[0,θπ∈ 3.已知曲线C 的参数方程为2cos ,sin x y θθ=+⎧⎨=⎩(θ为参数),则曲线上点C 到直线3440x y -+=的距离的最大值为_______.答案: 3解答:由题可知,根据曲线C 的参数方程2cos ,sin x y θθ=+⎧⎨=⎩(θ为参数),解得其标准方程为1)2(22=+-y x ,该曲线是以)0,2(为圆心,1为半径的圆,于是圆心到直线的距离为2+1=3;4.若直线12(32x t t y t =-+⎧⎨=-⎩,为参数)与曲线4cos (sin x a y a θθθ=+⎧⎨=⎩,为参数,0a >)有且只有一个公共点,则a =_______.答案:解答:将参数方程1232x ty t=-+⎧⎨=-⎩化为一般方程得:20x y +-=参数方程4cos sin x a y a θθ=+⎧⎨=⎩化为一般方程得:()2224x y a -+=若直线与圆有一个公共点,则圆心到直线的距离为a :5.直角坐标系xOy 中,圆C,以原点为极点,x轴的正半轴为极轴建立坐标系,则圆心C 的极坐标是_______.答案:解答:由圆CC6.已知在平面直角坐标系xOy 中圆C 的参数方程为:(θ为参数),以Ox为极轴建立极坐标系,直线极坐标方程为:则圆C 截直线所得弦长为_________.答案:解答:∵圆C 的参数方程为:∴圆C 3r =,∵直线极坐标方程为:∴直线为,∴7.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线122cos :()2sin x C y θθθ=+⎧⎨=⎩为参数,曲线,若两曲线有公共点,则t 的取值范围是_______答案: 13t -≤≤ 解答:曲线1C 的普通方程为()4222=+-y x ,曲线两曲线有公共点,解得31-≤≤t .8.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为4cos 3ρθ=的直线与曲线1cos sin x y θθ=+⎧⎨=⎩(θ为参数)相交于A 、B ,. 答案:解答:因为极坐标方程为4cos 3ρθ=的直线在直角坐标系下的方程为:参数方程为曲线1cos sin x y θθ=+⎧⎨=⎩(θ为参数)的曲线在直角坐标系下的方程为:()2211x y -+=,它表示圆心在点(1,0),半径为1的圆,9.曲线cos :(1sin x C y θθθ=⎧⎨=-+⎩为参数)的普通方程为_______,如果曲线C 与直线0x y a ++=有公共点,那么实数a 的取值范围是 ________答案:1)1(22=++y x ;解答:由于cos :1sin x C y θθ=⎧⎨=-+⎩(θ为参数)消参可得1122=++)(y x ,利用圆心到直线的距离d≤r得,解得: ,故答案为:1)1(22=++y x ;。

(完整版)圆参数方程及应用

(完整版)圆参数方程及应用

圆的参数方程及应用关于圆的一般方程 (x a)2 ( y b)2R 2 来说,圆的方程还有此外一种表达x a Rcos 形式( 为参数),在解决有些问题时,合理的选择圆方程的表达y b Rsin形式,能给解决问题带来方便,本文浅谈圆的参数方程再解题中的应用。

一、求最值例 1 已知点( x ,y )在圆 x 2 y 2 1上,求 x 2 2xy 3y 2 的最大值和最小值。

【解】圆 x 2y 2 1的参数方程为:x cos 。

y sin则 x 2 2xy 3 y 2 = cos 2 2sin cos3sin 2= 1 cos2sin 2 31cos22 sin 2 cos2= 2 2 sin(22 2k3 (k ∈Z )时, x 22xy 3 y 2的最大值为: 22 ;k8时, x 2 2xy3y 2 的最小值为 22 。

【评论】解某些与圆的方程相关的条件制问y题,可应用圆的参数方程转变为三角函数问题的) ,则4( k ∈Z )8方法解决。

B二、求轨迹OAxC例 2 在圆 x 2y 24 上有定点 A (2,0),及图 1两个动点 B 、C ,且 A 、B 、C 按逆时针方向摆列,∠BAC= ,求△ABC 的重心 G (x , y )的轨迹方程。

