大型轴流风机各类振动原因分析及处理措施
轴流风机喘振故障原因分析及对策

风机压力升高/ a P
电 机 功率 / w k
主轴转速/ r・ i ) ( rn a
20 09年 4月 1 日 2 :0 风 机 出现 异 常轰 鸣 6 12 ,
声, 持续一段 时 间后 声 音变 轻 ; 至 1 直 7日 0 1 , :0 风
面 的流动 工况则 开始恶 化 , 界层受 到破坏 , 叶 边 在
少, 或风机动叶开度增大 , 都会使进 入风机叶轮
流道 的气 流 冲 角 增 大 。当 冲角 Ⅸ超 过 临 界 值 时, 风机 产 生 “ 转 失 速 ” 象 , 片 流 道 阻 塞 , 旋 现 叶
流动阻力增大 , 风机输 出的压能大 为降低 , 口 出
作者简介 : 文兵 , 16 俞 男,9 6年 出生,97年毕业 于上 海石 油 18 化工高等 专科 学校化 纤机械专业 , 高级工程 师, 长期从 事石
油 化 工 设 备 管理 工作 。
石 油 化 工 技 术 与 经 济
T c n l g & E o o c n P t c e c l e h oo y c n mi si er h mi as o
摘 要 : 详 细描述 了动叶可调轴流风机喘振故障 的发生机理 , 分析 了电厂脱硫增压风机 喘振 故障原因 , 认
为故障的发生是由于风机后系统 阻力增加使 管路特性 曲线变 陡, 使风机工 作点落入非 稳定工况 区所致 , 提
出 了改善后系统管路阻力的针对性措施 。 关键词 : 喘振 故障 原因 对策
机 厂有 限 公 司 制 造 ,0 7年 1 20 0月 投 入 运 行 。用
于稳定 , 来 自动调 节 至 开 度 7 % 。事 后 检查 仪 后 3 表, 确认风机声 音异常系喘振报警 。 4月 1 8日 90 , 机 烟 气 旁路 挡 板 开 , 对 :0 风 核
轴流风机喘振的原因分析及应对措施

摘
要: 轴流风 机由于其转子结构 复杂且转动部件较 多 , 引起 喘振 的风险较大 , 造成 的危害 也相对较 大。根据 现场 的实
际情 况 , 分析 了风机喘振 的原 因 , 采取应对措施后 , 风机 喘振 的几率明显降低 。
关键 词 : 轴流风 机 ; 喘振 ; 门涡街 ; 卡 激振力 中图分类号 : K2 3 2 T 2 .7 文献标志码 : B 文章编号 :6 4—1 5 (0 10 0 0 0 17 9 1 2 1 )5— 0 8— 2
第 5期
张 广 东 : 流风机 喘振 的原 因分析 及应 对措 施 轴
・ 9・
其 工作 环境 恶劣 , 构 复杂 , 易 积粉 积 油 , 别 是 结 容 特 在 调试运 行 期 间 , 机组 启 、 停频 繁 , 可燃 物 累积较 多 , 极 易产生 再燃 烧 , 气 预 热 器 产 生 变 形 , 成 动 、 空 造 静 间隙增 大 , 风 系数增 加 。 由于漏 风系 数增 大 , 风 漏 送
次风机 电 源开 关 B相 油 位低 于下 限 值 ,8:6 B一 1 2,
次风机停运 。1 :8 B一次风机电源开关更换工作 84 , 结束。此时, 热一次 风压为 5 3/ .6 P , .5 5 1 a A一次 k
