风机震动原因分析

合集下载

引风机的振动故障分析及处理

引风机的振动故障分析及处理

引风机的振动故障分析及处理引风机是工业生产中常见的设备,其主要作用是吸入空气并将其加速送入燃烧炉中,以维持燃烧的正常进行。

在使用过程中,引风机有可能会出现振动故障,这不仅会影响设备的正常运行,还会对生产造成不利影响。

对引风机的振动故障进行分析并及时处理,对于保障生产的顺利进行具有重要意义。

一、振动故障的原因分析(一)不平衡引风机叶轮不平衡是引起引风机振动的主要原因之一。

由于生产过程中的磨损和不平衡的装配,叶轮的不平衡会引起在高速旋转时的振动。

如果叶轮上积聚了灰尘或者其他杂物,也会造成不平衡,导致引风机产生振动。

(二)轴承故障在使用过程中,引风机轴承的润滑油可能会老化或者耗尽,导致轴承的摩擦增大,进而引起振动。

长时间的高速旋转会使轴承受到较大的压力,轴承零部件出现磨损也会引起振动。

(三)安装不当引风机的安装不当也是引起振动故障的原因之一。

比如机座安装不稳固、叶轮与外壳摩擦等都会引起不必要的振动。

(四)进风口设计不当引风机的进风口设计不当也可能引起振动故障。

如果进风口设计不当,可能会造成进风阻力过大,引风机的工作状态不稳定,从而引起振动。

二、振动故障的处理方法引风机叶轮不平衡是引起振动的主要原因之一,因此平衡校正是解决振动故障的主要手段。

在进行平衡校正时,首先需要对叶轮进行动平衡测试,确定不平衡的位置和程度,然后采用添加铅块或者切削方法进行校正。

对于因为轴承老化或者损坏导致的振动故障,需要及时更换轴承。

在更换轴承时,需要注意选用合适的轴承型号,并保证安装时周围环境干净、安静,以免对新轴承造成污染或损坏。

对于安装不当引起的振动故障,需要重新进行安装调整。

检查机座的稳固性,确保其与地面接触牢固,叶轮与外壳之间不发生摩擦。

三、振动故障的预防措施(一)定期检查为了及时发现引风机的振动故障,经常性的定期检查是很有必要的。

通过定期检查可以发现引风机的潜在问题,及时进行处理,避免振动故障对生产造成不利影响。

(二)保持清洁定期清洁引风机的叶轮和轴承是预防振动故障的有效手段。

某电厂一次风机振动大原因分析及处理

某电厂一次风机振动大原因分析及处理

某电厂一次风机振动大原因分析及处理摘要:平顶山发电分公司自投产以来一次风机就存在无规律振动现象,多次因振动大跳闸引起机组RB,严重威胁机组安全运行。

本文以平顶山发电分公司1000MW机组为例,从运行调整与设备缺陷两个方面对引起一次风机振动大的故障原因进行分析。

关键词:风机振动;精细调整;机壳强度;CFD分析;风道前言:动叶可调轴流式风机因其径向尺寸小、质量轻、流量大且调节范围广、高效率工作区宽调节性能好等诸多优点,逐渐成为大型火电机组送风机、引风机和一次风机的主流风机型式1。

但由于轴流式风机具有驼峰型性能曲线,加上机组调峰运行、工况变化频繁,运行条件恶略等因素、特别是一次风机时常发生风机振动大跳闸现象,对机组的安全性和经济性都产生了较大影响。

1、设备系统简介:国家电投河南电力有限公司平顶山发电分公司一期工程安装2×1000MW超超临界汽轮发电机组,锅炉为东方锅炉厂制造的DG3000/26.15-Ⅱ1型超超临界参数、变压直流炉、单炉膛、一次再热、平衡通风、露天岛式布置、固态排渣、全钢构架、全悬吊结构、对冲燃烧方式,Π型锅炉。

#1、#2锅炉共配备4台由成都电力机械厂生产的双级动叶可调轴流一次风机,风机型号:GU23838-22。

一次风机布置在锅炉后部零米,一次风道在一次风机出口挡板后分成两路:一路进入空气预热器和烟气进行热交换后,汇入热一次风母管;另一路不经过空气预热器进入冷一次风母管,经热、冷风母管分配为各热、冷风支管,经隔绝插板、调节挡板后,汇流成混合风进入磨煤机,携带并加热磨煤机磨制的合格煤粉进入炉膛参与锅炉燃烧。

2、一次风机振动大的原因分析针对一次风机振动的情况,我们加强对风机的运行监视,努力查找引起风机振动的原因,并结合该风机的现场实际运行情况,主要从运行和设备缺陷两个大方面对风机振动原因进行分析。

