高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,

合集下载

人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》示范课课件_18

人教A版高中数学必修3《二章 统计  2.3 变量间的相关关系  2.3.1 变量之间的相关关系》示范课课件_18

归纳:
1.求样本数据的线性回归方程,可按下列步骤进行:
第一步,计算平均数 x , y
n
n
第二步,求和 xi yi , xi xi yi nx y
第三步,计算 b i1 n
i1 n
,a y bx
(xi x)2
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
审题指导 建立直角坐标系 ―描 点―→ 画散点图 ―判 断―→ 相关关系 ―→ 求回归系数 ―→ 写回归方程
[规范解答] (1)散点图如图所示:
(2)由散点图可以看出,这些点大致分布在一条直线的附近,可 求回归方程.由表中数据,用计算器计算得 x =3+4+4 5+6= 4.5(吨), y =2.5+3+4 4+4.5=3.5(吨),
思考1:对某一个人来说,他的体内脂肪含 量不一定随年龄增长而增加或减少,但是如 果把很多个体放在一起,就可能表现出一定 的规律性.观察上表中的数据,大体上看, 随着年龄的增加,人体脂肪含量怎样变化?
思考2:为了确定人体脂肪含量和年龄之间的更明确的关
系,我们需要对数据进行分析,通过作图可以对两个变量
(2)散点图 A、定义;B、正相关、负相关。
3、回归直线方程
(1)回归直线:观察散点图的特征,如果各点大致分
布在一条直线的附近,就称两个变量之间具有线性相关的
关系,这条直线叫做回归直线。
(2)最小二乘法
y bx a

n
n
b=
i= 1(xi -x)(yi -y)
n
-5
156
1、画出散点图;
0
150 2、从散点图中发现气温与热饮
4 7
132 128

高中高中数学第二章统计2.3.1变量之间的相关关系2.3.2两个变量的线性相关课件新人教A版必修3

高中高中数学第二章统计2.3.1变量之间的相关关系2.3.2两个变量的线性相关课件新人教A版必修3

解:(1)画出散点图.
(2)判断变量x,y是否具有相关关系?如果具有相关关系,那么是正相关还是 负相关?
解:(2)具有相关关系.根据散点图,左下角到右上角的区域,变量x的值由小 变大时,另一个变量y的值也由小变大,所以它们具有正相关关系.
方法技巧 两个随机变量x和y是否具有相关关系的确定方法: (1)散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断 (如本题); (2)表格、关系式法:结合表格或关系式进行判断; (3)经验法:借助积累的经验进行分析判断.
4
4
解:(2)由表中的数据得: xi yi =52.5, x =3.5, y =3.5, xi2 =54,
i 1
i 1
n
所以 b =
xi yi n x y
i 1
n
xi2

2Hale Waihona Puke nx=52.5 4 3.5 3.5 54 4 3.52
=0.7,
i 1
a = y - b x =3.5-0.7×3.5=1.05,
年份x
储蓄存款 y(千亿元)
2013 5
2014 6
2015 7
2016 8
2017 10
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2 012,z=y-5 得到表2:
时间代号t
1
2
3
4
5
z
0
1
2
3
5
(1)求z关于t的线性回归方程;
5
5
解:(1) t =3, z =2.2, ti zi=45, ti2 =55,
知识探究
1.相关关系与函数关系不同 函数关系中的两个变量间是一种确定性关系,相关关系是一种不确定性关系. 2.正相关和负相关 (1)正相关 在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关 关系,我们就称它为正相关. (2)负相关 在散点图中,点散布在从左上角到右下角的区域,对于两个变量的这种相关 关系,我们就称它为负相关.

高中数学第二章统计23变量间的相关关系课件新人教A版必修3(2)

高中数学第二章统计23变量间的相关关系课件新人教A版必修3(2)