风 机动 叶 开度 8 .% 。1 :8 启 动 B一次 风 机 , 67 84 , 在 B一 次 风机 出 口挡 板 联 开 的过 程 中 , 一 次 风 压 快 热 速 下降 至 2 8/ .3 P 。同时 , .92 6 a k A一 次 风机 在 动 叶 开度 不 变 的情 况 下 电流 由 6 .7 1O 降 至 5 .8 A下 84 A, 出 口风 压 由 59 P .6k a降至 36 P 。值 班人 员判 断 .4k a 为 A一次 风机 喘振 , 即手 动减 A 一次 风 机 动 叶至 立 6 .% , 打 开 A一 次 风 机 冷 风 再 循 环 门 , 次 风 55 并 一 压继 续 降至 10 / .6k a 85 停 B一 次 风 机 .0 0 6 P 。1 :0, 并加 开 A 一 次 风 机 动 叶 开 度 , 压 开 始 上 升 。 风
大容量机组轴流风机振动问题分析

( J i a n g s u Fr o n t i e r El e c t r i c Te c h n o l o g i e s Co . , L t d . , Na n j i n g 2 1 1 1 0 2 , C h i n a )
[ 摘
本文 总结 了轴流风 机 结构特 点及 处理各 种轴 流风机 异 常振动 故 障的案例 , 汇 总分析 了轴 流风 要]
机 特有振 动 产生 的原 因 : 从 动 叶调 节 结构方 面分析 , 主要 有 单级 叶轮 叶 片 开度 不 同步 、 两级 叶
轮 叶 片开度 不 同步 以及调 节部 件本 身偏 心 引起 的 各种 风机 振 动 ; 从 气流 脉动 方 面 分析 , 主要
Ab s t r a c t : Th e s t r u c t u r a l c h a r a c t e r i s t i c s a n d c a s e s o f h a n d l i n g a b n o r ma 1 v i b r a t i o n f a u l t s o f v a r i o u s a x i a 1 f l o w
f a n s we r e s umma r i z e d . The r e a s o ns f o r pa r t i c ul a r v i b r a t i o n pr o bl e ms of t he a x i a l f l o w f a n we r e a n a l y z e d i n
a n d p u l s a t i o n c a u s e d b y f l o w r o t a t i n g c o mp o n e n t f a u l t ma i n l y r e s u l t s i n t h e f a n v i b r a t i o n s . F r o m t h e s u p —
大型风机振动原因及巡检重点

大型风机振动原因及巡检重点—————————庐山海螺风机振动解决方案为例根据风机的故障分析如下表,排除法解决方案二○○五年八月二十九日下午三点左右对庐山海螺水泥厂100万吨水泥磨进行振动测量:A磨震动位移量达75~80微米10㎜/s,B震动位移量达31~32.5微米4.7㎜/s,数据显示A磨振动值远远超出了允许振动范围,1、过检查A磨排风机找正数值为:就此数据分析以及经验判断找正对振动的影响未有这么大即排除在外。
2、机壳或进风口与叶轮没有任何摩擦,并且用手测量上下大于5㎜3、风机基础的刚度不够,现场表现中控侧(庐山)基础随风机共同振动,下部有明显的裂痕,两端地脚螺栓其中一只(无载端中控侧)垫片手可以拨动,并且均有裂纹,二次灌浆裂纹较明显。
4、叶轮铆钉经手紧没有松动,轮盘也没有变形。
5、叶轮轴盘与轴没有松动、联轴器螺栓连接正常6、风机出气管道结构问题较大,如图所示:如图所示风机出口处形成一处瓶颈,结构不合理使出口风阻力增大,并且造成了A、B磨风机出口软连接破损(屡次更换)。