风道系统中,气流压力脉动与扰动会造成气流流态不良,在风道中会出现局部或气流相互干扰、碰撞而引起气流的压力脉动,压力波常常没有规律,振动随流量的增加而增大2。

引风机的振动故障分析及处理

引风机的振动故障分析及处理

引风机的振动故障分析及处理引风机是工业生产中常用的设备之一,主要用于将空气引入设备或排出设备内的烟气。

在长期运行的过程中,引风机有可能发生振动故障,影响到正常运行效果。

本文将对引风机振动故障的分析及处理方法进行详细介绍。

引风机的振动故障多数是由以下原因引起的:1. 动平衡不良:引风机的风叶和轴承旋转不平衡会导致振动加剧,进而引起故障。

主要原因包括风叶安装不平衡和风叶磨损不对称等。

2. 轴承故障:轴承的损坏、轴承润滑不良、轴承过紧或过松都会导致引风机的振动故障。

3. 电机故障:如电机安装固定不牢、电机磁极对称性不好、电机绝缘老化等都可能导致引风机振动故障。

4. 设备松动:设备固定螺栓松动、连接件损坏等都可能引起引风机振动。

针对引风机的振动故障,可以通过以下方法进行处理:1. 动平衡校正:对于风叶不平衡或磨损不对称的情况,可以进行动平衡校正。

通过在风叶上加上配重块,使得风叶的质量分布均匀,减小振动。

2. 检查轴承:定期检查轴承的工作状态,如果发现轴承存在异常声响、温度过高等情况,及时更换轴承。

要保证轴承的润滑状态良好,定期添加润滑油。

3. 检查电机:定期检查电机的固定状态,确保电机安装稳固。

要注意电机的绝缘状况,如果发现绝缘老化,要及时更换绝缘件。

4. 检查设备松动:定期检查设备的固定螺栓和连接件,确保设备的连接紧固良好,避免因为设备松动引起的振动故障。

1. 定期检查维护:建立完善的定期检查维护制度,对引风机进行定期检查和保养,及时发现和处理潜在问题。

2. 合理使用:使用过程中要遵循使用规范,避免超负荷运行,减少对引风机的损伤。

3. 监测系统:安装振动监测系统,及时掌握引风机振动情况,发现异常振动并进行处理。

引风机的振动故障是影响引风机正常运行的一个重要问题,通过采取相应的分析和处理方法,可以有效地减少振动故障的发生,并提高引风机的正常运行效果。

建立完善的定期检查维护制度,合理使用设备,安装振动监测系统,也是减少振动故障的重要手段。

风力发电机组振动原因分析和解决措施

风力发电机组振动原因分析和解决措施

风力发电机组振动原因分析和解决措施摘要:近年来,风力发电作为一种绿色能源在我国迅速发展,风电装机不断加大,机组数量不断增多,为保证机组设备的安全,风机厂家会相应对风机系统配置各种各样的保护,来确保机组在运行过程中发生异常时能够安全解列,其中风机振动超限就是一个常见的机组故障保护,主要是保证机组振动值在超过定值时机组停运,避免发生设备损毁或机组倒塌,我国早期投运的的1.5MW风机只配置两个振动传感器,振动监测较现在技术较为简单,当机组出现振动超限故障时,因涉及电气、传动、控制、结构、环境等多因素,分析处理都有一定难度,本文通过对某风场发生的振动超限故障进行研究,分析发生振动超限的原因,提出应对措施,提高风机安全和稳定性。

关键词:风机;振动;原因分析;解决措施引言:随着风力发电技术的发展,风机振动状态监测技术也得到较大的发展,目前,风机振动在线监测系统已成为风力发电机组一个重要的组成部分,对风机传动链进行24h监测。

而早期投产的风力发电机组,因技术限制,只在传动链上配置两个振动传感器,分别安装在齿轮箱和发电机下方,振动传感器拾取的振动信号不能够直接反映振动源的信号特征,而且还容易受外部干扰,所以机组运行过程中,经常会发生振动超限故障,影响风机稳定运行和造成一定电量损失,更严重的会影响到风机整机安全,所以,当风机发生振动超限故障,就需要运行单位尽快排查故障原因并采取措施,保证风机安全稳定运行。

一、风机振动原因分析云南某风电场作为较早在云南高海拔地方开发建设的风电场,安装的双馈式风力发电机组,2012年投产以后,机组经常发生振动超限故障,尤其在大风阶段,频率更高,严重影响风电场正常运营,为了彻底解决风机振动问题,通过对风场内风机发生的振动超限故障原因进行分析,发现主要为以下几个方面的问题:风向变化过快、风速湍流度大、传感器误报、传动链波动、叶片零位误差等几个方面原因。

