高二数学必修一函数的概念习题(Word版)

合集下载

高中数学必修1单元配套练习试题1.2.1 函数的概念及参考答案

高中数学必修1单元配套练习试题1.2.1 函数的概念及参考答案

1.2.1 函数的概念姓名:___________班级:______________________1.设集合P ={x|0≤x≤4},Q ={y|0≤y≤4},能表示集合P 到集合Q 的函数关系的有( )A.①②③④ B .①②③C.②③ D .②2.下列四个说法:①若定义域和对应关系确定,则值域也就确定了;②若函数的值域只含有一个元素,则定义域也只含有一个元素;③若f(x)=5(x ∈R),则f(π)=5一定成立;④函数就是两个集合之间的对应关系.其中正确说法的个数为( )A.1B.2C.3D.43.函数1x y -=的定义域是( )A.(0,+∞)B.(-∞,0)C.(0,1)∪(1,+∞)D.(-∞,-1)∪(-1,0)∪(0,+∞)4.下列各组函数表示同一函数的是( ) A.293x y x -=-与y =x +3 B.1y 与y =x -1 C.y =x 0(x≠0)与y =1(x≠0)D.y =2x +1,x ∈Z 与y =2x -1,x ∈Z5.设集合P ={x|0≤x≤2},Q ={y|0≤y≤2},能表示集合M 到集合N 的函数关系的是( )6.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,A.10个B.9个C.8个D.4个7.若()1f xx=的定义域为A,g(x)=f(x−1)-f(x)的定义域为B,那么( )A.A∪B=BB.A BC.A⊆BD.A∩B=∅8.函数()222f xx=+(x∈R)的值域是( )A.(0,1)B.(0,1]C.[0,1)D.[0,1]9.若函数f(x)的定义域是[0,1],则函数f(3x)+f(x+13)的定义域为________.10.设函数()41f xx=+,若f(m)=2,则实数m=_______.11.已知函数f(x)=3x−1,x∈{x∈N|1≤x≤4},则函数f(x)的值域为______________.12.求函数f(x)12x-的定义域.13.已知函数22xf xx-⎛⎫=⎪+⎝⎭,求f(3)的值.14.已知f(x)=12x+ (x≠-2),h(x)=x2+1.(1)求f(2),h(1)的值;(2)求f[h(2)]的值;(3)求f(x),h(x)的值域.参考答案1.C【解析】①的定义域不是集合P;②能;③能;④与函数的定义矛盾.故选C.考点:函数的定义.2.B【解析】①正确;②不正确,如函数f(x)=0(x∈R),值域为{0},只含有一个元素,但是定义域中可能含有无数个元素;③正确;④不正确,函数是定义在两个非空数集上的对应关系.考点:函数的概念.3.C【解析】由10,xx x-≠⎧⎨+>⎩得x>0且x≠1.考点:函数的定义域.4.C【解析】A中的两函数定义域不同,B中的两函数值域不同,D中的两函数对应关系不同,C正确.考点:函数的概念.5.D【解析】选项A、B中函数的定义域不是P,选项C不能构成函数,选项D符合函数的定义,故选D.考点:函数的概念.6.B【解析】由2x2−3=−1,2x2−3=5得x的值为1,−1,2,−2,定义域为2个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.考点:函数的定义域,函数的值域.7.B【解析】由题意得A={x|x≠0},B={x|x≠0,且x≠1},则A∪B=A,则A错;A∩B=B,则D 错;B A,则C错,B正确.考点:函数的定义域.8.B【解析】由于x∈R,所以x2+2≥2,0<212x+≤12,则22012x<≤+,即0<f(x)≤1.考点:函数的值域.9.1 0,3⎡⎤⎢⎥⎣⎦【解析】由031,101,3xx≤≤⎧⎪⎨≤+≤⎪⎩得10,312,33xx⎧≤≤⎪⎪⎨⎪-≤≤⎪⎩即10,3x⎡⎤∈⎢⎥⎣⎦.考点:函数的定义域.10.1【解析】由题意知421m=+,解得m=1.考点:函数求值.11.{2,5,8,11}【解析】∵x=1,2,3,4,∴f(x)=3x−1=2,5,8,11.考点:函数的值域.12.3|,24x x x⎧⎫≥-≠⎨⎬⎩⎭且【解析】要使函数有意义,则430,20,xx+≥⎧⎨-≠⎩即3,24x x≥-≠且.所以函数的定义域为3|,24x x x⎧⎫≥-≠⎨⎬⎩⎭且.考点:函数的定义域.13.1-【解析】由22xx-+=3,解得x=1-,所以f(3)=1-.考点:函数求值.14.(1)14,2 (2)17(3)f(x)的值域为(-∞,0)∪(0,+∞),h(x)值域为[1,+∞)【解析】(1)∵f(x)=12x+,∴f(2)=11224=+.∵h(x)=x2+1,∴h(1)=12+1=2.(2)f(h(2))=f(22+1)=f(5)=11 527= +.(3)∵f(x)=12x+的定义域为{x|x≠-2},∴y≠0,∴函数f(x)的值域为(-∞,0)∪(0,+∞).∵h(x)=x2+1的定义域是R,由二次函数图象知最小值为1,∴函数h(x)值域为[1,+∞).考点:函数求值,函数的值域.。