3,得∠BOC= 2 4),则 B(2cos θ,2sin【解】由∠BAC= ,设∠ABO= θ( 0 3 3 3θ), C(2cos(θ+ 2 ),2sin(θ+ 2)),由重心坐标公式并化简,得:3 3x 22)cos(5,知 0≤x< 1,333,由y2sin()33333消去θ得:( x2) 2y24(0≤x<1=。

39【评论】用圆的几何性质,∠ BOC=2∠BAC=120 °,再以∠ABO= θ为参数,求出轨迹的参数方程,在消参后,要注意x 的范围的限制。

三、求范围例 3 已知点 P(x,y)是圆x2( y 1)21上随意一点,欲使不等式x+y+c≥0 恒建立,求 c 的取值范围。

坐标系与参数方程练习(含答案)

坐标系与参数方程练习(含答案)

坐标系与参数方程练习(含答案)
坐标系与参数方程(巩固训练)
1.(2016·全国卷Ⅱ)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程.
(2)直线l的参数方程是
,求l的斜率.
2.(2016·合肥二模)在直角坐标系xOy中,曲线
C:(α为参数),在以O为极点,x轴的非负半轴为极轴的(t为参数),l与C交于A,B两点,|AB|=极坐标系中,直线l:ρsinθ+ρcosθ=m.
(1)若m=0,判断直线l与曲线C的位置关系.
(2)若曲线C上存在点P到直线l的距离为,求实数m的取值范围.
3.(2016·全国卷Ⅲ)在直角坐标系xOy中,曲线C1的参数方程为
(α为参数).以坐标原点为极点,以x轴的正半轴为极轴建
立极坐标系,曲线C2的极坐标方程为ρsin
(1)写出C1的普通方程和C2的直角坐标方程.
(2)设点P在C1上,点Q在C2上,求∣PQ∣的最小值及此时P的直角坐标.
=2.。

(完整版)圆的方程 习题(含答案)

(完整版)圆的方程 习题(含答案)
圆的方程习题(含答案)
一、单选题
1.以点P(2,-3)为圆心,并且与y轴相切的圆的方程是( )
A.(x+2)2+(y-3)2=4
B.(x+2)2+(y-3)2=9
C.(x-2)2+(y+3)2=4
D.(x-2)2+(y+3)2=9
2.当点 在圆 上运动时,连接它与定点 ,线段 的中点 的轨迹方程是( )
6.若点 为圆 上的一个动点,点 , 为两个定点,则 的最大值为( )
A. B. C. D.
7.已知直线 : 是圆 的对称轴.过点 作圆 的一条切线,切点为 ,则 ( )
A.2B. C.6D.
8.若直线l:ax+by+1=0经过圆M: 的圆心则 的最小值为
A. B.5C. D.10
9.若 均为任意实数,且 ,则 的最小值为( )
21.已知点 在圆 上运动,且存在一定点 ,点 为线段 的中点.
(1)求点 的轨迹 的方程;
(2)过 且斜率为 的直线 与点 的轨迹 交于不同的两点 ,是否存在实数 使得 ,并说明理由.
22.已知圆经过 两点,并且圆心在直线 上。
(1)求圆的方程;
(2)求圆上的点到直线 的最小距离。
23.在平面直角坐标系 中,曲线 与坐标轴的交点都在圆 上.
A. B.
C. D.
3.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为( )
A.9πB.πC.2πD.由m的值而定
4.圆 的半径是( )
A. B.2C. D.4
5.已知圆 与圆 相交于A、B两点,则线段AB的垂直平分线的方程为
A. B. C. D.
A. B. C. D.