(一)风向变化过快风力发电机组采取主动对风系统来捕捉风能,通过机组上安装的风向标来进行测风,风机位置与测风位置超过一定角度,控制系统启动对风。

风机振动原因分析

风机振动原因分析

1 轴承座振动转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。

造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈) ;机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。

转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50% 工作转速。

动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。

其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动;滚动轴承异常引起的振动轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。

其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。

滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。

这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。

|轴承座基础刚度不够引起的振动基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。

动叶可调式轴流风机振动原因分析及预防措施制定

动叶可调式轴流风机振动原因分析及预防措施制定

动叶可调式轴流风机振动原因分析及预防措施制定- 1 -摘要:针对某火电厂2号机组停运3个月后再次启动一次风机后出现的风机振动大的问题,通过对振动原因进行排查,发现了是由于风机动叶长期未进行活动,部分风机动叶根部生锈发生卡涩,最终导致调节芯轴弯曲,转子不对中产生振动。

提出机组长期停运应定期进行动叶开关活动,风机转子定期盘动,做好停运设备定期保养工作,防止部件生锈卡涩造成振动变大。

关键词:风机;振动;定期工作- 1 -0引言轴流式一次风机作为大型火电机组的主要锅炉辅机设备,主要承担着为锅炉燃烧输送煤粉的作用,其运行状况的好坏对电厂的安全与经济有着重大影响。

风机运行过程中如果发生振动,不仅会损坏设备,严重时还会导致锅炉灭火、机组停运,因此一次风机的正常稳定运行对保证机组的安全稳定运行至关重要。

本文针对某电厂一次风机振动大产生的原因展开分析,并从定期工作方面提出预防措施,保证一次风机的安全运行。

1设备概况河南某电厂2×1000MW机组,锅炉型号DG3063.81/29.3-Ⅱ1型超超临界参数、变压直流、一次中间再热、单炉膛、平衡通风、固态排渣、露天布置、全钢构架、对冲燃烧方式,锅炉。

一次风机由成都电力机械厂生产的GU24036-112型动叶可调轴流式风机。

该风机的主要工作原理为:由系统管道流入风机的气流经进气箱改变方向,经整流罩收敛加速后流向叶轮,电动机动力通过叶轮叶片对气流作功,叶片的工作角度可无级调节,由此改变风量、风压,满足工况变化需求;流经叶轮后的气流为螺旋运动,经后导叶导流为轴向流入扩压器,在扩压器内气体的大部分动能转化成静压能,再流至系统满足运行要求,从而完成风机出力的工作过程[1]。

一次风机的主要技术参数及极限运行参数如表1、表2。

表1 风机主要技术参数表2风机极限运行参数2 存在问题某电厂2号机组2020年1月11日通过机组168试运后停机备用,至2020年5月份计划启动机组进行保养工作,2020年5月6日进行机组启动前阀门活动试验过程中,发现2号一次风机动叶执行机构开至20%开度后卡涩,检修人员到现场打开芯筒人孔门对伺服阀执行机构连杆进行检查,发现连杆断裂,如图1图12020年5月13日该电厂启动2号锅炉1号一次风机过程中,DCS显示风机振动偏大,水平振动5.8mm/s,垂直振动3.7mm/s,较正常值明显偏大,就地检查地脚螺栓无松动,测量信号完好,停运该风机后吊开风机上机体,活动动叶发现一级叶片有7片叶片漂移,如图2,进一步解体检查发现调节机构芯轴肉眼可见弯曲,如3。