(完整)高中数学必修一函数练习题.doc

(完整)高中数学必修一函数练习题.doc

第 1 课函数的概念【考点导读】1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数.【基础练习】1.设有函数组:①y x , y x2 ;② y x , y 3 x3;③y x , y x ;④x1 ( x 0), ,x lg x 1 ,y lg x _____.y( x y ;⑤ y .其中表示同一个函数的有1 0), x 102. 设集合M { x 0 x 2} , N { y 0 y 2} ,从 M 到 N 有四种对应如图所示:y y y y2 2 2 2O 1 2 x O1 2 x O 1 2 x O12 x①②③④其中能表示为 M 到 N 的函数关系的有_______.3.写出下列函数定义域:(1) f ( x) 1 3x 的定义域为______;(2) f ( x) 1 的定义域为 ______________;x2 1(3) f ( x) x 1 1的定义域为 ______________ ; (4) f ( x)( x 1)0x x的定义域为 __x4.已知三个函数 :(1) y P(x)y 2n P( x) ( n N *) ;(3) y log Q( x) P( x) .写出使; (2)Q(x)各函数式有意义时,P(x) , Q (x) 的约束条件:(1)_____________________(2)________________ ; (3)______________________________ .5.写出下列函数值域:(1) f ( x) x2 x , x {1,2,3} ;值域是(2) f ( x) x2 2x 2 ;值域是.(3) f ( x) x 1, x (1,2] .值域是.【范例解析】例 1. 设有函数组:①f ( x) x2 1, g ( x) x 1 ;② f (x) x 1 x 1 ,x 1g( x)x 21;③f ( x)x22x,1;④f ( x) 2x,2t 1.其1 g ( x) x 1 g(t)中表示同一个函数的有③④.点评:两个函数当它们的三要素完全相同时,才能表示同一函数.而当一个函数定义域和对应法则确定时,它的值域也就确定,故判断两个函数是否为同一函数,只需判断它的定义域和对应法则是否相同即可.例 2.求下列函数的定义域:①y 1 x2 1 ;② f (x) x ;2 x log 1 (2 x)2例 3.求下列函数的值域:(1)y x2 4x 2 , x [0,3) ;(2)yx2 ( x R);x2 1(3)y x 2 x 1.点评:二次函数或二次函数型的函数求值域可用配方法;逆求法利用函数有界性求函数的值域;用换元法求函数的值域应注意新元的取值范围.【反馈演练】1.函数 f(x)= 1 2x的定义域是___________.2.函数f ( x) 1 的定义域为 _________________ .log 2 ( x2 4x 3)3. 函数 y 1 (x R) 的值域为________________.x214. 函数 y 2x 3 13 4x 的值域为_____________.5.函数y log0.5 (4x2 3x) 的定义域为_____________________.【真题再现】1. (2014 山东 ) 函数 f(x)=1- 2x+1)的定义域为 (x+3lg x+1的定义域是 ( )2.( 2014 广东)函数 y=x-13( 2014 辽宁) .已知函数 f(x) =ln( 1+ 9x2- 3x)+ 1,则 f(lg 2) + f lg 1= ( ) 24.( 2013 山东)函数 f(x)= log2(3x+ 1)的值域为 ( )5.(2013 ·浙江 ) 已知函数 f(x)= x-1, 若 f(a)=3, 则实数 a= .6.( 2013 天津)设函数 g(x)= x2- 2(x∈ R ), f(x)=g x + x+ 4,x< g x ,则 f(x)的值域是 ( g x - x, x≥ g x .第 2 课函数的表示方法【考点导读】1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.2.求解析式一般有四种情况: ( 1)根据某个实际问题须建立一种函数关系式;( 2)给出函数特征,利用待定系数法求解析式;( 3)换元法求解析式; ( 4)解方程组法求解析式.【基础练习】1.设函数 f (x) 2x 3 , g( x) 3x 5 ,则 f ( g( x)) _________;g ( f ( x)) __________ .2.设函数 f (x)1 , g( x) x2 2 ,则 g( 1)____________; f [ g (2)]; f [ g( x)]1 x3.已知函数 f (x) 是一次函数,且 f (3) 7 , f (5) 1 ,则 f (1) _____.| x1| 2,| x | 1, 1)] = _____________.4.设 f( x) =1,则 f[ f(1x 2,| x | 125.如图所示的图象所表示的函数解析式为 __________________________ .【范例解析】第 5 题例 1.已知二次函数 yf ( x) 的最小值等于 4,且 f (0)f (2) 6 ,求 f ( x) 的解析式.分析:给出函数特征,可用待定系数法求解.例 2.甲同学家到乙同学家的途中有一公园, 甲从家到公园的距离与乙从家到公园的距离都是2km ,甲 10 时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y ( km )与时间 x(分)的关系.试写出 yf (x) 的函数解析式.【反馈演练】e x e xe x e x()1.若 f ( x)2 , g (x),则 f (2 x)2A. 2 f ( x)B. 2[ f ( x) g (x)] C. 2g (x)D. 2[ f (x) g(x)]2的最大整数 , 则对任意实数x,有().设 [x] 表示不大于 x1y4321O10 20 30 40 50 60x例 2A .[ -x]= - [x] B. [x + [ x] C. [2x]=2[x]D.【真题再现】2]=[x]1[ x] [2 x] 22x , x > 0, 1.( 2013 北京已知函数 ?(x)=若 ?(a)+ ?(1)= 0,则实数 a 的值等于 ( )x + 1,x ≤ 0.2.( 2013 北京 )函数 f(x)=log 1 x , x ≥ 1,2的值域为 ________.2x , x<11, x>0,1, x 为有理数, 3.( 2012 福建)设 f(x)= 0, x = 0,g(x)=则 f(g( π)) 的值为.- 1, x<0,0, x 为无理数,4.( 2010 3x + 2, x <1,若 f(f(0)) = 4a ,则实数 a = ________.陕西)已知函数 f(x) =x 2+ ax , x ≥ 1,5.( 2013 福建)函数 f(x)= ln(x 2+1)的图像大致是 ()6.( 2014 江苏)已知实数 a ≠ 0,函数 f(x)=2x + a , x < 1, 若 f(1- a)= f(1+ a),则 a 的值-x - 2a , x ≥1.为________.7.( 2012 江苏 )设 f(x) 是定义在 R 上且周期为 2 的函数,在区间[ - 1,1] 上, f(x) =ax + 1,- 1≤ x < 0,1 3bx + 2,其中 a , b ∈ R.若 f(0≤ x ≤ 1, 2)= f(2),则 a + 3b 的值为 ________.x + 1第 3 课 函数的单调性【考点导读】1.理解函数单调性,最大(小)值及其几何意义;2.会运用单调性的定义判断或证明一些函数的增减性.【基础练习】1.下列函数中: ① f (x)1;② f xx 2 2x 1;③ f (x) x ; ④ f (x) x 1 .x其中,在区间 (0, 2)上是递增函数的序号有 ______.2.函数 yx x 的递增区间是 ___ _.3.已知函数yf ( x) 在定义域 R 上是单调减函数,且f ( a 1) f (2 a) ,则实数a 的取值范围 __________.4.已知下列命题:①定义在 R 上的函数 f (x) 满足 f (2)f (1),则函数 f ( x) 是 R 上的增函数;②定义在 R 上的函数 f (x) 满足 f (2)f (1),则函数 f ( x) 在 R 上不是减函数;③定义在 R 上的函数 f (x) 在区间 ( ,0] 上是增函数,在区间 [0,) 上也是增函数,则函数 f (x) 在 R 上是增函数;④定义在 R 上的函数 f (x) 在区间 ( ,0] 上是增函数,在区间 (0,) 上也是增函数,则函数 f (x) 在 R 上是增函数.其中正确命题的序号有 _________. 【范例解析】1.下列函数中,既是偶函数又在区间(0,+∞ )上单调递减的是 ()A . y =1B . y = e x-xC .y =- x 2+ 1D. y = lg|x|2.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为 ()A . y = cos 2x , x ∈RB .y = log 2|x|,x ∈ R 且 x ≠ 0ex -e-xC .y =, x ∈ R2D . y = x 3+ 1, x ∈R 【反馈演练】1.已知函数 f ( x)1 ,则该函数在 R 上单调递 ___,(填“增”“减”)值域为 _________.2x 12.已知函数f ( x) 4x 2mx 5 在 (, 2) 上是减函数,在(2, ) 上是增函数,则f (1) _____.3. 函数 f ( x) x 2 1 x 的单调递减区间为【真题再现】1.( 2011 新课标全国) 下列函数中,既是偶函数又在(0,+∞ )单调递增的函数是A . y = x 3B . y = |x|+ 1C .y =- x 2+ 1- xD .y = 2 | |12.(2009 辽·宁 )已知偶函数 f(x)在区间 [0,+∞ )单调增加,则满足 f(2x - 1)< f(3)的 x 的取值范围是 ( )3.