第14章波动光学基础课件研究报告
大学物理波动光学一PPT课件

超快光谱技术
介绍超快光谱技术的原理、方法及应 用,如泵浦-探测技术、时间分辨光谱 技术等。
超短脉冲激光技术
详细介绍超短脉冲激光技术的原理、 实现方法及应用领域,如飞秒激光技 术、阿秒激光技术等。
未来光学技术挑战和机遇
光学技术的挑战
阐述当前光学技术面临 的挑战,如光学器件的 微型化、集成化、高性 能化等。
大学物理波动光学一 PPT课件
目录
• 波动光学基本概念与原理 • 干涉原理及应用 • 衍射原理及应用 • 偏振现象与物质性质研究 • 现代光学技术进展与挑战
01
波动光学基本概念与原理
光波性质及描述方法
光波是一种电磁波,具有波动性 质,可以用振幅、频率、波长等
物理量来描述。
光波在真空中的传播速度最快, 且在不同介质中传播速度不同。
01
02
03
04
摄影
利用偏振滤镜消除反射光和散 射光,提高照片清晰度和色彩
饱和度。
液晶显示
利用液晶分子的旋光性控制偏 振光的透射和反射,实现图像
显示。
光学仪器
如偏振光显微镜、偏振光谱仪 等,利用偏振光的特性进行物
质分析和检测。
其他领域
如生物医学、材料科学、环境 科学等,利用偏振光的特性进
行研究和应用。
01
牛顿环实验装置与步骤
介绍牛顿环实验的基本装置和操作步骤,包括凸透镜、平面镜、光源等
。
02
牛顿环测量光学表面反射相移
阐述如何通过牛顿环实验测量光学表面反射相移的原理和方法。
03
等厚干涉原理及应用
探讨等厚干涉的基本原理,以及其在光学测量和光学器件设计中的应用
。
多光束干涉及其应用
第十四章 波动光学-干涉(楼)

S1
e
(n 1)e 4 e 4 4104
n
A
n1
S1
三. 劳埃德镜实验
平面镜MM’下表面涂黑,光仅从上表面反射
S 和 S’相当于两个相干光源
实验结果表明: 反射光的相位 光源
接收屏
此 处 出 现
改变了 π ,称为半
波损失
暗 条 纹
干涉条纹与杨
氏实验结果的类似
MM’中镜像 小平面镜
理论和实验证明:
k 2n
2k 4n
1
k 0,1,2,3, 明纹 k 0,1,2,3, 暗纹
棱边处为明纹
则两束 反射光
劈尖中流体的折射率和其两侧介质折射率的影响
n1
总结
n
n2
n1, n2均 n
同一原子先后发出的波列振动方向和频率不一 定相同,相位间无固定关系。
不同原子发出的波列振动方向和频率也不一定 相同,相位间无固定关系。
不同原子发的光
同一原子先后发的光
结论:两个独立光源发出的光波或同一光源两 部分发出的光波在相遇区观察不到干涉现象。
2. 相干光的获得方法 为实现光的干涉,可以从同一波列分离出两个
S2 n2 t2
D n2t2 - n1t1
例3、杨氏双缝干涉实验中,若在下缝盖住一均匀介质,折射率 为n,厚度为t,则中央明纹向 下 平移,若所用波长为 5500Å
中央明纹将被第六级明纹取代,设t=5.5µm, 折射率为 1.6 。
r [r (n 1)t] (n 1)t
t
(n 1)t 6 n 6 1 1.6
n1 光
反射光1
C
2n2e
1 2
n11
D2n2e
1 2
大学物理波动光学课件

麦克斯韦电磁理论:19 世纪中叶,英国物理学 家麦克斯韦建立了电磁 理论,揭示了光是一种 电磁波,为波动光学提 供了更加深入的理论根 据。
在这些重要人物和理论 的推动下,波动光学逐 渐发展成为物理学的一 个重要分支,并在现代 光学、光电子学等领域 中发挥了重要作用。
02 光的干涉
干涉的定义与分类
定义 分类 分波前干涉 分振幅干涉
干涉是指两个或多个相干光波在空间某一点叠加产生加强或减 弱的现象。