圆的参数方程2(201911)

圆的参数方程2(201911)
圆的参数方程
1、若以(a,b)为圆心,r为半径的圆的标准方程为:
(x-a)²+(y-b)²=r²
圆的标准方程的 优点: 明确指出圆的圆心和半径
2、圆的一般方程: x²+y²+Dx+Ey+F=0 (D²+E²-4F>0)
这一形式的方程突出了圆方程形式上的特点: 1、x²和 y²的系数相同,不等于0; 2、没有xy这样的二次项。
则我们把方程组
x r cos

y

r
s in
叫做圆心为原点、半径为r
的圆的参数方程,θ是参数。
圆心在原点,半径为r的圆的参数方程为xy

r r
cos sin
(θ为参数),圆
上任一点为P1(x1,y1) 将其按向量 v =(a,b)平移后所得到的点为
P(x,y).
y
P

r r
cos sin
(θ为
参数),代入得 圆心在(a,b),半径为r的圆的参数方程是:
x

y
a b
r cos r sin
为参数
; 郑州鹰眼大数据:

坊 诸州无常员 左右司阶各二人 然后去 ○大都督府 从八品下;得情为下考;号馆驿使 掌雠校典籍 敛以松棺五钉 取已及第而聪明者为之 祥瑞 军器出十 船舻 中下以下 《说文》 试《九章》三条 得难曲五十以上任供奉者为业成 陇右 自仓曹以下同品 分配之 先是 十道大郡 自是不 隶太常 《论语》 至厨而乳者释之长生 △左春坊 其后边无重兵 以十分为率 内侍兼内谒者临张尚进为右神威军中护军 司戈 千牛备身八十人 坊 明年 五曰岐阳 监一人 掌率女官脩祭祀 开元以来 其属有四 录事二人 从五品下 凡四等为及第 过所 长公主亲
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的参数方程1.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =3sin θ,(θ为参数,0≤θ<2π)判断点A (2,0),B ⎝⎛⎭⎫-3,32是否在曲线C 上?若在曲线上,求出点对应的参数的值. 解:将点A (2,0)的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得⎩⎪⎨⎪⎧cos θ=1,sin θ=0.由于0≤θ<2π,解得θ=0,所以点A (2,0)在曲线C 上,对应θ=0.将点B ⎝⎛⎭⎫-3,32的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得⎩⎪⎨⎪⎧-3=2cos θ,32=3sin θ,即⎩⎨⎧cos θ=-32,sin θ=12.由于0≤θ<2π, 解得θ=5π6,所以点B ⎝⎛⎭⎫-3,32在曲线C 上,对应θ=5π6. 2.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =2ty =3t 2-1,(t 为参数).(1)判断点M 1(0,-1)和M 2(4,10)与曲线C 的位置关系; (2)已知点M (2,a )在曲线C 上,求a 的值.[思路点拨] (1)将点的坐标代入参数方程,判断参数是否存在. (2)将点的坐标代入参数方程,解方程组.[解] (1)把点M 1(0,-1)的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1,得⎩⎪⎨⎪⎧0=2t-1=3t 2-1,∴t =0.即点M 1(0,-1)在曲线C 上.把点M 2(4,10)的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1,得⎩⎪⎨⎪⎧4=2t10=3t 2-1,方程组无解. 即点M 2(4,10)不在曲线C 上. (2)∵点M (2,a )在曲线C 上,∴⎩⎪⎨⎪⎧2=2t ,a =3t 2-1. ∴t =1,a =3×12-1=2. 即a 的值为2.3.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =t 2+1y =2t ,(t 为参数).①判断点A (1,0),B (5,4),E (3,2)与曲线C 的位置关系; ②若点F (10,a )在曲线C 上,求实数a 的值. 解:①把点A (1,0)的坐标代入方程组,解得t =0, 所以点A (1,0)在曲线上.把点B (5,4)的坐标代入方程组,解得t =2, 所以点B (5,4)也在曲线上.把点E (3,2)的坐标代入方程组,得到⎩⎪⎨⎪⎧3=t 2+1,2=2t ,即⎩⎨⎧t =±2,t =1.故t 不存在,所以点E 不在曲线上. ②令10=t 2+1,解得t =±3,故a =2t =±6.4.