总费用y/万元 2.2 3.8 5.5 6.5 7.0
(1)根据表格数据,画出散点图;
(2)求线性回归方程y^=b^x+a^的系数a^,b^; (3)估计使用年限为 10 年时,车的使用总费用是多少?
【解题探究】(1)利用描点法作出散点图; (2)把数据代入公式,可得回归方程的系数; (3)把x=10代入回归方程得y值,即为总费用的估计 值.
【答案】A 【解析】在A中,若b确定,则a,b,c都是常数,Δ= b2-4ac也就唯一确定了,因此,这两者之间是确定性的函数 关系;一般来说,光照时间越长,果树亩产量越高;降雪量越 大,交通事故发生率越高;施肥量越多,粮食亩产量越高,所 以B,C,D是相关关系.故选A.
两个变量x与y相关关系的判断方法 1.散点图法:通过散点图,观察它们的分布是否存在 一定规律,直观地判断.如果发现点的分布从整体上看大致在 一条直线附近,那么这两个变量就是线性相关的,注意不要受 个别点的位置的影响. 2.表格、关系式法:结合表格或关系式进行判断. 3.经验法:借助积累的经验进行分析判断.
变量之间的相关关系的判断
【 例 1】 下 列 变 量 之 间 的 关 系 不 是 相 关 关 系 的 是 ()
A.二次函数y=ax2+bx+c中,a,c是已知常数,取b 为自变量,因变量是判别式Δ=b2-4ac
B.光照时间和果树亩产量 C.降雪量和交通事故发生率 D.每亩田施肥量和粮食亩产量
【解题探究】判断两个变量之间具有相关关系的关键是 什么?
①反映^y与 x 之间的函数关系;
②反映 y 与 x 之间的函数关系;
③表示^y与 x 之间的不确定关系;
④表示最接近 y 与 x 之间真实关系的一条直线.
A.①②

高中数学人教A版必修3《变量间的相关关系》教学设计

高中数学人教A版必修3《变量间的相关关系》教学设计

《变量间相关关系》教学设计一、教学内容分析《变量间相关关系》是高中新教材人教A版必修3第二章2.3的内容,本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。

为以后更好地研究选修部分统计案例中的回归分析思想的应用奠定基础。

二、学生学习情况分析我校是省级示范性高中,匹配多媒体设备,学生的学习习惯较好,有强烈的求知欲,具备一定的分析、观察等能力。

高二的同学已经具备了对样本数据进行初步分析的能力,并且有一定的计算机基础,主要是电子表格的应用。

我所上的班级是文科班,可以说文科班同学最害怕的就是数学学科,所以我在整节课的设计上更多的体现了文科中文学、历史文化等知识与数学的联系,这样一可以拉近数学与文科学生的距离,二可以利用文科学生的学科特点进行教学,加强对知识点的理解和认识。

比如教材上本节课采用的例子是让学生观察物理成绩和数学成绩之间的关系,而文科班的孩子早已不学物理,对该例子的理解程度和感兴趣程度均不大,因此,我在教学设计上未采用书上的例子,而是利用文科学生感兴趣的孔子结合文学历史等知识进行引入。

三、教学目标1、理解相关关系的定义;2、利用散点图判断线性相关关系;3、了解用计算机做散点图的方法4、通过自主探究体会数形结合、类比的数学思想方法5、通过动手操作培养学生观察、分析、比较和归纳能力,引出利用计算机等现代化教学工具的必要性;6、课堂渗透历史文学等知识,通过“教体验教表达教思考”的三教思想从而达到发展学生的数学核心素养。

四、教学重点和难点教学重点: 理解相关关系的定义;能利用散点图直观认识两个变量之间的线性相关关系;教学难点:对相关关系的理解五、教学准备把握数学内容的本质,创设合适的教学情境,提出合理的问题。

启发学生独立思考,分组讨论,鼓励学生与他人交流合作。

让学生在掌握知识技能的同时,感悟数学的本质。

让学生积累数学思维的经验,形成和发展数学核心素养。

1、多媒体课件(文庙孔子等图片、史实)2、搜集数据(提前搜集了30位2岁到50岁人的手距数据,绘制成表)3、安装excel软件(在以往的教学中,书上课后介绍的软件作图,往往因为教学时间、教学内容、教学进度等因素的影响,通常让学生课后自己看,但我利用这一节的内容,引用了书上介绍的Excel软件作图,一是让同学们了解多媒体在数学中的应用;二是可以让同学们直观感受图像的形成过程,提高学习兴趣;三是可以节约手工绘图的时间,也大大提高了绘图的精确性)。

人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》优质课教案_17

人教A版高中数学必修3《二章 统计  2.3 变量间的相关关系  2.3.1 变量之间的相关关系》优质课教案_17

《变量间的相关关系》教学设计(2课时)一、教材分析学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算机基础,主要是电子表格的使用。

教材地位和作用:变量间的相关关系是高中新教材人教A版必修3第二章2.3节的内容, 本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。

为以后更好地研究选修2-3第三章3.2节回归分析思想的应用奠定基础。

结合教材特点及学情,特制定三维教学目标如下:二、教学目标1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及2回归方程系数公式的推导过程,利用电子表格求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解2 、过程与方法:①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。