( 2012 安徽)若函数 f(x)= |2x + a|的单调递增区间是 [3,+∞ ),则 a = ________.4.( 2013·湖北高考文科) x 为实数,[ x]表示不超过x的最大整数,则函数f (x)x [ x] 在R 上为 ( )A .奇函数B .偶函数C .增函数D . 周期函数第 4 课 函数的奇偶性与周期性【考点导读】1.了解函数奇偶性与周期性的含义,能利用定义判断一些简单函数的奇偶性与周期性;2.定义域对奇偶性的影响:定义域关于原点对称是函数为奇函数或偶函数的必要但不充分条件;不具备上述对称性的,既不是奇函数,也不是偶函数.【基础练习】1. 给 出 455x ; ②x 4 12x 5 ; ④个 函 数 : ① f (x) xf (x)2 ; ③ f (x)xf ( x) e xe x .其中奇函数的有 _____;偶函数的有 ______;既不是奇函数也不是偶函数的有 _______.2. 设函数 f xx 1 xa为奇函数,则实数a.x3.下列函数中,在其定义域内既是奇函数又是减函数的是()A . y x 3, x R B . y sin x, x R C. yx, x RD. y1 x, x R( )2【范例解析】1 定义域为 R 的四个函数 y = x 3, y = 2x , y = x 2+ 1, y = 2sin x 中,奇函数的个数是 ( ) 2. 已知 f(x)是奇函数, g( x)是偶函数, 且 f(- 1)+ g(1)= 2,f(1)+ g(- 1)= 4,则 g(1)等于 ( )3. 已知定义在 R 上的函数 f ( x) 是奇函数,且当 x0 时, f (x) x 22x 2 ,求函数 f (x)的解析式,并指出它的单调区间.【反馈演练】1.已知定义域为R 的函数 f x 在区间 8, 上为减函数,且函数 y f x 8 为偶函数,则()A . f 6 f 7B . f 6 f 9C . f 7f 9D . f 7f 102. 在 R 上定义的函数 f x 是偶函数,且 f x f 2 x ,若 f x 在区间 1,2 是减函数,则函数 f x ( )A. 在区间 2, 1 上是增函数,区间 3,4 上是增函数B. 在区间 2, 1 上是增函数,区间 3,4 上是减函数C.在区间 2, 1 上是减函数,区间 3,4 上是增函数D.在区间2, 1 上是减函数,区间 3,4 上是减函数3. 设1,1, 1,3 ,则使函数 y x 的定义域为R且为奇函数的所有的值为 ____.24.若函数 f (x) 是定义在R上的偶函数,在( ,0] 上是减函数,且 f (2) 0 ,则使得f (x) 0的x的取值范围是【真题再现】1. (2013 山东 ) 已知函数 f(x)为奇函数,且当x>0 时, f(x) =x2+1,则 f(- 1)= ( )x2.( 2011 湖南)已知 f(x)为奇函数, g(x)=f(x)+ 9, g(- 2)= 3,则 f(2) =________.3.( 2010 江苏)设函数 f(x)= x(e x+ae-x)(x∈R )是偶函数,则实数 a 的值为 ________.4. f x 是以 2为周期的函数,且当 x 1,3 时, f x = x 2 ,则f (1)5 .已知函数y f(x)(x R)满足f(x 1) f(x 1) ,且当x 1,1 时,f (x) x2 则 y f(x)与y log 5 x 的图象的交点个数为.第 5 课二次函数,幂函数,指对函数【考点导读】1.理解二次函数的概念,掌握二次函数,幂函数,指对函数图像和性质;2.能结合二次函数的图像判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.【基础练习】1.二次函数 yx2 2mx m2 3 的图像的对称轴为x 2 0,则 m ____,递增区间为____,递减区间为 ____2. 实系数方程 ax 2 bx c 0( a 0) 有两正根的充要条件为___;有两负根的充要条件为3. 已知函数 f (x) x2 2x 3 在区间 [0, m] 上有最大值3,最小值2,则m的取值范围是__________.【范例解析】1. 已知 a, b, c∈ R,函数 f(x)= ax2+ bx+c.若 f(0) =f(4)> f(1) ,则 ( )A . a>0,4a+ b= 0B . a<0,4a+ b= 0C.a>0,2a+b= 0 D .a<0,2 a+b= 02. 设 a log 3 2 , b log5 2 , c log 2 3 ,则()A. a c bB. b c aC. c b aD. c a b3.函数 f( x) =㏑ x 的图像与函数g( x)=x2-4x+4 的图像的交点个数为()4.函数f x4x 4, x 1log 2 x 的图象的交点个数有_____ x 2 4x 3, x的图象和函数 g x15.已知 a=5-1,函数 f(x)= a x,若实数 m、n 满足 f(m)>f(n),则 m、n 的大小关系为 ________.26.已知函数 f (x) a2x 1 1 ( a 0, a 1) 过定点,则此定点坐标为________7.函数f ( x) a x log a ( x 1)在[0,1] 上的最大值和最小值之和为a,则 a 的值为.8.函数f ( x) a x (a 0且 a 1) 对于任意的实数x, y 都有()A .f (xy) f ( x) f ( y) B.f ( xy) f (x) f ( y)C.f (x y) f ( x) f ( y) D.f ( x y) f ( x) f ( y)9.将 y=2x的图像 ( ) 再作关于直线y=x 对称的图像,可得到函数y log 2 ( x 1) 的图像.A .先向左平行移动 1 个单位B.先向右平行移动 1 个单位C.先向上平行移动 1 个单位D.先向下平行移动 1 个单位ya x b的图象如图,其中10.函数f ( x) a、 b 为常数,则下列结论正确的是()1A .a 1, b 0 B.a 1,b 0 -1 O 1 xC.0 a 1, b 0 D.0 a 1,b 0 第10题11 y ax 在0,1上的最大值与最小值的和为3,则 a 的值为____.函数.【反馈演练】1.函数y x2 bx c x 0, 是单调函数的充要条件是2 A(1,16),且图像在 x 轴上截得的线段长为8,则此二次函数.已知二次函数的图像顶点为的解析式为3. 设 b 0 ,二次函数y ax 2 bx a 2 1 的图象为下列四图之一:则 a 的值为()A . 1 B.- 11 5 1 5 C.2 D. 2【真题再现】1( 2010 山东)函数 y= 2x- x2的图象大致是 ()2.(2013 陕西 )设 a, b, c 均为不等于 1 的正实数,则下列等式中恒成立的是()A.log a b·log c b=log c aB.log a b·log c a=log c bC.log a(bc)= log a b·log a cD. log a(b+ c)= log a b+ log a c3.( 2010 辽宁)设 2a= 5b= m,且1+1=2,则 m= () a b4( 2012 北京)已知函数 f(x) = lg x,若 f(ab)= 1,则 f(a2)+ f(b2) =________.5.( 2011 新课标全国)已知函数 y= f(x)的周期为2,当 x∈ [- 1,1] 时 f(x)= x2,那么函数 y=f(x)的图像与函数 y= |lgx|的图像的交点共有 ( )6(2009 广·东 )若函数 y= f(x)是函数 y= a x(a>0,且 a≠1)的反函数,其图象经过点( a, a),则 f(x)= ( )第 6 课函数与方程【考点导读】1.能利用二次函数的图像与判别式的正负,判断一元二次方程根的存在性及根的个数,了解函数零点与方程根的联系.2.能借助计算器用二分法求方程的近似解,并理解二分法的实质.【基础练习】1.函数f ( x) x2 4x 4 在区间 [ 4, 1] 有_______个零点.2. f (x)的图像是连续的,且x 与f ( x)有如下的对应值表:已知函数x 1 2 3 4 5 6 f (x) -2.3 3.4 0 - 1.3 - 3.4 3.4则 f (x) 在区间 [1,6] 上的零点至少有 _____个.【范例解析】1.函数 f(x)=2x|log0.5x|-1 的零点个数为( )2.若 a<b<c,则函数 f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a) 两个零点分别位于区间()A.(a,b) 和 (b,c)内B.(- ∞ ,a)和 (a,b) 内C.(b,c)和 (c,+∞ )内D.(- ∞ ,a)和 (c,+ ∞)内3.设函数 f (x)x 2 bx c, x0,若 f ( 4)f (0) , f ( 2)2 ,则关于 x 的方程2, x 0.f ( x) x 解的个数为()【真题再现】1.( 2011 福建)若关于 x 的方程 x 2+mx + 1= 0 有两个不相等的实数根,则实数 m 的取值范围是 ()A . (- 1,1)B . (-2,2)C .( -∞,- 2)∪ (2,+∞ )D .(-∞,- 1)∪(1 ,+∞ )2( 2011 天津 )对实数 a 和 b ,定义运算“ ?”: a?b =a ,a -b ≤ 1, 设函数 f(x)= (x 2- 2)?b ,a - b > 1.(x - 1),x ∈ R.若函数 y = f(x)- c 的图像与 x 轴恰有两个公共点, 则实数 c 的取值范围是 ()A . (- 1,1] ∪ (2,+∞ )B .( -2,- 1]∪ (1,2]C .( -∞,- 2)∪ (1,2]D . [- 2,- 1]3.( 2011 陕西)方程 |x|= cosx 在 (-∞,+∞ )内 ()A .没有根B .有且仅有一个根C .有且仅有两个根D .有无穷多个根x 2+ 2x -3, x ≤ 0)4. ( 2010 福建 )函数 f(x)= ,的零点个数为 (-2+ lnx , x > 05( 2014 天津)函数 f(x)= e x + x -2 的零点所在的一个区间是 ()A . (- 2,- 1)B . (-1,0)C .(0,1)D .(1,2)。