改造成直通式,A磨已经改进,B磨有待解决,具体改造如图所示:7、对风机叶轮不平衡进行了测量和调整。
对A磨主排风机进行了首次动平衡测试,开始测量值:空负荷振动值为86微米10㎜/s,正常负载振动值为101微米15㎜/s;经过做动平衡,对风机重新测量获得空负载振动值为10微米1.5㎜/s,正常负载振动值为20微米3.49㎜/s。
经过做动平衡达到了平衡要求,但是根据振动数值以及现场情况分析,造成负载振动比空载振动高的主要因素是a.风机壳体螺栓松动较多,需要重新紧固;b.由于安装单位将部分风机壳体加强筋割除造成壳体振动较大;c.地基不够稳固地脚螺栓松动;d.找正仍然有挖掘潜力;e.有载端长时间在高振动状况下运行需仔细检查确认。
B磨主排风机进行了首次动平衡测试,开始测量值:空负荷振动值为37微米4.65㎜/s;经过做动平衡,对风机重新测量获得空负载振动值为20微米2.07㎜/s,正常负载振动值为10微米1.5㎜/s,效果很好。
大型轴流风机各类振动原因分析及处理措施

大型轴流风机各类振动原因分析及处理措施大型轴流风机各类振动原因分析及处理措施轴流风机以其流量大、启动力矩小、对风道系统变化适应性强的优势逐步取代离心风机成为主流。
轴流风机有动叶和静叶2种调节方式。
动叶可调轴流风机通过改变做功叶片的角度来改变工况,没有截流损失,效率高,还可以避免在小流量工况下出现不稳定现象,但其结构复杂,对调节装置稳定性及可靠性要求较高,对制造精度要求也较高,易出现故障,所以一般只用于送风机及一次风机。
静叶可调轴流风机通过改变流通面积和入口气流导向的方式来改变工况,有截流损失,但其结构简单,调节机构故障率很低,所以一般用于工作环境恶劣的引风机。
随着轴流风机的广泛应用,与其结构特点相对应的振动问题也逐步暴露,这些问题在离心式风机上则不存在或不常见。
本文通过总结各种轴流风机异常振动故障案例,对其中一些有特点的振动及其产生的原因进行汇总分析。
一、动叶调节结构导致振动动叶可调轴流风机通过在线调节动叶开度来改变风机运行工况,这主要依赖轮毂里的液压调节控制机构来实现,各个叶片角度的调节涉及到一系列的调节部件,因而对各部件的安装、配合及部件本身的变形、磨损要求较高,液压动叶调节系统结构如图1所示。
动叶调节结构对振动的影响主要分单级叶轮的部分叶片开度不同步、两级叶轮的叶片开度不同步及调节部件本身偏心3个方面。
(一)单级叶轮部分叶片开度不同步单级叶轮部分叶片开度不同步主要是由于滑块磨损、调节杆与曲柄配合松动、叶柄导向轴承及推力轴承转动不畅引起的。
这些部件均为液压缸到动叶片之间的传动配合部件,会导致部分风机叶片开度不到位,而风机叶片重量及安装半径均较大,部分风机叶片开度不一致会产生质量严重不平衡,导致风机在高转速下出现明显振动。
单级叶轮部分叶片开度不同步引起的振动主要特点如下:1)振动频谱和普通质量均不平衡,振动故障频谱中主要为工频成分,同时部分叶片不同步会产生一定的气流脉动,使振动频谱中出现叶片通过频率及其谐波,部分部件的磨损及松动则会产生一定的非线性冲击,使振动频谱中出现工频高次谐波成分,这在振速频谱中表现得相对明显一些,在位移频谱中几乎观察不到。
轴流风机降噪施工方案及措施

轴流风机降噪施工方案及措施随着工业化的发展,轴流风机在工业生产中扮演着非常重要的角色,它的使用使得生产效率得到了极大的提升。
然而,随之而来的噪音污染问题也日益凸显,给周围的环境和工人的健康带来了不小的困扰。
因此,降噪施工方案及措施成为了当前急需解决的问题之一。
一、轴流风机噪音产生的原因。