根据光源的性质,干涉可分为两类,分别是ห้องสมุดไป่ตู้波前干涉和分振 幅干涉。
波前上不同部位发出的子波在空间某点相遇叠加产生的干涉。 如杨氏双缝干涉、洛埃镜、菲涅尔双面镜以及菲涅尔双棱镜等
。
一束光的振幅分成两部分(或以上)在空间某点相遇时产生的 干涉。例如薄膜干涉、等倾干涉、等厚干涉以及迈克耳孙干涉
波动光学与几何光学的比较
几何光学
几何光学是研究光线在介质中传播的光学分支,它主要关注 光线的方向、成像等,基于光的直线传播和反射、折射定律 。
波动光学与几何光学的区分
波动光学更加关注光的波动性质,如光的干涉、衍射等现象 ,而几何光学则更加关注光线传播的几何特性。两者在研究 对象和方法上存在差异,但彼此相互补充,构成了光学的完 整体系。
VS
马吕斯定律
当一束光线通过两个偏振片时,只有当两 个偏振片的透振方向夹角为特定值时,光 线才能通过。这就是马吕斯定律,它描述 了光线通过偏振片时的透射情况。这两个 定律在光学和物理学中都有着广泛的应用 。
THANKS
感谢观看
分类
根据障碍物的大小和光波波长的相对 关系,衍射可分为菲涅尔衍射和夫琅 禾费衍射。
单缝衍射与双缝衍射
单缝衍射
大学物理物理学波动光学PPT课件

一束光分解为振动面垂直的两束光。
S2
E
2、杨氏双缝干涉实验装置
1801年,杨氏巧妙地设计了一种把单个波阵面分解为两个 波阵面以锁定两个光源之间的相位差的方法来研究光的干涉现 象。杨氏用叠加原理解释了干涉现象,在历史上第一次测定了 光的波长,为光的波动学说的确立奠定了基础。
3、双缝干涉的光程差
两光波在P点的光程差为 = r2-r1
?人的眼睛不能区分自然光与偏振光用于鉴别光的偏振状态的器件称为检偏器2偏振片是一种人工膜片对不同方向的光振动有选择吸收的性能从而使膜片中有一个特殊的方向当一束自然光射到膜片上时与此方向垂直的光振动分量完全被吸收只让平行于该方向的光振动分量通过即只允许沿某一特定方向的光通过的光学器件叫做偏振片
绪言
一、光学的研究内容 二、光的两种学说
薄膜干涉属于分振幅法
1、等倾干涉:
实验装置
在空气(或真空)中放入上
下表面平行,厚度为 e 的均 匀介质 n
光a与光 b的光程差为:
n(AB BC) (AD / 2)
光a有半波损失。
a
iD
b
n
A r
C e
B
由折射定律和几何关系可得出:
sin i nsin
AD ACsin i AC 2e tan n AB BC e / cos 代入 n(AB BC) (AD / 2)
光的干涉和衍射现象表明了光的波动性, 而光的偏振现象则显示了光是横波。光波作为 一种电磁波也包含两种矢量的振动,即电矢量 E和磁矢量H,引起感光作用和生理作用的是其 中的电矢量E,所以通常把E矢量称为光矢量, 把E振动称为光振动。
§8-1 光波及其相干条件
一、光波
1.光波的概念:
波动光学讲课课件

结论:
h E2 E1
h
诱发光子
E2
受激辐射光子
h
h
诱发光子
E1
受激辐射过程所发出的光是相干光.
2021/2/20
4. 相干光的获得方法
(1) 分波前法(分波面干涉法) 当从同一个点光源或线光源发出的光波到达某平面时,
由该平面(即波前)上分离出两部分.
(2) 分振幅法(分振幅干涉法) 利用透明薄膜的上下两个表面对入射光进行反射,产生
中央明纹上移
2021/2/20
例: 用折射率 n =1.58 的很薄的云母片覆盖在双缝实验中的一条 缝上,这时屏上的第七级亮条纹移到原来的零级亮条纹的 位置上. 如果入射光波长为 550 nm.
求: 此云母片的厚度.