(完整版)必修一函数概念与性质练习题大全

(完整版)必修一函数概念与性质练习题大全

函数概念与性质练习题大全函数定义域1、函数x x x y +-=)1(的定义域为 A .{}0≥x x B .{}1≥x x C .{}{}01Y ≥x x D .{}10≤≤x x2、函数x x y +-=1的定义域为 A .{}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x3、若函数)(x f y =的定义域是[]2,0,则函数1)2()(-=x x f x g 的定义域是 A .[]1,0 B .[)1,0 C .[)(]4,11,0Y D .()1,04、函数的定义域为)4323ln(1)(22+--++-=x x x x x x f A .(][)+∞-∞-,24,Y B .()()1,00,4Y - C .[)(]1,00,4Y - D .[)()1,00,4Y -5、函数)20(3)(≤<=x x f x 的反函数的定义域为 A .()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,96、函数41lg )(--=x x x f 的定义域为 A .()4,1 B .[)4,1 C .()()+∞∞-,41,Y D .(]()+∞∞-,41,Y7、函数21lg )(x x f -=的定义域为 A .[]1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11,Y8、已知函数x x f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则=N M IA .{}1->x xB .{}1<x xC .{}11<<-x xD .Φ9、函数)13lg(13)(2++-=x x x x f 的定义域是 A .⎪⎭⎫ ⎝⎛+∞-,31 B .⎪⎭⎫ ⎝⎛-1,31 C .⎪⎭⎫ ⎝⎛-31,31 D .⎪⎭⎫ ⎝⎛-∞-31, 10、函数的定义域2log 2-=x y 是A .()+∞,3B .[)+∞,3C .()+∞,4D .[)+∞,411、函数的定义域x y 2log =是 A .(]1,0 B .()+∞,0 C .()+∞,1 D .[)+∞,112、函数)1(log 12)(2---=x x x f 的定义域为 . 函数与值域练习题一、填空题1、定义在R 上的函数()f x 满足()()()2(,),(1)2f x y f x f y xy x y R f +=++∈=,则(0)f = ,(2)f -= 。

人教版高中数学必修1数学第二章课后习题(共10页)Word版

人教版高中数学必修1数学第二章课后习题(共10页)Word版

新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462r t s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ;(6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R .(3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5.(4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n .(2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n .点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的.B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ),2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=- 2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =;(2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x==,所以3x =; (4)设lg 0.001x =,则3100.00110x-==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x=(5) 100.3x= (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数. 2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4; (3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a . 3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ). (2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (ab b a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1).9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x在x ∈(-∞,+∞)上是增函数.证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞), 所以.012.01212>+>+x x又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃.6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3。