轴流风机在运行中会产生噪音,主要原因有以下几点:1. 高速旋转的叶片和叶轮与空气摩擦所产生的气动噪音。
2. 电机运行时产生的机械噪音和电磁噪音。
3. 风机与管道、设备之间的振动传导噪音。
以上原因导致的噪音不仅会对周围环境造成污染,还会影响到工人的身体健康,因此需要采取相应的降噪措施。
二、降噪施工方案及措施。
1. 选择低噪音轴流风机。
在购买轴流风机时,应尽量选择低噪音的产品。
目前市场上有一些专门针对降噪设计的轴流风机,其结构和材料都经过了优化,能够有效降低噪音的产生。
2. 合理布局风机和管道。
在安装轴流风机时,应合理布局风机和管道,避免风机与管道、设备之间的振动传导噪音。
可以采用减振支架、减振垫等措施来减少振动传导。
3. 安装吸音材料。
在风机周围和管道内部安装吸音材料,如吸音棉、吸音板等,能够有效吸收噪音,减少噪音的传播。
4. 加装消声器。
在风机的进出风口处加装消声器,可以有效降低风机产生的气动噪音,减少噪音的扩散。
5. 优化风机运行参数。
通过优化风机的运行参数,如降低转速、减小叶片角度等,可以有效降低风机的噪音产生。
6. 定期维护保养。
定期对轴流风机进行维护保养,保持风机的正常运行状态,减少因机械故障而产生的噪音。
7. 建立噪音监测系统。
在轴流风机周围建立噪音监测系统,及时监测噪音的产生和传播情况,及时采取相应的措施进行调整。
以上措施是针对轴流风机降噪的一些常见方法,但在实际施工中,需要根据具体情况进行综合考虑和实际操作。
三、施工注意事项。
1. 施工前应对现场进行全面的勘察和测量,了解周围环境和设备情况,为后续的施工提供依据。
轴流风机振动的分析与处理

轴流风机振动的分析与处理轴流风机是一种用于空气或气体输送的机械设备,由于运转方式的特殊性,轴流风机在工作过程中难免会出现振动现象。
轴流风机的振动不仅影响其性能和寿命,还有可能引起安全事故,因此对轴流风机振动的分析和处理非常重要。
轴流风机振动的种类轴流风机的振动主要包括机械振动和流体振动两种类型。
1.机械振动:轴流风机的机械振动主要由于其内部机械部件的运动不平衡所引起,如电机、风轮等。
机械振动多呈周期性,振动频率与转速成倍数关系,如2倍频、3倍频等。
2.流体振动:轴流风机运行时会产生空气或气体的流动,这种流动会产生振动。
流体振动常呈现出随机性,振动频率和幅值无规律,且难以预测。
轴流风机振动的原因轴流风机振动的原因主要包括以下几个方面:1.振源:轴流风机的内部机械部件存在运动不平衡,如电机转子、风机轮等,会以不同的频率产生振动。
2.轴承故障:轴承是机械部件中易损件之一,轴承损坏后会产生振动。
3.装配不当:轴流风机的部件装配不当,如轴承安装失误、风机叶轮装配不均匀等,也会导致轴流风机振动。
4.流体力学问题:空气或气体在轴流风机内的流动会产生涡流,这些涡流会产生一定的振动。
轴流风机振动的分析方法轴流风机的振动分析方法主要有以下几种:1.频率分析法:这种方法是通过振动信号的频谱分析,找出其频率分量和振幅,并确定振动的种类和来源。
2.时域分析法:时域分析是直接观察振动信号的波形,并对其进行分析和处理。
3.成像分析法:这种方法是通过对轴流风机振动进行成像,找出振动源的位置和强度,进而对其进行处理。
轴流风机振动的处理方法如果轴流风机出现了振动问题,我们需要及时找出振动的根源,并进行相应的处理。
常用的处理方法主要包括以下几种:1.动平衡:对轴流风机的转子进行动平衡处理,消除机械振动。
2.支承优化:对轴承进行优化处理,修复或更换损坏的轴承。
3.部件调整:对轴流风机的部件进行调整,如重新安装轴承等。