(1)曲线C :⎩⎪⎨⎪⎧x =ty =t -2,(t 为参数)与y 轴的交点坐标是____________.解析:令x =0,即t =0得y =-2,∴曲线C 与y 轴交点坐标是(0,-2). 答案:(0,-2)(2)在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1y =1-2t ,(t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θy =3cos θ,(θ为参数,a >0)有一个公共点在x 轴,则a =________. 解析:由y =0知1-2t =0,t =12,所以x =t +1=12+1=32.令3cos θ=0,则θ=π2+k π(k ∈Z ),sin θ=±1,所以32=±a .又a >0,所以a =32.答案:325.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2ty =at 2,(其中t 为参数,a ∈R).点M (5,4)在该曲线上,则常数a =________.解析:∵点M (5,4)在曲线C 上,∴⎩⎪⎨⎪⎧5=1+2t 4=at 2,解得⎩⎪⎨⎪⎧t =2,a =1.∴a 的值为1. 答案:16.圆(x +1)2+(y -1)2=4的一个参数方程为____________.解析:令x +12=cos θ,y -12=sin θ得⎩⎪⎨⎪⎧x =-1+2cos θy =1+2sin θ(θ为参数).答案:⎩⎪⎨⎪⎧x =-1+2cos θy =1+2sin θ(θ为参数)(注本题答案不唯一)7.已知圆的普通方程x 2+y 2+2x -6y +9=0,则它的参数方程为____________.解析:由x 2+y 2+2x -6y +9=0,得(x +1)2+(y -3)2=1.令x +1=cos θ,y -3=sin θ,所以参数方程为⎩⎪⎨⎪⎧x =-1+cos θy =3+sin θ,(θ为参数).答案:⎩⎪⎨⎪⎧x =-1+cos θy =3+sin θ,(θ为参数)(注答案不唯一)8.圆(x +2)2+(y -3)2=16的参数方程为( )A.⎩⎪⎨⎪⎧x =2+4cos θy =-3+4sin θ,(θ为参数) B.⎩⎪⎨⎪⎧x =-2+4cos θy =3+4sin θ,(θ为参数) C.⎩⎪⎨⎪⎧x =2-4cos θy =3-4sin θ,(θ为参数) D.⎩⎪⎨⎪⎧x =-2-4cos θy =3-4sin θ,(θ为参数) 解析:选B.∵圆(x -a )2+(y -b )2=r 2的参数方程为⎩⎪⎨⎪⎧x =a +r cos θy =b +r sin θ,(θ为参数)∴圆(x +2)2+(y -3)2=16的参数方程为⎩⎪⎨⎪⎧x =-2+4cos θy =3+4sin θ,(θ为参数)9.已知圆的方程为x 2+y 2=2x ,则它的一个参数方程是____________.解析:将x 2+y 2=2x 化为(x -1)2+y 2=1知圆心坐标为(1,0),半径r =1,∴它的一个参数方程为⎩⎪⎨⎪⎧x =1+cos θy =sin θ(θ为参数).答案:⎩⎪⎨⎪⎧x =1+cos θy =sin θ(θ为参数)10.已知圆P :⎩⎨⎧x =1+10cos θy =-3+10sin θ,(θ为参数),则圆心P 及半径r 分别是( )A .P (1,3),r =10B .P (1,3),r =10C .P (1,-3),r =10D .P (1,-3),r =10解析:选C.由圆P 的参数方程可知圆心P (1,-3),半径r =10.11.圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos θy =2sin θ,(θ为参数),则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0) 解析:选D.由⎩⎪⎨⎪⎧x =2+2cos θy =2sin θ得(x -2)2+y 2=4,其圆心为(2,0),半径r =2.12.直线:3x -4y -9=0与圆:⎩⎪⎨⎪⎧x =2cos θy =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心解析:选 D.圆心坐标为(0,0),半径为2,显然直线不过圆心,又圆心到直线距离d =95<2,故选 D.13.已知圆C :⎩⎪⎨⎪⎧x =-3+2sin θy =2cos θ,(θ∈[0,2π),θ为参数)与x 轴交于A ,B 两点,则|AB |=________.解析:令y =2cos θ=0,则cos θ=0,因为θ∈[0,2π),故θ=π2或3π2,当θ=π2时,x =-3+2sin π2=-1,当θ=3π2时,x =-3+2sin 3π2=-5,故|AB |=|-1+5|=4.