解: 设云母片厚度为 d. 无云母片时, 零级亮纹在屏上 P 点, 则到 达 P 点的两束光的光程差为零. 加上云母片后, 到达P点的两 光束的光程差为:
如果
I Imin I1 I2 2 I1I2
I1 I2 I0
I 0
2021/2/20
3. 非相干叠加 若 在时间τ内等概率地分布在0 ~ 2π, 则干涉项:
cos 0
I I1 I2
如果
I1 I2 I0
I 2I0
4.相干条件、相干光源
(1)频率相同
相干条件 (2)相位差恒定
x
0.065
2021/2/20
例: 用白光 (400~760nm) 作光源观察杨氏双缝干涉. 设缝间距为d, 缝与屏距离为 D.
求: 能观察到的清晰可见光谱的级次. 解: 在 400 ~ 760 nm 范围内, 明纹条件为:
xd k
D 最先发生重叠的是某一级次的红光和高一级次的紫光
大学物理-第十四章-波动光学

x d ;
x d :
缝间距越小, 屏越远, 干涉越显著 在D、d 不变时, 条纹疏密与λ正比
(iii)白光干涉条纹的特点: (iv) 中央为白色明纹,其它级次出现彩色条纹( x
)。 (v) 叠k。=每-1级条纹有一k定=0的宽度,相k=邻1 两级条纹k=可2 能会k发=3生重
对相干光源来说, 能量只不过是在屏幕上的重新分布。因为
均可,
符号不同,k 取值不同,对问题实质无影响.
30
§14-3 薄膜干涉
所谓薄膜干涉, 指扩展光源投射到透明薄膜上, 其反射光或 透射光的干涉。
薄膜干涉的实例: 阳光下肥皂泡的彩纹,马路上油膜的彩纹。
一、薄膜干涉
1、分振幅(能量)方法
获得相干光。
S1为扩展光源上任一点光源, 其 投射到介面上的A点的光线, 一部 分反射回原介质即光线a1, 另一部 分折入另一介质, 其中一部分又在 C点反射到B点然后又折回原介 质, 即光线a2。因a1,a2是从同一光 线S1A分出的两束, 故满足相干条 件。
干涉过程既不能创造能量, 也不能消灭能量。
18
习题14-9: 在双缝干涉实验中,用波长λ=546.1 nm 的单 色光照射,双缝与屏的距离d′=300mm.测得中央明纹 两侧的两个第五级明条纹的间距为12.2 mm,求双缝间 的距离.
分析 双缝干涉在屏上形成的条纹是上下对称且等间 隔的. 如果设两明纹间隔为Δx,则
觉和底片感光上起主要作用 .
•光振动指的是电场强度随时间周期性地变化。
E
E0
cos [(2 t
2
r
)
0 ]
•光的强度(即平均能流密度) I∝E02
8
三、光的相干性
第14章-波动光学
39
14-6 单缝衍射
二 光强分布
bsin 2k k
b sin
(2k
2 1)
2
干涉相消(暗纹) 干涉加强(明纹)
I
3 2
bb b
o 2 3 sin
bbb
40
14-6 单缝衍射
S
L1 R
b
L2
Px
x
O
f
I
当 较小时,sin
x f
3 2 o 2 3 sin
b
b
栅);偏振
1
第十四章 波动光学
14-1 相干光 14-2 杨氏双缝干涉 光程 14-3 薄膜干涉 14-4 迈克尔逊干涉仪 14-5 光的衍射 14-6 单缝衍射 14-7 圆孔衍射
光学仪器的分辨本领
14-8 衍射光栅 14-9 光的偏振性 马吕斯定律 14-10 反射光和折射光的偏振 *14-11 双折射现象 *14-12 旋光现象 14-13 小结 14-14 例题选讲
1)劈尖 d 0
Δ 为暗纹.