(完整word)高中数学函数必修一习题含答案,推荐文档

(完整word)高中数学函数必修一习题含答案,推荐文档

第2卷(选择题 、选择题(本大题共12个小题,每小题四个选项中,只有一项是符合题目要求的)函数 尸log a (x + 2)+ 1的图象过定点(若 2lg(x - 2y)= lg x + lg y(x>0, y>0)则x 的值为()114 B . 1 或4 C . 1 或 4 D.4log 3x ,x>0, 已知函数f(x)= 2x ,x w o.A.1 B . 4 C . 2 D.17. 函数y = ax 2 + bx 与y = log b x (ab ^0,|a|M |b|)在同一直角坐标系中的图象 a (1,2)B .(2,1)C . (-2,1)D .(-1,1) 共60分)5分,共60分,在每小题给出的 2. 3. C .下列函数中与函数y = x 相等的函数是( y = (:'x )2y = 2log 2xB .D .) y = x 2 y = Iog 22x 4.2 函数y = lg 1+x -1的图象关于(A .原点对称B .C . x 轴对称D .y 轴对称 直线y = x 对称 5. F 列关系中正确的是()1log 76<In 2<log 3 n B . 1log 3 n <ln2<log 76C . 1In 2<log 76<log 3 nD .1In 2<log 3n vlogS6.的值为()可能是(8.若函数y = (m 2 + 2m — 2)x m 为幕函数且在第一象限为增函数, 则m 的值为()A . 1B . — 3C .— 1D . 39. 若函数y =f(x)是函数y = a x (a>0且a ^ 1)的反函数,其图象经过点(a , a),则 f(x) =()1 2A . log 2xB . log 1 x C.2x D . x2110 .函数f(x)= log2(x 2— 3x + 2)的递减区间为()B ・(1,2)11.函数f(x)= lg(kx 2 + 4kx + 3)的定义域为R ,则k 的取值范围是()A. 0, 3B.0, 33D . ( — X, 0] u 4,+x12. 设a>0且a ^ 1,函数f(x) = log a |ax 2— x|在[3,4]上是增函数,则a 的取值范围是()1 A. 6, 14 U (1,+X )B.1 1 1, 1 U (1, + X )1 11c. 8, 6 U (1,+X )D. 0, 4 u (1,+ X )第u 卷 (非选择题共90分)、填空题(本大题共4个小题,请把正确答案填在题中横线上)+•7C. 0, 4.1-313.计算27+ lg 0.01 —In v e+ 3log32= ________14. ________________________________________ 函数f(x) = lg(x—1) + p5 —x的定义域为 _____________________________________ .15. 已知函数f(x) = Iog3(x2+ ax+ a+ 5), f(x)在区间(―®, 1)上是递减函数,则实数a的取值范围为_________ .16. 已知下列四个命题:①函数f(x) = 2x满足:对任意X1, *€ R且刃工x2X i —L x2 1 __ 2都有f —2 <2【f(x i) + f(X2)];②函数f(x)= Iog2(x+ 1 + x2), g(x) = 1 + ?x_〔不都是奇函数;③若函数f(x)满足f(x- 1)= —f(x+ 1),且f(1) = 2,则f(7)= —2;④设x i,x2是关于x的方程|log a x|= k(a>0且a^ 1)的两根,贝U X1X2= 1.其中正确命题的序且日序号疋________ .三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17. (本小题满分10分)1 1(1) 计算lg25+ lg 2X Ig 500 —qlg 亦—Iog29X Iog32;(2) 已知Ig 2= a,lg 3 = b,试用a,b表示log125.18. (本小题满分12分)已知函数f(x)= lg(3x—3).(1) 求函数f(x)的定义域和值域;(2) 设函数h(x) = f(x) —lg(3x+ 3),若不等式h(x)>t无解,求实数t的取值范围.19. (本小题满分12分)—2 m2+ m+ 3已知函数f(x) = x (m€ Z)为偶函数,且f(3)<f(5).(1)求m的值,并确定f(x)的解析式;⑵若g(x)= log a[f(x) —2x](a>0 且a^ 1),求g(x)在(2,3]上的值域.20. (本小题满分12分)kx _ 1已知函数f(x)= Ig (k€ R).x—1(1) 若y=f(x)是奇函数,求k的值,并求该函数的定义域;(2) 若函数y= f(x)在[10,+x)上是增函数,求k的取值范围.21. (本小题满分12分)1 一x已知函数f(x)= Iog3〔一mx(m H 1)是奇函数.(1)求函数y= f(x)的解析式;1 一x⑵设g(x)= —,,用函数单调性的定义证明:函数y= g(x)在区间(—1,1)1 —mx上单调递减;(3) 解不等式f(t+ 3)<0.22. (本小题满分12分)已知函数f(x)= log4(4x+ 1) + kx(k€ R)是偶函数.(1) 求实数k的值;(2) 设g(x)= log4(a 2x+ a),若f(x)= g(x)有且只有一个实数解,求实数a的取值范围.1. D解析:定点(—1,1).2. B解析:详解答案由对数函数恒过定点(1,0)知,函数y= log a(x+ 2)+ 1的图象过由对数的性质及运算知,2lg(x—2y) = lg x+ lg y化简为lg(x—2y)2= lg xy,即(x—2y)2= xy,解得x=y或x=4y.所以f的值为1或寸.故选B.3. D 解析:函数y=x的定义域为R.A中,y= ( ,x)2定义域为[0, + );B 中,y= ,x2= |x|;C 中,y = 2log2x=x,定义域为(0, +^);D 中,y= Iog22x=x, 定义域为R.所以与函数y=x相等的函数为y= log22x.24. A 解析:函数y= lg 弟—1的定义域为(—1,1).2 1 一x又设f(x)二尸lg苗-仁lg帀,1 + x 1 —x所以f( —X)二lg 1—x二一lg 二一f(x),所以函数为奇函数,故关于原点对称.15. C 解析:由对数函数图象和性质,得0<log76<1, ln ?<0, Iog3n >1所以1ln 2<log76v log3 n故选C.111 16. A 解析:••• 27>0-f 27 = log3^7= —3,v —3<0, f(—3) = 2—3=8.故选A.b7. D 解析:A 中,由y= ax2+ bx 的图象知,a>0, -<0,由y= log b x 知,a 一ab>0,所以A错;b bB 中,由y= ax2+ bx 的图象知,a<0, -<0,由y= log b x 知,->0,所以B a— aa错;C 中,由y= ax2+ bx 的图象知,a<0,—-<-1,A ->1,由y= log b x 知0<— aa — aa<1,所以C错.故选D.8. A 解析:因为函数y= (m2+ 2m—2)x m为幕函数且在第一象限为增函数,m2+ 2m—2= 1,所以解得m= 1.故选A.m>0,9. B 解析:因为函数y=f(x)图象经过点(.a,a),所以函数y= a x(a>0且a^ 1)1 1 过点(a, .a),所以a = a a即a = Q,故f(x)= log^x.10. D 解析:令t = x2—3x+ 2,则当t= x2—3x+ 2>0 时,解得x€ (— ^, 1)U (2,+x).且t = x2—3x+ 2在区间(一x, 1)上单调递减,在区间(2,+x) 上单调递增;又y= log丄t在其定义域上为单调递减的,所以由复合函数的单调性知,f(x) 2=log】程一3x+ 2)单调递减区间是(2,+ x).211. B 解析:因为函数f(x) = lg(&+ 4kx+ 3)的定义域为R,所以kx2+ 4kxk>0,+ 3>0,x€ R恒成立.①当k= 0时,3>0恒成立,所以k= 0适合题意.②&0,3 3即0<k<4・由①②得0W k<4.故选B.