4.流体力学调整:对轴流风机的流体力学特性进行调整,如更换叶片、调整进口风道等。
风机振动故障的主要原因分析及一些有效的处理方法

风机由于运行条件恶劣,故障率较高,容易导致机组非计划停运或减负荷运行,影响正常生产。
所以加强对风机的维护和保养,特别是要迅速判断出风机运行中故障产生的原因,采取相应的必要措施就显得十分重要了。
文章结合生产实际对风机振动的故障原因做出了相应的分析。
风机振动是运行中常见的现象,只要在振动控制范围之内,不会造成太大的影响。
但是风机的振动超标后,会引起轴承座或电机轴承的损坏、电机地脚螺栓松动、风机机壳、叶片和风道损坏、电机烧损发热等故障,使风机工作性能降低,甚至导致根本无法工作。
严重的可能因振动造成事故,危害人身健康及工作环境。
公司曾发生过因风机振动大,叶轮与壳体发生摩擦,引起设备着火的事故案例,给公司带来了较大的经济损失。
所以查找风机振动超标的原因,并针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。
公司长期用测振仪对风机振动进行测量,并记录数据,结合生产实际中出现的故障现象对风机的振动原因作出了如下总结,并提出了相应的处理措施。
一、风机轴承箱振动风机最常见的故障就是轴承箱振动,可以通过外部检测进行初步诊断。
轴承箱振动引起故障有迹可查,是一个振动由小变大,缓慢发生的过程。
公司采用测振仪定期对风机的轴承箱进行振动值检测,对比振动值,迅速做出正确分析和处理,提前对有可能发生故障的风机进行有计划的检修,保证了风机的安全平稳运行。
1. 转子质量不平衡引起的振动公司发生的风机轴承箱振动中,大多数是由于转子系统质量不平衡引起的。
造成转子质量不平衡的原因主要有:叶轮出现不均匀的磨损或腐蚀;叶轮表面存在不均匀的积灰或附着物;叶轮补焊后未做动平衡;叶轮上零件松动或连接件不紧固等。
转子不平衡引起的振动的特征,用测振仪测得数据显示:(1) 振动值径向较大,而轴向较小;(2) 振动值随转速上升而增大。
针对转子不平衡引起的振动我们制定了一系列的防范措施,由于公司使用的引风机主要是将焙烧炉室内产生的沥青烟气及时抽送出烟道,所以风机叶轮容易腐蚀,表面及其他部位空腔易粘灰,产生不均匀积灰或附着物,造成风机转子不平衡,引起风机振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大型轴流风机各类振动原因分析及处理措施
轴流风机以其流量大、启动力矩小、对风道系统变化适应性强的优势逐步取
代离心风机成为主流。
轴流风机有动叶和静叶2种调节方式。
动叶可调轴流风机通过改变做功叶片的角度来改变工况,没有截流损失,效率高,还可以避免在小流量工况下出现不稳定现象,但其结构复杂,对调节装置稳定性及可靠性要求较高,对制造精度要求也较高,易出现故障,所以一般只用于送风机及一次风机。
静叶可调轴流风机通过改变流通面积和入口气流导向的方式来改变工况,有截流损失,但其结构简单,调节机构故障率很低,所以一般用于工作环境恶劣的引风机。
随着轴流风机的广泛应用,与其结构特点相对应的振动问题也逐步暴
露,这些问题在离心式风机上则不存在或不常见。
本文通过总结各种轴流风机异常振动故障案例,对其中一些有特点的振动及其产生的原因进行汇总分析。
一、动叶调节结构导致振动
动叶可调轴流风机通过在线调节动叶开度来改变风机运行工况,这主要依赖轮毂里的液压调节控制机构来实现,各个叶片角度的调节涉及到一系列的调节部件,因而对各部件的安装、配合及部件本身的变形、磨损要求较高,液压动叶调节系统结构如图1所示。