2
(k 1) (明纹)
d 2 2n k 2n (暗纹)
25
14-3 薄膜干涉
2)相邻明纹(暗纹)间的厚度差
di1
di
2n
n
2
3)条纹间距(明纹或暗纹)
D L n 2
b
b D n L L
2n
2b 2nb
b
n1 n
L
n n / 2 D
n1
b 劈尖干涉
b
b
b
b
3 f 2 f f
bbb
f b
2 f b
3 f b
x
41
14-6 单缝衍射
波动光学复习课件
超快光学现象可以用于研究材料在极端条件下的物理和化学性质变化。例如,利用超快激 光脉冲可以产生高强度磁场和高热流,从而实现对材料的高温高压模拟实验等。
感谢您的观看
THANKS
现代波动光学的研究方向
在现代,波动光学的研究方向主要包括光的相干性、光的偏振态、光的干涉和衍射等现象,以及这些现 象在光学信息处理、光学传感和光学通信等领域的应用。
波动光学的应用
01
波动光学在物理领域的应用
波动光学在物理领域的应用广泛,如光学干涉仪、光学纤维、光学陀螺
仪等,这些仪器在测量、通信和控制等方面具有重要应用价值。
光纤传感器实验与光学多普勒测速仪实验
光纤传感器实验
利用光纤传感器对物理量进行测量,如温度、压力、位移等。
光学多普勒测速仪实验
利用光学多普勒效应测量流体速度。
05
波动光学在科技领域的应用
量子通信中的偏振编码和解码技术
偏振编码和解码技术是量子通信中的 关键技术,利用光的偏振态作为载体 ,将信息编码成特定的偏振态,在接 收端通过解码恢复出原始信息。
超快光学现象及其在信息处理和材料科学中的应用前景
超快光学现象
是指时间尺度在飞秒(10^-15秒)和阿秒(10^-18秒)范围内的光学现象。
在信息处理中的应用前景
超快光学现象可以用于实现超高速和超高效的信号处理和信息传输。例如,利用超快激光 进行超快摄影和电影制作,以及利用超快激光脉冲进行高精度测量和加工等。
要点一
量子纠缠现象
要点二
在信息处理中的应用
量子力学中的一种神奇现象,当两个或多个粒子在某些性 质上纠缠在一起时,它们的状态将相互依赖,对其中一个 粒子的观测将瞬间影响另一个粒子的状态。
2024版大学物理物理学波动光学ppt教案
大学物理物理学波动光学ppt教案•波动光学基本概念与原理•干涉现象及其应用•衍射现象及其应用•偏振光及其应用目录•波动光学实验方法与技巧•课程总结与拓展延伸01波动光学基本概念与原理光具有电磁波的基本性质,包括电场和磁场的振动以及传播速度等。
光是一种电磁波光的波动性表现光的波粒二象性光具有干涉、衍射、偏振等波动性质,这些性质是光作为波动现象的重要表现。
光既具有波动性质,又具有粒子性质,这种波粒二象性是量子力学中的基本概念。
030201光的波动性质1 2 3描述光波传播的基本方程,包括振幅、频率、波速等参数。
波动方程波速等于波长乘以频率,这一关系在波动光学中具有重要意义。
波速、波长、频率关系不同波长的光在介质中传播速度不同,导致光的色散现象。
色散现象波动方程与波速、波长、频率关系光的偏振现象及原理偏振现象光波中电场矢量的振动方向对于光的传播方向的不对称性叫做偏振,它是横波区别于其他纵波的一个最明显的标志。
偏振光的产生通过反射、折射、双折射和选择性吸收等方法可以获得偏振光。
偏振光的检测通过偏振片、尼科耳棱镜等可以检测偏振光。
干涉和衍射现象概述干涉现象01两列或几列光波在空间某些区域相遇时相互加强,在某些区域相互减弱,形成稳定的强弱分布的现象。
产生干涉的条件是波的频率相同,振动方向一致,相位差恒定。
衍射现象02光绕过障碍物继续向前传播的现象叫做光的衍射。
产生明显衍射现象的条件是障碍物的尺寸与波长相差不大或比波长小。
干涉和衍射的应用03干涉和衍射现象在光学测量、光学信息处理等领域有广泛应用。
02干涉现象及其应用03干涉条纹特点等间距、等光程差、明暗相间。
01双缝干涉实验装置与原理通过双缝的相干光源产生干涉现象,观察干涉条纹的分布和变化。
02干涉条件分析满足相干条件的光源,如单色光、点光源等,以及合适的双缝间距和屏幕距离。
双缝干涉实验及条件分析光在薄膜上下表面反射后产生干涉现象,形成彩色条纹。
薄膜干涉原理肥皂泡、油膜等薄膜干涉现象的观察和分析。