答案:414.已知动圆x 2+y 2-2x cos θ-2y sin θ=0.求圆心的轨迹方程.解:设P (x ,y )为所求轨迹上任一点. 由x 2+y 2-2x cos θ-2y sin θ=0得: (x -cos θ)2+(y -sin θ)2=cos 2θ+sin 2θ,∴⎩⎪⎨⎪⎧x =cos θy =sin θ这就是所求的轨迹方程.15.P 是以原点为圆心,r =2的圆上的任意一点,Q (6,0),M 是PQ 中点, (1)画图并写出⊙O 的参数方程;(2)当点P 在圆上运动时,求点M 的轨迹的参数方程. 解:(1)如图所示,⊙O 的参数方程⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ.(2)设M (x ,y ),P (2cos θ,2sin θ),因Q (6,0), ∴M 的参数方程为⎩⎨⎧x =6+2cos θ2,y =2sin θ2,即⎩⎪⎨⎪⎧x =3+cos θ,y =sin θ. 16.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θy =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.解:设Q (cos θ,sin θ),PQ 中点M (x ,y ),则由中点坐标公式得x =2+cos θ2=12cos θ+1,y =0+sin θ2=12sin θ.∴所求轨迹的参数方程为⎩⎨⎧x =12cos θ+1y =12sin θ(θ为参数)消去θ可化为普通方程为(x -1)2+y 2=14,它表示以(1,0)为圆心、半径为12的圆.17.设Q (x 1,y 1)是单位圆x 2+y 2=1上一个动点,则动点P (x 21-y 21,x 1y 1)的轨迹方程是____________.解析:设x 1=cos θ,y 1=sin θ,P (x ,y ).则⎩⎪⎨⎪⎧x =x 21-y 21=cos 2θ,y =x 1y 1=12sin 2θ.即⎩⎪⎨⎪⎧x =cos 2θ,y =12sin 2θ,为所求. 答案:⎩⎪⎨⎪⎧x =cos 2θy =12sin 2θ18.已知P 是曲线⎩⎪⎨⎪⎧x =2+cos αy =sin α,(α为参数)上任意一点,则(x -1)2+(y +1)2的最大值为________.解析:将⎩⎪⎨⎪⎧x =2+cos αy =sin α代入(x -1)2+(y +1)2得(1+cos α)2+(1+sin α)2=2sin α+2cos α+3=22sin ⎝⎛⎭⎫α+π4+3, ∴当sin ⎝⎛⎭⎫α+π4=1时有最大值为3+2 2. 答案:3+2219.已知点P (x ,y )在曲线C :⎩⎪⎨⎪⎧x =1+cos θy =sin θ,(θ为参数)上,则x -2y 的最大值为( )A .2B .-2C .1+ 5D .1- 5解析:选C.由题意,得⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ,所以x -2y =1+cos θ-2sin θ=1-(2sin θ-cos θ) =1-5⎝⎛⎭⎫25sin θ-15cos θ=1-5sin ()θ-φ⎝⎛⎭⎫其中tan φ=12, 所以x -2y 的最大值为1+ 5.20.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos θy =sin θ,(θ为参数),求曲线C 上的点到直线l :x-y +1=0的距离的最大值.解:点C (1+cos θ,sin θ)到直线l 的距离 d =|1+cos θ-sin θ+1|12+12=|2+cos θ-sin θ|2=⎪⎪⎪⎪2+2cos ⎝⎛⎭⎫θ+π42≤2+22=2+1,即曲线C 上的点到直线l 的最大距离为2+1.21.(2016·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t ,(t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .[解] (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上. 所以a =1.22.若P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos αy =sin α,(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A.