动叶调节结构对振动的影响主要分单级叶轮的部分叶片开度不同步、两级叶轮的叶片开度不同步及调节部件本身偏心3个方面。
(一)单级叶轮部分叶片开度不同步
单级叶轮部分叶片开度不同步主要是由于滑块磨损、调节杆与曲柄配合松动、叶柄导向轴承及推力轴承转动不畅引起的。
这些部件均为液压缸到动叶片之间的传动配合部件,会导致部分风机叶片开度不到位,而风机叶片重量及安装半径均较大,部分风机叶片开度不一致会产生质量严重不平衡,导致风机在高转速下出现明显振动。
单级叶轮部分叶片开度不同步引起的振动主要特点如下:
1)振动频谱和普通质量均不平衡,振动故障频谱中主要为工频成分,同时部分叶片不同步会产生一定的气流脉动,使振动频谱中出现叶片通过频率及其谐波,部分部件的磨损及松动则会产生一定的非线性冲击,使振动频谱中出现工频高
次谐波成分,这在振速频谱中表现得相对明显一些,在位移频谱中几乎观察不到。
2)风机振幅不稳定,振幅变化主要发生在动叶开度调节过程中,在动叶开度稳定时振幅基本保持稳定,有时会随动叶开度变化而逐步变化。
3)刚升速至工作转速、风机动叶未开或开度较小时,风机振幅一般较小。
(二)两级叶轮叶片开度不同步
对两级动叶可调轴流风机而言,还存在两级叶轮叶片开度不同步的问题。
其原因主要是液压执行机构铜套磨损或者两级推力盘问连杆磨损变形。
连杆主要用于同步一、二级推力盘之间的轴向位移,连杆的磨损变形会导致两级推力盘间位移不同步,从而导致两级动叶开度变化不同步。
液压缸铜套的磨损、局部开裂、变形及中心轴间隙变大则会导致两级动叶的开度调节整体不到位,从而使两级动叶开度不一致。
由于单个叶轮的所有叶片开度均同步,所以并不会明显影响转子的动平衡情况,因此,其振动故障频谱中工频占比一般相对较小,主要是产生较大的叶片通过频率,在松动严重的情况下还会出现工频高次谐波成分。
振幅一般在某个特定负荷(动叶开度)下存在最大值,且振幅出现波动,其中工频和叶片通过频率均出现波动变化,而在其他负荷或未带负荷时振幅则相对较小。
(三)调节部件偏心
调节部件偏心主要指质量较大的调节部件的安装偏心、松动,由于质量较大,当其旋转中心与转子中心发生偏斜时,将会产生较大的质量不平衡,而由松动导致的偏心也会产生质量不平衡。
对于动叶可调轴流风机而言,主要指液压缸的安装偏心及松动。
如果仅是液压缸安装偏心,而紧力足够,则只会导致质量分布的改变,风机转子会出现单纯的质量不平衡故障,故障频谱主要为稳定的工频成分,每次启机定速后振动值均比较稳定,不会随负荷工况发生变化。
如果是由于液压缸安装时紧力不足导致的松动,则会产生不稳定的质量不平衡,每次停机后再次启机,由于离心力的变化,液压缸的位置会发生改变,致使每次启机的振动数据均不一致,振动主要以工频为主,在转速不变时振动则比较稳定。
对于此类故障,由于单次定速后振动很稳定,容易与原始质量不平衡混淆,导致无谓的反复动平衡。
二、气流脉动导致振动
气流脉动是普遍存在的气流分离与蜗流发展的产物。
对于轴流风机,除去原设计及后期改造中进出口流道、挡板等通流结构设计不合理导致的流体脉动外,在运轴流风机出现流体脉动的原因如下:
1)静叶可调轴流风机叶片开度的冗余度较大,低负荷下静叶开度的变化容易导致风机工作点落入不稳定运行区域,产生流体脉动甚至喘振,引起强烈振动。
2)因焊接刚度、局部应力、腐蚀或异物进入,导致风机动叶片及导叶严重磨损甚至局部脱落,引起流体脉动。
3)因风机进口流道挡板异常、异物堵塞等原因,导致系统阻力增加,流量不足,引起流体脉动、失速甚至喘振。
现场实际测试数据显示,上述几种流体脉动引起的风机振动现象及特征相似,主要包括以下几点。