大学物理波动光学教学课件
偏振的应用与技术
01
光学成像技术
利用偏振现象可以改良光学成像的质量,如通过使用偏振眼镜来消除反
射光的影响,提高观看3D电影的视觉效果等。
02
光纤通讯技术
在光纤通讯中,利用偏振复用技术可以提高传输速率和传输效率,同时
也可以实现更远距离的传输。
03
光学信息处理技术
利用偏振现象可以实现光学信息处理,如光学图像处理、光学模式辨认
实验三:光的偏振实验
实验目的
通过实验视察和分析光的偏振现象,了解光的电磁性质。
实验原理
利用偏振片将自然光转化为偏振光,视察不同角度下偏振光的强度变化。
实验三:光的偏振实验
实验步骤
1. 准备实验器材:自然光源、偏 振片、检测器等。 2. 将自然光源通过偏振片转化为 偏振光。
实验三:光的偏振实验
3. 在检测器上视察不同角度下偏振光 的强度变化。
随着计算机技术和数值计算方法的不断进步,未 来波动光学的研究将会更加深入,有望解决一些 当前难以解决的问题。
未来波动光学将会与量子力学、光子学等领域更 加紧密地结合,有望开辟新的研究领域和应用场 景。
谢谢您的凝听
THANKS
VS
实验结果与分析:通过实验视察到不 同角度下偏振光的强度产生变化,分 析得出这是由于光的电磁性质导致的 。
06
总结与展望
总结
波动光学的基本概念
这部分内容主要介绍了波动光学的定义 、研究内容和研究意义。
波动光学的基本原理和方法
重点讲授了波动光学的基本原理、光 的干涉、衍射和偏振等基本概念,以
及波动光学的基本实验方法。
实验二:光的衍射实验
实验步骤
1. 准备实验器材:单色光源、单缝或圆 孔衍射装置、屏幕等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xdk
D
最先发生重叠的是某一级次的红光和高一级次的紫光
kλ红 (k1)λ紫 k λ紫 4001.1
λ红 λ紫 760 400
清晰的可见光谱只有一级
§14.4 光程与光程差
若时间 t 内光波在介质中传播的路程为 r ,则相应在真空中
(2) 12
2 1 T t t T E 0 E 0 1 { 2c 1 2 ) t o ( 1 s 2 ) [ 1 r 1 c ( 2 r 2 ]
co 1 s 2 ) t [(1 ( 2 ) 1 r 1 c2 r 2 ]t } 0 d
即 E 1 E 20
(3) (12) 不恒定
E
O
u
相位相同
z
H
x
(2) 电磁波是横波 E H /u /
(3) 量值上 (4) 波速
u 1
E H
真空中 c 01 02.99719 80 ms1
(5) 电磁波具有波的共性 ——在介质分界面处有反射和折射
折射率 n c u
00
rr r
3. 电磁波的能量密度
w 1 E2 1 H 2
x d (2 k 1 )k 0 ,1 ,2 ,光强极小
D
2
x 2k D (光强极大位置) x(2k1)D (光强极小位置)
2d
2d
• 光强分布
I 4I0
讨论
x-2 -2
-x1-1
0 0
x1 1
x2 x 2k
(1) 屏上相邻明条纹中心或相邻暗条纹中心间距为
x D
d
(2) 已知 d , D 及Δx,可测
· r2
2
E 1E 21 2 E 0 E 1 0 { 2c 1 2 o ) t ( 1 s 2 ) [ 1 ( r 1 c 2 r 2 ]
co 1 s2 )t [ (1 2 )1 r 1 c2 r 2 ]}
讨论
1.非相干叠加
(1) E 1E 2
E 1E 2 E 1 E 2 cπ o 2 s0
解 (1) 明纹间距分别为
xD 60 5 .8 0 913 4 0 0 .3m 5 m
d
1 .0
xD 6 05 .8 0 9 1 3 4 0 0 .0m 35m
d
10
(2) 双缝间距 d 为
dD 60 5.0 89 13 4 05.4mm
x
0.065
例 用白光作光源观察杨氏双缝干涉。设缝间距为d ,缝面与 屏距离为 D
E 1 E 20
非相干叠加时
IPI1I2
2.相干叠加
I I1 I2 2I1 I2c os 12(r1cr2)
(1) 相长干涉(明) 2kπ, k0,1,2,3...