解题技巧:本题实际上考查了恒成立问题,解决本题的关键是让真数kx2+ 4kx+ 3>0, x € R 恒成立.12. A 解析:令u(x)=|ax2—x|,贝U y= log a u,所以u(x)的图象如图所示.当a>1时,由复合函数的单调性可知,区间[3,4]落在 1 1所以4W 石或g<3,故有a>1;1 1 1解得6<a<4.综上所述,a 的取值范围是6,1 1 113. —1 解析:原式=^— 2—2+ 2=14. (1,5] 解析:要使函数f(x) = lg(x — 1) + 5-x 有意义,只需满足;"Jo 即可•解得1<x < 5,所以函数f(x)= lg(x — 1)+ 5 — x 的定义域为(1,5].a15. [ — 3,— 2] 解析:令 g(x) = x 2 + ax + a + 5, g(x)在 x € —8,—-是减 a函数,x € — 2,+ 是增函数.而f(x) = log 3t ,t € (0,+8)是增函数.由复合 函数的单调性,得—2> 1,解得—3< a <— 2.g 1 > 0,解题技巧:本题主要考查了复合函数的单调性, 解决本题的关键是在保证真 数g(x)>0的条件下,求出g(x)的单调增区间.16. ①③④ 解析:①•••指数函数的图象为凹函数,.••①正确; ②函数 f(x) = Iog 2(x + . 1 + x 2)定义域为 R ,且 f(x) + f(—x)= Iog 2(x + .1 + x 2) + log 2(— x + 1 + x 2) = log 21 = 0,二 f(x) = — f( — x),.°. f(x)为奇函数.22x + 1g(x)的定义域为(—8,0)u (0,+8),且 g(x)= 1+ 2—1=2x —1,g(—x)=2—x+ 1 1 + 2x2^+1 二1—x = — g(x),A g(x)是奇函数.②错误;1 、10 -- 或— + 8 上0,2a 或 a ,+ 丄,当0<a<1时,由复合函数的单调性可知,[3,4]? 1 2a ,1 1 11,所以习三3 且a>4,14 u (1, 1 6.③••• f(x —1)=—f(x + 1),二f(7) = f(6+ 1)= —f(6 —1) = —f(5), f(5)= f(4+ 1)二—f(4—1)= —f(3), f(3)二—f(1),••• f(7)= —f(1),③正确;④|log a x|= k(a>0且a^ 1)的两根,贝U log a x i = —Iog a x2,:log a x i + log a X2 = 0, X1 x2= 1..・.④正确.17. 解:(1)原式二lg25 + lg 5 lg 2+ 2lg 2+ lg 5 —log39=lg 5(lg 5 + lg 2) + 2lg 2+ lg 5 — 2二2(lg 5+ lg 2) — 2=0.10__ lg T _ lg 10—lg 2_ 1 —lg 2 (2)log125=lg 12_lg 3X4_ lg3 + lg4 _ lg 3+ 2lg 2'—_ 1 —lg 2 1 —alg 2_a, lg 3_ b, Iog125_ _ .lg 3+ 2lg 2 b + 2a18. 解:(1 )由3x—3>0解得x>1,所以函数f(x)的定义域为(1,+x). 因为(3x—3)€(0,+x),所以函数f(x)的值域为R.3x_ 3(2)因为h(x) _ lg(3x—3) —lg(3x+ 3)_ lg 3+3_lg 1 —3+3的定义域为(1,+x),且在(1,+x)上是增函数,所以函数的值域为(一X, 0).所以若不等式h(x)>t无解,则t的取值范围为[0, +X).19. 解:(1)因为f(3)<f(5),所以由幕函数的性质得,—2m2+ m+ 3>0,解得彳3—1<m<2.因为m€ Z ,所以m_ 0或m_ 1. 当m_ 0时,f(x)_x3它不是偶函数. 当m_ 1时,f(x)_x2是偶函数.所以m_ 1, f(x) _x2.(2)由(1)知g(x)_ log a(x2—2x),设t_x2—2x, x€ (2,3],则t € (0,3],此时g(x)在(2,3]上的值域就是函数y_log a t在t€ (0,3]上的值域.当a>1时,y = log a t 在区间(0,3]上是增函数,所以y € (-^, log a 3]; 当0<a<1时,y = log a t 在区间(0,3]上是减函数,所以y € [log a 3,+^ ). 所以当a>1时,函数g(x)的值域为(一X, iog a 3];当0<a<1时,g(x)的值域 为[log a 3, + x ).20. 解:(1)因为f(x)是奇函数,—kx - 1 kx -1-f(—X )二一f(x),即 lg — x —1 二一lg_x —1—kx -1 _ x — 1 —x — 1 _ kx — 1,二 k 2 _ 1, k _ ±, 而k _ 1不合题意舍去, k _ — 1. —x — 1由 >0,得函数y _f(x)的定义域为(一1,1).x — I又 f(x)_ lg kX —1_ lg k + ・ ,x —1 x —1 '即 lg k+ ■ <lg k +『,X 1— 1 X 2- 1 '1 1 > , X 1 — 1 X2 — 1 1综上可知k € 10, 1 .解题技巧:本题主要考查了对数型函数的性质, 解决本题的关键是充分利用 好奇偶性和单调性.21. (1)解:由题意得f( — x) + f(x)_0对定义域中的x 都成立,1 + X .1 — X1 + X 1 — X “(2)v f(x)在[10,+^)上是增函数,•10k — 1 1--------- >0 • k>= 10 — 1 , 10'故对任意的X 1,X 2,当10< X 1VX 2时,恒有f(X )<f(X ), k — 1 k —1X 1 — 1 X 2 — 1,• (k — 1)1 1X 1— 1— X 2— 1 <0,--k — 1<0, • k<1.所以log s + log3 _ 0,即•_ 1,1 + mx 1 —mx 1 + mx 1 —mx 所以1 —x2_ 1 —m2x2对定义域中的x都成立,所以m 2 3= 1又m ^ 1,所以m =— 1,1 一 x所以 f(x) = Iog 3^—.1 + x1 一 x⑵证明:由(1)知,g(x)=-,I 十x设 X 1, X 2€ (— 1,1),且 X 1<X 2,贝U X 1— 1>0 , X 2— 1>0 , X 2— X 1>0.2 x 2 __ x 1因为 g(X 1)_ g(X 2)= 1 — x1 1 — x2 >0,所以 g(X 1)> g(X 2),所以函数y = g(x)在区间(一 1,1)上单调递减.⑶解:函数y = f(x)的定义域为(—1,1),设 X 1, X 2€ (— 1,1),且 X 1<X 2,由 ⑵得 g(x 1)>g(x 2),所以 Iog 3g(x 1)>log 3g(x 2),即 f(x”>f(X 2),所以y = f(x)在区间(—1,1)上单调递减.—1< t 十 3<1 , 因为f(t 十3)<0 = f(0),所以 t 十 3>0 ,解得—3<t<— 2.故不等式的解集为(—3, — 2).22.解:(1)由函数f(x)是偶函数可知f(x) = f(— x),/. Iog 4(4X — 1)— kx = log 4(4 x — 1) — kx ,4X — 1化简得 Iog4.—x 十 1 = — 2kx ,4 十11 即x = — 2kx 对一切x € R 恒成立,二k = — ^.⑵函数f(x)与g(x)的图象有且只有一个公共点, 1 即方程Iog 4(4X 十1) — ?x = Iog 4(a 2X + a)有且只有一个实根,0,此时有a = — 2+ 2 2或a = — 2 — 2 2(舍去);③当a>1时,又g(0) = — 1,方程恒有一个正根与一个负根,符合题意.综 上可2化简得方程2X + 2X = a-2X + a 有且只有一个实根,且 a 2X + a>0成立,则a>0.令t = 2X >0 ,则(a — 1)t 2 + at — 1= 0有且只有一个正根.设 g(t) = (a — 1)t 2 + at — 1,注意到 g(0) = — 1<0,所以①当a = 1时,有t = 1,符合题意;②当0<a<1时,g(t)图象开口向下,且g(0) = — 1<0,则需满足t 对称轴= a 2 a — 1 >0,知,a的取值范围是{ — 2 + 2 2} U [1 ,+x).。