1)气流脉动多引起风机机壳、进出口管道及机壳基础振动,对轴承及转子机械振动的影响较小,起振频率主要为与转子主频无关的低频成分。
2)当动叶或静叶磨损、破裂产生气流脉动时,其气流脉动会与机械振动相耦合,此时气流脉动故障频率中会出现较大的叶片通过频率及其谐波,且轴承及转子也会出现故障频率。
3)气流脉动除引起风机振动变化外,还会引起风机电流、流量不稳,甚至大幅波动,导致并联运行的2台风机在同等风量下电流差异较大,现场有明显气流噪音。
三、支撑动刚度弱及局部共振导致振动
大容量轴流风机相比于离心风机,其自重、外形尺寸均较大,支撑连接构件也较多,因设计刚度薄弱、连接松动、局部共振所带来的振动问题也更多、更加难以判别。
(一)设计支撑动刚度较弱
大容量轴流风机重量、外形尺寸增加较多,而支撑材料往往比较薄弱。
风机多采用3水泥座支撑方式,即进气箱支腿、下机壳支腿、扩散筒支腿分别支撑在3个水泥座上,每个水泥基座高度较高,横截面积不足,横向刚度较差,易引起较大的风机横向振动,尤其在风机负荷较高时,风机转子传递到基座上的作用力增大,振幅则更大。
在没有异常激振源的情况下,设计支撑结构刚度弱导致的振动主要以工频为主。
支撑结构的基础、支腿、壳体振幅较接近,且由上到下均匀减小,但支撑结构整体振动较大,主要表现在水平方向,而垂直及轴向振动一般较小。
一般通过动平衡或者加固支撑基础,可降低转子激振力,从而降低风机振动水平。
(二)连接松动
轴流风机壳体下部通过支腿与水泥基座连接,左右通过一圈螺栓与进气箱、扩散筒连接,上、下半筒之间通过两排螺栓连接,轴承座固定在下半壳体上。
由于轴流风机壳体连接部位较多,在长期运行中易出现紧力不足、连接松动的情况,而且部分轴流风机连接松动引起的振动会非常大,尤其是壳体共振频率与工作转速较为接近时,连接松动往往导致壳体固有频谱偏移,产生共振,振动被进一步放大。
如风机壳体与左右风道壳体连接螺栓出现局部松动时,壳体振幅可以放大1倍多,而壳体松动产生共振时,甚至可以出现1个数量级的振动差别,部分大容量机组的轴流风机下支撑采用弹簧基础,长时间运行后,出现基础沉降不均,也会导致支撑动刚度明显不足,产生明显振动。
风机连接松动引起支撑动刚度弱产生的振动,一般采用现场紧固排除。
此类振动以工频为主,随负荷变化有一定波动,松动接触面差异振动明显,一般应首先紧固各连接面螺栓,有滑动支腿的则紧固、垫实支腿,然后测试各接触面振动的差异,并对比其紧固前后的振动情况,以排查是否存在连接松动问题。
(三)局部共振
由于轴流风机的结构特点,其在转速频率及叶片通过频率附近的固有频率较大,很容易产生局部共振。
如风机各支腿、上下壳体、支撑板、叶片等均有1到几个固有频率,有些叶片通过频率与风机常见的故障频率非常接近,很容易引起局部共振。
对于此类振动问题,现场很难大幅改变各结构固有频率,一般是在紧固各连接面,排除因连接松动导致的共振后,通过减小激振力来降低振动水平。
如采用动平衡降低工频激振力,或对叶片开度一致性、叶片不均匀磨损情况等进行检查处理,减小叶片通过频率的激振力。
四、振动故障处理建议
1)在处理大容量轴流风机异常振动时,除常规的故障频率分析外,还应分析振动的变化特点,如振动随时间、负荷、开度、环境温度等的变化情况,升降速、刚定速及带负荷下的振动情况,现场连接部件差异振动、松紧螺栓振动的测试情况。
2)2次动平衡振动规律差异较大时,应去掉前期所加平衡块,测试2次启机后振动的重合性,找出其本身振动变化的原因。
3)动叶可调轴流风机液压调节结构故障的原因很多,在发现振动与叶片开度关联较大,且出现明显叶片通过频率或工频谐波时,应重点排查液压调节结构松动、磨损等缺陷。