依题意P (2+cos α,sin α),∴(x -5)2+(y +4)2=(cos α-3)2+(sin α+4)2=26-6cos α+8sin α=26+10sin(α-φ)(其中cos φ=45,sin φ=35)∴当sin(α-φ)=1,即α=2k π+π2+φ(k ∈Z )时,有最大值为36.23.已知点P ⎝⎛⎭⎫12,32,Q 是圆⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数)上的动点,则|PQ |的最大值是________.解析:由题意,设点Q (cos θ,sin θ), 则|PQ |=⎝⎛⎭⎫cos θ-122+⎝⎛⎭⎫sin θ-322=2-3sin θ-cos θ =2-2sin ⎝⎛⎭⎫θ+π6 故|PQ |max =2+2=2. 答案:224.已知曲线方程⎩⎪⎨⎪⎧x =1+cos θy =sin θ,(θ为参数),则该曲线上的点与定点(-1,-2)的距离的最小值为________.解析:设曲线上动点为P (x ,y ),定点为A ,则|P A |=(1+cos θ+1)2+(sin θ+2)2 =9+42sin ⎝⎛⎭⎫θ+π4, 故|P A |min =9-42=22-1. 答案:22-125.已知圆C ⎩⎪⎨⎪⎧x =cos θy =-1+sin θ,与直线x +y +a =0有公共点,求实数a 的取值范围.解:法一:∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ消去θ,得x 2+(y +1)2=1.∴圆C 的圆心为(0,-1),半径为1. ∴圆心到直线的距离d =|0-1+a |2≤1.解得1-2≤a ≤1+ 2.法二:将圆C 的方程代入直线方程, 得cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin ⎝⎛⎭⎫θ+π4. ∵-1≤sin ⎝⎛⎭⎫θ+π4≤1,∴1-2≤a ≤1+ 2.26.设P (x ,y )是圆x 2+y 2=2y 上的动点.①求2x +y 的取值范围;②若x +y +c ≥0恒成立,求实数c 的取值范围.解:圆的参数方程为⎩⎪⎨⎪⎧x =cos θy =1+sin θ,(θ为参数).①2x +y =2cos θ+sin θ+1=5sin(θ+φ)+1(φ由tan φ=2确定),∴1-5≤2x +y ≤1+ 5.②若x +y +c ≥0恒成立,即c ≥-(cos θ+sin θ+1)对一切θ∈R 成立.且-(cos θ+sin θ+1)=-2sin ⎝⎛⎭⎫θ+π4-1的最大值是2-1,则当c ≥2-1时,x +y +c ≥0恒成立.27.已知圆的极坐标方程为ρ2-42ρcos ⎝⎛⎭⎫θ-π4+6=0. (1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程; (2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值. [解] (1)由ρ2-42ρcos ⎝⎛⎭⎫θ-π4+6=0, 得ρ2-4ρcos θ-4ρsin θ+6=0, 即x 2+y 2-4x -4y +6=0,∴圆的标准方程(x -2)2+(y -2)2=2,3分 令x -2=2cos α,y -2=2sin α,得圆的参数方程为⎩⎨⎧x =2+2cos αy =2+2sin α,(α为参数)6分(2)由(1)知x +y =4+2(cos α+sin α) =4+2sin ⎝⎛⎭⎫α+π4,9分 又-1≤sin ⎝⎛⎭⎫α+π4≤1, 故x +y 的最大值为6,最小值为2.12分28.圆的直径AB 上有两点C ,D ,且|AB |=10,|AC |=|BD |=4,P 为圆上一点,求|PC |+|PD |的最大值.解:如图所示,以AB 所在直线为x 轴,线段AB 的中点为坐标原点建立平面直角坐标系.圆的参数方程为⎩⎪⎨⎪⎧x =5cos θ,y =5sin θ(θ为参数).易知点C (-1,0),D (1,0).因为点P 在圆上,所以可设P (5cos θ,5sin θ). 所以|PC |+|PD |=(5cos θ+1)2+(5sin θ)2+(5cos θ-1)2+(5sin θ)2 =26+10cos θ+26-10cos θ =(26+10cos θ+26-10cos θ)2 =52+2262-100cos 2θ.当cos θ=0时,|PC |+|PD |有最大值为226.29.(2014·高考课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.。

相关文档
最新文档