②通过动手操作培养学生观察、分析、比较和归纳能力,引出利用计算机等现代化教学工具的必要性。

3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。

利用计算机让学生动手操作,合作交流激发学生的学习兴趣。

三、教学重点、难点重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想借助电子表格求出回归方程。

教学内容的难点:对最小二乘法的数学思想和回归方程的理解教学实施过程中的难点:根据给出的线性回归方程的系数公式建立线性回归方程。

四、教学媒体设计本节课涉及大量数据计算及分析,用传统方法很难突破,故我主要采用电子表格和几何画板,通过学生动手操作、教师动画演示、师生合作交流来突出重点、突破难点。

学生学习效果有明显提高。

五、教学设计(具体如下表)(一)、创设情境导入新课1、相关关系的理解师:我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。

生活中的任何两个变量之间是不是只有确定关系呢?让学生举例,教师总结如:生:不是。

高中数学【人教A版必修】三第二章2.3变量间的相关关系课件

高中数学【人教A版必修】三第二章2.3变量间的相关关系课件

高中数学【人教A版必修】三第二章2. 3变量 间的相 关关系 课件【 精品】
3
4
2.5
3
5
6
4
4.5
(1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出 的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少 吨标准煤?
我们在生活中,碰到很多相关关系的问题:
我们还可以举出现实生活中存在的许多相关关系的问题.例如:
➢商品销售收入与广告支出经费之间的关系.
商品销售收入与广告支出 经费之间有着密切的联系, 但商品收入不仅与广告支出 多少有关,还与商品质量、 居民收入等因素有关.
➢ 粮食产量与施肥量之间的关系.
在一定范围内,施肥量越 大,粮食产量就越高.但是,施 肥量并不是决定粮食产量的唯 一因素,因为粮食产量还要受 到土壤质量、降雨量、田间管 理水平等因素的影响.
高中数学【人教A版必修】三第二章2. 3变量 间的相 关关系 课件【 精品】
高中数学【人教A版必修】三第二章2. 3变量 间的相 关关系 课件【 精品】
1.了解变量之间的相关关系; 2.会区分变量间的函数关系与相关关系; 3.会作散点图,并由此对变量间的正相关或负相关作出直观 的判断; 4.会求线性回归方程,并会利用回归方程进行预测.
➢ 人体内脂肪含量与年龄之间的关系.
在一定年龄段内,随着年 龄的增长,人体内的脂肪含量 会增加,但人体内的脂肪含量 还与饮食习惯、体育锻炼等有 关,可能还与个人的先天体质 有关.
上面的几个例子都反映了:两个变量之间是一种不确 定的关系.产生这种关系的原因是受到许多不确定的随机因 素的影响.

人教A版高中数学必修三2.3.2变量间的相关关系(二)

第二章 §2.3 变量间的相关关系
2.3.2 两个变量的线性相关(二)
学习目标
1.理解两个变量线性相关的概念; 2.了解用最小二乘法建立线性回归方程的思想,会用给出的公式建立回 归方程; 3.理解回归直线与观测数据的关系.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 线性相关 思考 回顾上一节你看到的散点图,大致呈哪些形状? 答案 饼状,曲线状,直线状. 如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量 之间具有线性相关关系. 两个变量线性相关是相关关系的一种.
解析答案
跟踪训练3 有人统计了同一个省的6个城市某一年的人均国民生产总值(即 人均GDP)和这一年各城市患白血病的儿童数,如下表:
人均GDP/万元
10
8
6
4
3
1
患白血病的儿童数/人 351 312 207 175 132 180
(1)画出散点图,并判定这两个变量是否具有线性相关关系; 解 散点图如图: 根据散点图可以看出,在6个点中,虽然第一个点 离这条直线较远,但其余5个点大致分布在这条直 线的附近,所以这两个变量具有线性相关关系.
►Living without an aim is like sailing without a compass. 生活没有目标,犹如航海没有罗盘。
►A man is not old as long as he is seeking something. A man is not old until regrets take the place of dreams. 只要一个人还有追求,他就没有老。直到后悔取代了梦想,一个人才算老。
(1)请判断机动车辆数与交通事故数之间是否具有线性相关关系,如果 不具有线性相关关系,说明理由; 解 在平面直角坐标系中画出数据的散点图, 如图. 直观判断散点在一条直线附近,故具有线性