必修一-函数的概念练习题(含答案)

必修一-函数的概念练习题(含答案)

函数的概念(一)一、选择题1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x 2.某物体一天中的温度是时间t 的函数:T (t )=t 3-3t +60,时间单位是小时,温度单位为℃,t =0表示12:00,其后t 的取值为正,则上午8时的温度为( )A .8℃B .112℃C .58℃D .18℃3.函数y =1-x2+x2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}4.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]5.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]6.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上7.函数f (x )=1ax2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R } B .{a |0≤a ≤34}C .{a |a >34} D .{a |0≤a <34} 8.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .79.(安徽铜一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x2x2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .3010.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题11.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.12.函数y =x +1+12-x 的定义域是(用区间表示)________. 三、解答题13.求一次函数f (x ),使f [f (x )]=9x +1.14.将进货单价为8元的商品按10元一个销售时,每天可卖出100个,若这种商品的销售单价每涨1元,日销售量就减少10个,为了获得最大利润,销售单价应定为多少元?15.求下列函数的定义域.(1)y =x +1x2-4; (2)y =1|x|-2;(3)y =x2+x +1+(x -1)0. 16.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.17.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;(3)已知f (x )的定义域为[0,1],求函数y =f (x +a )+f (x -a )(其中0<a <12)的定义域.18.用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底边长为2x ,求此框架的面积y 与x 的函数关系式及其定义域.1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] A[解析] 12:00时,t =0,12:00以后的t 为正,则12:00以前的时间负,上午8时对应的t =-4,故T (-4)=(-4)3-3(-4)+60=8.3.[答案] D[解析] 使函数y =1-x2+x2-1有意义应满足⎩⎪⎨⎪⎧ 1-x2≥0x2-1≥0,∴x 2=1,∴x =±1. 4.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.5.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题单选题1、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B2、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( ) A .(1,2)B .(7,11)C .(4,16)D .(3,5) 答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.3、函数f (x )=x 2−1的单调递增区间是( ) A .(−∞,−3)B .[0,+∞) C .(−3,3)D .(−3,+∞) 答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞). 故选:B.4、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可.由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0, 所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0, 对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞). 故选:A5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A6、已知幂函数y =x a 与y =x b 的部分图像如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图像分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A.1B.1C.√2D.22答案:B分析:表示出|AB|,|CD|,由幂函数的图象可得b>1>a>0,从而得(m2)a>(m2)b,m a>m b,再由|AB|=|CD|,代入化简计算,即可求解出答案.由题意,|AB|=(m2)a−(m2)b,|CD|=m a−m b,根据图象可知b>1>a>0,当0<m<1时,(m2)a> (m2)b,m a>m b,因为|AB|=|CD|,所以m2a−m2b=(m a+m b)(m a−m b)=m a−m b,因为m a−m b>0,可得m a+m b=1.故选:B,则f(x)()7、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.因为函数f(x)=x3−1定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,而y =1x 3=x −3在(0,+∞)上单调递减,在(−∞,0)上单调递减,所以函数f(x)=x 3−1x 3在(0,+∞)上单调递增,在(−∞,0)上单调递增. 故选:A .小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 多选题9、下列各组函数中,两个函数是同一函数的有( ) A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B,f(x)=x+1,g(x)=x+1(x≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B不正确;对于C,f(x)={1,x>0−1,x<0,g(x)={1,x>0−1,x<0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C正确;对于D,f(t)=|t−1|与g(x)=|x−1|的对应关系和定义域都相同,所以两个函数为同一函数,故D正确. 故选:ACD10、已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为R B.f(x)的值域为(−∞,4)C.f(1)=3D.若f(x)=3,则x的值是√3E.f(x)<1的解集为(−1,1)答案:BD解析:根据解析式判断定义域,结合单调性求出值域,分段代值即可求解方程,分段解不等式,得出不等式解集.由题意知函数f(x)的定义域为(−∞,2),故A错误;当x≤−1时,f(x)的取值范围是(−∞,1],当−1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(−∞,4),故B正确;当x=1时,f(1)=12=1,故C错误;当x≤−1时,x+2=3,解得x=1(舍去),当−1<x<2时,x2=3,解得x=√3或x=−√3(舍去),故D正确;当x≤−1时,x+2<1,解得x<−1,当−1<x<2时,x2<1,解得−1<x<1,因此f(x)<1的解集为(−∞,−1)∪(−1,1);故E错误.故选:BD.小提示:此题考查分段函数,涉及定义域,值域,根据函数值求自变量取值,解不等式,关键在于分段依次求解.11、已知幂函数f(x)图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若x ≥9,则f (x )≥3D .若x 2>x 1>0,则f (x 1)+f (x 2)2>f (x 1+x 22)答案:AC解析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由x ≥9时,可得√x ≥3可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.设幂函数f(x)=x α将点(4,2)代入函数f(x)=x α得:2=4α,则α=12.所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x ≥9时,√x ≥3,即f(x)≥3,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 不正确.故选:AC小提示:关键点睛:本题主要考查了幂函数的性质,解答本题的关键是由(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2,化简得到−(√x 1−√x 2)24,从而判断出选项D 的正误,属于中档题.填空题12、已知函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,f(x)+g(x)=2⋅3x ,则函数f(x)=_____. 答案:3x +3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x ,结合两函数的奇偶性可得f (x )−g (x )=2⋅3−x ,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x ); 所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x,两式相加得,2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x . 故答案为:3x +3−x . 小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式. 13、函数y =log 0.4(−x 2+3x +4)的值域是________. 答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4), 则−x 2+3x +4>0,解得:−1<x <4, 所以函数的定义域为(−1,4), 设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数, 由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞). 所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.14、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______. 答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2, 综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞) 解答题15、已知二次函数f (x )=ax 2−2x (a >0) (1)若f (x )在[0,2]的最大值为4,求a 的值;(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2.求a的取值范围.答案:(1)2;(2)[8,+∞).分析:由解析式可知f(x)为开口方向向上,对称轴为x=1a的二次函数;(1)分别在1a ≥2和0<1a<2两种情况下,根据函数单调性可确定最大值点,由最大值构造方程求得结果;(2)将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,分别在1a ≤t、1a≥t+1、t<1a≤t+12和t+12<1a<t+1,根据f(x)单调性可得f(x)max−f(x)min,将f(x)max−f(x)min看做关于t的函数,利用恒成立的思想可求得结果.由f(x)解析式知:f(x)为开口方向向上,对称轴为x=1a的二次函数,(1)当1a ≥2,即0<a≤12时,f(x)在[0,2]上单调递减,∴f(x)max=f(0)=0,不合题意;当0<1a <2,即a>12时,f(x)在[0,1a]上单调递减,在[1a,2]上单调递增,∴f(x)max=max{f(0),f(2)},又f(0)=0,f(2)=4a−4,f(x)在[0,2]的最大值为4,∴f(x)max=f(2)=4a−4=4,解得:a=2;综上所述:a=2.(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2,则f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,①当1a≤t时,f(x)在[t,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(t)=2at+a−2≥2,当t≥1a时,y=2at+a−2单调递增,∴(2at+a−2)min=2a⋅1a+a−2=a,∴a≥2;②当1a ≥t+1,即t≤1a−1时,f(x)在[t,t+1]上单调递减,∴f(x)max−f(x)min=f(t)−f(t+1)=−2at−a+2≥2,当t≤1a−1时,y=−2at−a+2单调递减,∴(−2at−a+2)min=−2a(1a−1)−a+2=a,∴a≥2;③当t<1a ≤t+12,即1a−12≤t<1a时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(1a )=a(t+1)2−2(t+1)+1a≥2,当1a −12≤t<1a时,又a>0,12<1a+12≤t+1<1a+1,令m=t+1,则y=am2−2m+1a 在[1a+12,1a+1)上单调递增,∴a(1a +12)2−2(1a+12)+1a≥2,解得:a≥8;④当t+12<1a<t+1,即1a−1<t<1a−12时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t)−f(1a )=at2−2t+1a≥2,当1a −1<t<1a−12时,y=at2−2t+1a在(1a−1,1a−12)上单调递减,∴a(1a −12)2−2(1a−12)+1a≥2,解得:a≥8;综上所述:a的取值范围为[8,+∞).小提示:关键点点睛:本题考查根据二次函数最值求解参数值、恒成立问题的求解,本题解题关键是能够将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,从而通过对于函数单调性的讨论得到最值.。