凉水塔风机振动超标的故障解决措施

凉水塔风机振动超标的故障解决措施

解决措施:加固基 础、调整风机位置 、更换设备等
02 故障检测方法
振动监测
振动传感器:用于测量风机振动的加速度、速度和位移 数据采集系统:实时采集振动数据,并进行存储和分析 振动分析软件:用于分析振动信号,识别振动故障类型 振动监测标准:根据行业标准和设备制造商要求,设定振动监测的阈值和报警值
噪声检测
选择合适的 轴承型号和 规格
拆卸旧轴承, 安装新轴承
检查安装是 否正确,确 保轴承运转 正常
定期检查轴 承磨损情况, 及时更换磨 损严重的轴 承
修复叶片
检查叶片受损情况,确定修复方案 采用焊接、粘接等修复技术,修复叶片受损部位 修复后进行动平衡测试,确保叶片平衡 更换受损严重的叶片,确保风机正常运行
提高安装质量
严格遵循安装规范和操作流程 选用高质量的安装材料和设备 加强安装人员的培训和考核 定期对安装质量进行检查和评估
05 故障案例分析
某电厂凉水塔风机振动超标案例
故障现象:风机振动超标,影响正常运行 原因分析:风机叶片不平衡、轴承磨损、基础松动等 解决措施:调整风机叶片平衡、更换轴承、加固基础等 效果评估:振动值恢复正常,运行稳定
1 叶片磨损:长时间运行导致叶片磨损,影响风机性能 叶片断裂:叶片受到外力冲击或疲劳断裂,导致风机振动 叶片不平衡:叶片安装不当或叶片质量不均,导致风机振动 叶片腐蚀:叶片受到腐蚀,影响风机性能和振动
基础松动
原因:地基沉降、 地质条件变化等
影响:风机振动加 剧、噪音增大、影 响设备寿命
检测方法:通过振 动监测仪器进行测 量
温度监测系统: 实时监测风机表 面温度变化
温度阈值设定: 设定温度报警阈 值,超过阈值时 发出报警信号
温度数据分析: 分析温度数据, 找出温度异常原 因,制定相应解 决措施

风机振动原因及消除

风机振动原因及消除

三、现场动平衡
现场动平衡有单、双面试重法和影响系数法。试重法多用在初次 进行动平衡或无可参考影响系数的转子上,系数法则使用在有过动平 衡配重记录的或有现成影响系数的转子。我们现在使用的多为单面影 响系数法。 1、单面试重法步骤: (1)选择带宽、测量方法;带宽1Hz、试重法 1)选择带宽、测量方法;带宽1Hz、试重法 (2)预置转速:默认4000rp )预置转速:默认4000rp (3)启动转子到平衡转速,按 回车 开始测量;
经过多年的实践经验我们发现: 经过多年的实践经验我们发现: 我厂的引风机振动大多由叶轮 的动不平衡造成,即叶轮导流面局部失重和积灰质量不均, 的动不平衡造成,即叶轮导流面局部失重和积灰质量不均,以及烟气 温度、湿度变化等原因引起。 动不平衡是旋转机械的主要故障之一, 不平衡是旋转机械的主要故障之一, 温度、湿度变化等原因引起。 由转子不平衡引起的故障约占全部机械故障的50%, 由转子不平衡引起的故障约占全部机械故障的50%, 所以说风机运行 50% 中是常见的故障也是转子(叶轮)系统的不平衡。风机在运行时, 中是常见的故障也是转子(叶轮)系统的不平衡。风机在运行时,转 子会产生不平衡离心力,从而引起转子的横向振动, 子会产生不平衡离心力,从而引起转子的横向振动,并通过支撑转子 的轴承向外传播, 使风机产生振动和噪声。 的轴承向外传播, 使风机产生振动和噪声。 当不平衡力增大到一定 程度后转子会产生很大的横向振动,从而引发如轴承磨损、烧毁,转 程度后转子会产生很大的横向振动,从而引发如轴承磨损、烧毁, 子断裂等严重的机械事故。 子断裂等严重的机械事故。
现场动平衡
2、单面系数法步骤: (1)选择测量方式:系数法(通过“+”切换) )选择测量方式:系数法(通过“+”切换) (2)启动转子至平衡转速,待稳定后按 保持 记录数据 (3)按 回车 ,机器显示出计算结果。 (4)焊接配重块后再次启动转子测量,不满意则重复上述过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电站风机振动故障简易诊断
摘要:分析了风机运行中几种振动故障的原因及其基本特征,介绍了如何运用这些振动故障的基本特征对风机常见振动故障进行简易诊断,判断振动故障产生的根源。

关键词:风机;振动;诊断
风机是电站的重要辅机,风机出现故障或事故时,将引起发电机组降低出力或停运,造成发电量损失。

而电站风机运行中出现最多、影响最大的就是振动,因此,当振动故障出现时,尤其是在故障预兆期内,迅速作出正确的诊断,具有重要的意义。

简易诊断是根据设备的振动或其他状态信息,不用昂贵的仪器,通常运用普通的测振仪,自制的听针,通过听、看、摸、闻等方式,判断一般风机振动故障的原因。

文中所述振动基于电厂离心式送风机、引风机和排粉机。

1轴承座振动
1.1转子质量不平衡引起的振动
在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。

造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。

转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处
振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。

1.2动静部分之间碰摩引起的振动
如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装置之间碰摩。

其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动;
1.3滚动轴承异常引起的振动
1.3.1轴承装配不良的振动
如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。