人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》优质课教案_3

变量间的相关关系一、教材分析学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算基础。

教材地位和作用:变量间的相关关系是高中新教材人教A版必修3第二章2.3节的内容, 本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。

为以后更好地研究选修2-3第三章3.2节回归分析思想的应用奠定基础。

二、教学目标1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及线性回归方程系数公式的推导过程,求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解。

2 、过程与方法:①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。

②通过动手操作培养学生观察、分析、比较和归纳能力。

3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。

三、教学重点、难点重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想求出回归方程。

难点:对最小二乘法的数学思想和回归方程的理解,教学实施过程中的难点是根据给出的线性回归方程的系数公式建立线性回归方程。

四、教学设计)(一)、创设情境导入新课1、相关关系的理解我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。

生活中的任何两个变量之间是不是只有确定关系呢?如:学生成绩与教师水平之间存在着某种联系,但又不是必然联系,对于学生成绩与教师水平之间的这种不确定关系,我们称之为相关关系。

这就是我们这节课要共同探讨的内容————变量间的相关关系。

生活中还有很多描述相关关系的成语,如:“虎父无犬子”,“瑞雪兆丰年”。

通过学生熟悉的函数关系,引导学生关注生活中两个变量之间还存在的相关关系。

让学生体会研究变量之间相关关系的重要性。

感受数学来源于生活。

(二)、初步探索,直观感知1、根据样本数据作出散点图,直观感知变量之间的相关关系。

高中数学新课标人教A版必修3:变量间的相关关系与统计案例 课件


3.通过对典型案例的探究,了
解独立性检验(只要求2×2列
联表)Байду номын сангаас基本思想、方法及初
步应用
核心素养
1.数据分析. 2.数学运算
目录
01 知 识 逐 点 夯 实 重点准 逐点清 结论要牢记
02 考 点 分 类 突 破 理解透 规律明 变化究其本
03 课 时 检 测
课前自修 课堂讲练
01
知识逐点夯实
重点准 逐点清 结论要牢记 课前自修
2.独立性检验
利用随机变量K2(也可表示为χ2)的观测值k=
nad-bc2 a+bc+da+cb+d
(其中n=a+b+c+d为样本容量)来判断
“两个变量有关系”的方法称为独立性检验.
[提醒] 独立性检验是对两个变量有关系的可信程度的判断, 而不是对其是否有关系的判断.
[逐点清]
3.(易错题)为调查中学生近视情况,测得某校男生150名中有80名
与吸烟有关”.故选C.
答案:C
[记结论·提速度] [记结论]
1.求解回归方程的关键是确定回归系数^a,^b,应充分利用回 归直线过样本中心点( x , y ).
2.根据K2的值可以判断两个分类变量有关的可信程度,若K2 越大,则两分类变量有关的把握越大.
3.根据回归方程计算的 ^y 值,仅是一个预报值,不是真实发 生的值.
=4.453,经查阅临界值表知P(K2≥3.841)≈0.05,现给出四个
结论,其中正确的是
()
A.在100个吸烟的人中约有95个人患肺病
B.若某人吸烟,那么他有95%的可能性患肺病
C.有95%的把握认为“患肺病与吸烟有关”
D.只有5%的把握认为“患肺病与吸烟有关”