(完整版)高中数学必修一函数练习题及答案

(完整版)高中数学必修一函数练习题及答案

高中数学必修一函数试题一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。

A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7、若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B中(1)(2)(3)(4)的元素可以在A 中无原像;(4)像的集合就是集合B 。

A 、4个B 、3个C 、2个D 、1个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()1()f x f x =-- 9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,ab ,总有()()0f a f b a b->-成立,则必有( )A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学必修一函数的概念习题
(2021最新版)
作者:______
编写日期:2021年__月__日
函数的概念1.求下列函数的定义域:(1)y&#61501;2.求下列函数的定义域与值域:(1)y&#61501;3、已知函数f&#61480;x&#61483;1&#61481;的定义域为&#61531;&#61485;2,3&#61533;,则f&#61480;x&#61485;2&#61481;的定义域为(A.&#61531;&#61485;2,3&#61533; 4、函数f&#61480;x&#61481;&#61501;B.&#61531;&#61485;1,4&#61533;C.&#61531;16,&#61533;))3x&#61483;2;(2)y&#61501;&#61485;x2&#61483;x&#61483;2. 5&#61485;4x1;(2
)y&#61501;x&#61483;2&#61485;1.D.&#61531;&#61485;4,1&#61533;1的值是(1&#61485;x1&#61485;xB.A.4 55 4C.3 4D.4 35.下列各组函数中,表示同一函数的是().A. y&#61501;1,y&#61501;xx
B. yy
C. y&#61501;x,y&#61501;
D. y&#61501;|x|,y&#61501;2 6
.函数y的定义域为().A. (&#61485;&#61605;,1]1111B. (&#61485;&#61605;,2] C. (&#61485;&#61605;,&#61485;)&#61513;(&#61485;,1] D. (&#61485;&#61605;,&#61485;)&#61525;(&#61485;,1]22227.集合M&#61501;&#61563;x&#61485;2&#61603;x&#61603;2&#61565;,N&#61501;&#61563;y0&#61603;y&#61603;2&#61565;,给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系的是().
8.下列四个图象中,不是函数图象的是().A. B.
C.D.9.已知函数f(x)的定义域为[-1,2),则f(x-1)的定义域为().A.[-1,2) B.[0,-2) C.[0,-3) D.[-2,1)10.已知f(x)=x2+x+1
,则f=______;f[f(2)]=______.11.已知f(2x+1)=x2-2x,则f(3)12.(1
)求函数y= (2)求函数y=2x+11-3x的定义域与值域.13、函数f(x)=x2+2x,x∈[-2,1]的值域是_______________________。

14、函数f(x)=1x2+1(x∈R)的值域是______________________。

1115、已知a2+a-2=3,求a+a-1,a2+a-2的值。

16
、求函数y=2x。

相关文档
最新文档