I I m a I 1 x I 2 2I 1 I 2
如果 I1I2I0
I 4I0
(2) 相消干涉(暗) (2 k 1 )π ,
传播的路程应为
xctcrnr u
改变相同相位的条件下
2πr 2πx
0
光程 x 0r nr
n1 n2 有半波损失 n1 n2 无半波损失
• 透射波没有半波损失
入射波 n 1
反射波
n2
透射波
例 双缝干涉实验中,用钠光灯作单色光源,其波长为589.3 nm, 屏与双缝的距离 D=600 mm
求 (1) d =1.0 mm 和 d =10 mm,两种情况相邻明条纹间距分别 为多大?(2) 若相邻条纹的最小分辨距离为 0.065 mm,能 分清干涉条纹的双缝间距 d 最大是多少?
2
2
能流密度 S(坡印亭矢量) SdAudtwuw dAdt
E H
1(E21H2)
2
2
1EH
u
S
dA
坡印亭矢量
S E H
udt
波的强度 I IS S 1tTSdt
Tt
T 1ttTE 0H 0co 2(stu r)td
1 2
E
2 0
结论:I 正比于 E02 或 H02,
通常用其相对强度 I
一系列平行的 明暗相间条纹
(3) Δx 正比 , D ; 反比 d
(4) 当用白光作为光源时,在零级白色中央条纹两边对称地 排列着几条彩色条纹
二. 洛埃镜
M
S1 •
S2 •
O
N
(洛埃镜实验结果与杨氏双缝干涉相似)
• 接触处, 屏上O 点出现暗条纹
半波损失
相当于入射波与反射波之间附加了一个半波长的波程差
1 2
E
2 0
表示
§14.2 光源 光波的叠加
一. 光源
(1) 热辐射
自
(2)电致发光 发
(3) 光致发光 (4) 化学发光
辐 射
(5) 同步辐射光源 受
(6) 激光光源
激
辐
射
自发辐射 E2
波列
..能级跃迁 E1
E 2 E 1 /h
波列长 L = c
非相干(不同原子发的光)
非相干(同一原子先后发的光)
第14章 波动光学基础
北极光
§14.1 光是电磁波
一. 电磁波
1. 电磁波的产生 凡做加速运动的电荷都是电磁波的波源
例如:天线中的振荡电流 分子或原子中电荷的振动
2. 对电磁波 E ,H 的描述(平面简谐波)
E E 0cos(tu r)
H H 0co(stu r)
• 平面简谐电磁波的性质
y
(1) E和 H 传播速度相同、
k0,1,2,3...
I I m i I 1 n I 2 2I 1 I 2
如果 I1I2I0
I 0
3.相干条件、相干光源
相干条件:(1)频率相同(2)相位差恒定(3)光矢量振动方向平行
相干光源:同一原子的同一次发光
§14.3 获得相干光的方法 杨氏实验
获得相干光的方法
1. 分波阵面法(杨氏实验) 2. 分振幅法(薄膜干涉)
二.光波的叠加
E 1E 0c 1o1 ts (c 1 r11)
E 2 E 0c 2o2 ts (c 2 r22 )
E P E 1 E 2
E P 2 E 1 2 E 2 2 2 E 1 E 2
光强
·
I p I 1 I 2 2 E 1 E 2
r1
1
·
P
当干涉项 2 E 1 E 2 0 , 非相干叠加 当干涉项 2 E 1 E 2 0 , 相干叠加
一. 杨氏实验(分波阵面法)
• 实验现象
s1
S
s2
明条纹位置 明条纹位置 明条纹位置
• 理论分析
r12D2y2(xd 2)2
r22D2y2(xd 2)2
S2 • d
S1 •
r2
r1 D
y P(x,y,z)
•
x
z
O
r2r1r22xrd1xDd
d D ,x ,y D
xd2k
D
2
k 0 ,1 ,2 ,光强极大