人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》示范课课件_4


解:(1)散点图如图示:
(2)由题意得: x 9, y 4 4 xi2 x12 x22 x32 x42 344 i 1 4 xi yi x1 y1 x2 y2 x3 y3 x4 y4 158 i 1
b 0.7, a y bx 2.3
回归方程为: y 0.7 x 2.3
(3)由回归方程预测,
y 0.7 3 2.3 4
即记忆力为9的同学的判断力约为4.
利用计算机,可以方便的求出回归方程.
归纳小结
1.求样本数据的回归方程,可按下列步骤进行: 第一步,计算平均数 x , y ;
n
n
第二步,求和 xiyi, x2i ;
二.两个变量的线性相关: 1.散点图:在平面直角坐标系中,表示具有相关关系 的两个变量的一组数据图形,称为散点图.
2.正相关:在散点图中,点散布在从左下角到右上角的区域,对于两 个变量的这种相关关系,我们将它称为正相关。
3.负相关:在散点图中,点散布在从左上角到右下角的区域,对于两 个变量的这种相关关系,我们将它称为负相关。
4
2
3
5
49 26 39 54
根据上表可得回归方程 y bx a 中的 b 为 9.4,据此
模型预报广告费用为 6 万元时销售额为 65.5 万元.
解:
x 3.5,
y 42, a y bx 9.1
回归方程为:
y 9.4x 9.1
例(3):有一个同学家开了一个小卖部,他为了研究气温对热饮销售 的影响,经过统计,得到一个卖出的热饮杯数与当天气温的 对比表:
两个变量的线性相关(2) 第 二 章 : 统 计
一.变量之间的相关关系: 1.变量间相关关系的定义:自变量取值一定时,因变量的取值带有一定 随机性的两个变量之间的关系,叫做相关关系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学人教新课标A版必修3 第二章统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)A卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共7题;共14分)
1. (2分)设两个变量x与y之间具有线性相关关系,相关系数为r,回归方程为y=a+bx,那么必有()
A . b与r符号相同
B . a与r符号相同
C . b与r符号相反
D . a与r符号相反
2. (2分)下列两个变量之间是相关关系的是()
A . 圆的面积与半径
B . 球的体积与半径
C . 角度与它的正弦值
D . 一个考生的数学成绩与物理成绩
3. (2分) (2017高二下·邯郸期末) 已知x与y之间的一组数据:
x1234
y m 3.2 4.87.5
若y关于x的线性回归方程为 =2.1x﹣1.25,则m的值为()
A . 1
B . 0.85
C . 0.7
D . 0.5
4. (2分)(2018·河北模拟) 在下列各图中,每个图的两个变量具有相关关系的图是
A . (1)(2)
B . (1)(3)
C . (2)(4)
D . (2)(3)
5. (2分)下列变量关系是相关关系的是()
①学生的学习态度与学习成绩之间的关系;
②教师的执教水平与学生的学习成绩之间的关系;
③学生的身高与学生的学习成绩之间的关系;
④家庭的经济条件与学生的学习成绩之间的关系.
A . ①②
B . ①③
C . ②③
D . ②④
6. (2分) (2018高二下·驻马店期末) 若变量与之间相关系数,则变量与之间()
A . 不具有线性相关关系
B . 具有线性相关关系
C . 它们的线性相关关系还需要进一步确定
D . 不确定
7. (2分)下列四个命题中,正确的有()
①两个变量间的相关系数越小,说明两变量间的线性相关程度越低;
②命题p:“,”的否定:“,”;
③用相关指数来刻画回归效果,若越大,则说明模型的拟合效果越好;
④若,,,则.
A . ①③
B . ①④
C . ②③
D . ③④
二、单选题 (共1题;共2分)
8. (2分) (2015高二下·会宁期中) 在两个变量y与x的回归模型中,分别选择了四个不同的模型,它的相关指数R2如下,其中拟合效果最好的模型是()
A . 模型1的相关指数R2为0.87
B . 模型2的相关指数R2为0.97
C . 模型3的相关指数R2为0.50
D . 模型4的相关指数R2为0.25
三、填空题 (共3题;共3分)
9. (1分)变量X与Y相对应的一组数据为:(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变
量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,是则r1与r2的大的小关系是________
10. (1分)如图所示,有组数据的散点图,去掉________组数据后,剩下的组数据的线性相关系数最大.
11. (1分)“庄稼一枝花,全靠肥当家”说明农作物的产量与施肥之间有________ 关系.
四、解答题 (共3题;共20分)
12. (10分) (2018高一下·开州期末) 某公司为研究某产品的广告投入与销售收入之间的关系,对近五个月的广告投入(万元)与销售收入(万元)进行了统计,得到相应数据如下表:
(万元)91081112
(万元)2123212025
参考公式:, .
(1)求关于的线性回归方程;
(2)预测当广告投入为15万元时的销售收入.
13. (5分)某企业为了更好地了解设备改造前后与生产合格品的关系,随机抽取了180件产品进行分析,其中设备改造前的合格品有36件,不合格品有49件,设备改造后生产的合格品有65件,不合格品有30件.根据所给数据:
(1)写出2×2列联表;
(2)判断产品是否合格与设备改造是否有关.
14. (5分)(2018·河北模拟) 某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.8元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照分成8组,制成了如图1所示的频率分布直方图.
(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.
(ⅰ)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水量都超过12吨的概率;
(ⅱ)试估计全市居民用水价格的期望(精确到0.01);
(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是.若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.
参考答案一、选择题 (共7题;共14分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
二、单选题 (共1题;共2分)
8-1、
三、填空题 (共3题;共3分)
9-1、
10-1、
11-1、
四、解答题 (共3题;共20分)
12-1、
12-2、
13-1、
14-1、。

相关文档
最新文档