其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。

1.3.2滚动轴承表面损坏的振动
滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。

这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位置和损坏程度,在此不
加阐述。

表1列出滚动轴承异常现象的检测,可以看出各种缺陷所对应的异常现象中,振动是最普遍的现象,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。

1.4轴承座基础刚度不够引起的振动
基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。

这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。

1.5联轴器异常引起的振动
联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。

其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机单独运行,振动消失;④如果径向振动大则为两轴心线平行,轴向振动大则为两轴心线相交。

示例:某厂M5-29-NO19D型排粉机,转速n=1450r/min,在运行中出现振动,运用普通测振仪测振情况如下:
根据振动情况,振动在承力端的水平方向为最大,垂直及轴向较小,据此判断很可能是叶轮不平衡引起振动,而且振幅随转速的
升高而增长很快,转速降低时振幅可趋近于零,再用听针听承力轴承声音正常,用手摸轴承温度正常,检查地脚螺栓完好,轴承和基础原因可排除,联轴器问题也不可能。

检查叶轮发现叶轮磨损严重,系磨损不均匀所至,经进行动平衡试验,在叶轮上加平衡块重450g后振动消除。

2转子的临界转速引起的振动
当转子的转速逐渐增加并接近风机转子的固有振动频率时,风机就会猛烈地振动起来,转速低于或高于这一转速时,就能平稳地工作。

例如:①改造后的风机,由于叶轮太重,使风机轴系的临界转速下降到风机工作转速附近,引起共振;②基础刚度不足,重量不够,其固有频率接近旋转频率;③风机周围的其他物件、管道、构筑物的共振。

④调节门执行机构传动杆的共振。

其振动特征为:该物件共振处的相对振动最大;振动频率与旋转频率相同或接近。

3风机风道振动
这种振动是由于风道系统中气流的压力脉动与扰动而引起的。

3.1风箱涡流脉动造成的振动
入口风箱的结构设计不合理,导致进风箱内的气流产生剧烈的旋涡,并在风机进口集流器中得到加速和扩大,从而激发出较大的脉动压力波。

其振动特征为:压力波常常没有规律,振幅随流量增加而增大。

3.2风道局部涡流引起的振动
风道某些部件(弯头、扩散管段)的设计不合理,造成气流流态不良,在风道中出现局部涡流或气流相互干扰、碰撞而引起气流的压力脉动,从而激发出噪声和风道的振动。

其振动特征:振动无规律性,振幅随负荷的增加而增大。

3.3风机机壳和风道壁刚度不够引起振动。

刚度较弱的位置,振幅就较大。

3.4旋转失速
当气流冲角达到临界值附近时,气流会离开叶片凸面,发生边界层分离从而产生大量区域的涡流,造成风机风压下降。

旋转失速主要发生在轴流式风机中,在离心式风机的叶轮及叶片扩压器中,由于流量减少,同样也会出现旋转失速。

旋转失速引起的振动的特征:(1)振动部位常在风机的进风箱和出口风道;(2)振动多发生在进口百叶式调节挡板、后弯叶片的风机上;(3)挡板开度在0~30%时发生强烈振动,开度超过30%时降至正常值;(4)旋转失速出现时,风机流量、压力产生强烈的脉动。

3.5喘振
具有驼峰型性能曲线的风机在不稳定区域内工作,而系统中的容量又很大时,则风机的流量、压头和功率会在瞬间内发生很大的周期性的波动,引起剧烈的振动和噪声。

喘振是风机性能与管道装置耦合后振荡特性的一种表现形式,其振幅、频率受风机管道系统容量的支配,其流量、压力、功率的波动又是不稳定工况区造成的。

示例:某厂5、6号送风机(型号为G4-73-11NO25D)进风箱壁一直存在振动较大的现象,5号相对比6号小些,振幅随负荷增加而增大,并且该炉经常缺氧燃烧,送风量不足。

风机初投产时经3600管道从炉顶进风,后来上面管道拆除,改为八米处进风,在原进风圆管道与进风箱连接的方圆节侧壁开孔进风。

由于结构不太合理,进风口开孔尺寸小,并且开孔6号比5号要小很多,流动面积不足。

后来在后侧各开一2500mm×2000mm的孔,并将6号原开孔尺寸L1及L2加大,以加大进风量,振动减少,锅炉缺氧燃烧解决。

4 结束语
风机的振动问题是很复杂的,但只要掌握各种振动的原因及基本特征,加上平时多积累经验,就能迅速和准确判断风机振动故障的根源所在,进而采取措施,提高风机的安全可靠性。

相关文档
最新文档