金属晶体结构教案
晶体结构、晶胞教案

晶体结构、晶胞教案一、教学目标:1. 了解晶体的定义和分类;2. 掌握晶体的基本特征和性质;3. 理解晶胞的概念和晶体结构的基本单元;4. 学会使用晶胞来描述晶体的空间结构;5. 能够运用晶体结构和晶胞的知识解释一些实际问题。
二、教学重点:1. 晶体的分类和基本特征;2. 晶胞的概念和晶体结构的基本单元;3. 晶胞的参数和晶体的空间结构描述方法;4. 晶体结构和晶胞的应用。
三、教学难点:1. 晶体结构的微观描述和宏观表现之间的关系;2. 晶胞的参数计算和晶体结构的空间想象力。
四、教学方法:1. 采用讲授法,讲解晶体的定义、分类和基本特征;2. 采用案例分析法,分析实际问题,引导学生理解晶体结构的应用;3. 采用分组讨论法,让学生通过合作探讨晶胞的概念和晶体结构的基本单元;4. 采用实践操作法,让学生通过实际操作,掌握晶胞的参数计算和晶体结构的空间描述方法。
五、教学准备:1. 教学课件和教案;2. 晶体模型和晶胞模型;3. 相关实际问题的案例材料;4. 分组讨论的道具和工具。
六、教学内容:6. 晶体的衍射和晶体学了解晶体衍射现象及其在晶体学研究中的应用。
掌握X射线晶体学和电子晶体学的原理和方法。
7. 晶体的物理性质探讨晶体在不同条件下的物理性质,如熔点、导热性、导电性、光学性质等,并了解它们与晶体结构的关系。
8. 晶体的化学性质分析晶体的化学稳定性、反应活性等化学性质,以及它们与晶体结构的关系。
9. 晶体的实际应用介绍晶体在材料科学、药物化学、光学、电子学等领域的应用,并探讨晶体学研究的发展趋势。
10. 总结与展望总结本章内容,强调晶体结构和晶胞在科学和工业领域的重要性。
展望晶体学未来的研究方向和发展。
七、教学过程:6. 通过实验或多媒体展示,让学生直观地了解晶体衍射现象。
讲解X射线晶体学和电子晶体学的原理,引导学生通过实际案例分析晶体衍射在晶体学研究中的应用。
7. 通过实验或多媒体展示,让学生了解晶体在不同条件下的物理性质。
晶体结构、晶胞教案

晶体结构、晶胞教案第一章:晶体结构概述1.1 晶体与非晶体的区别定义晶体与非晶体晶体的有序排列与非晶体的无序排列1.2 晶体结构的类型离子晶体分子晶体金属晶体原子晶体1.3 晶体结构的基本特征晶体的周期性排列晶体的对称性晶体的空间点阵第二章:晶胞的概念与计算2.1 晶胞的定义晶胞的概念晶胞的构成2.2 晶胞的计算晶胞的体积计算晶胞中粒子的数量计算2.3 晶胞的类型简单晶胞体心立方晶胞六方最密堆积晶胞面心立方晶胞第三章:离子晶体结构3.1 离子晶体的定义与特点离子晶体的定义离子晶体的电荷平衡3.2 离子晶体的结构类型简单离子晶体复杂离子晶体3.3 离子晶体的空间结构晶体的晶胞参数晶体的晶胞中原子的位置第四章:分子晶体结构4.1 分子晶体的定义与特点分子晶体的定义分子晶体的分子间作用力4.2 分子晶体的结构类型线性分子晶体非线性分子晶体4.3 分子晶体的空间结构晶体的分子间作用力第五章:金属晶体结构5.1 金属晶体的定义与特点金属晶体的定义金属晶体的自由电子5.2 金属晶体的结构类型体心立方金属晶体面心立方金属晶体5.3 金属晶体的空间结构晶体的原子排列晶体的金属键第六章:原子晶体结构6.1 原子晶体的定义与特点原子晶体的定义原子晶体的共价键6.2 原子晶体的结构类型简单立方原子晶体面心立方原子晶体体心立方原子晶体6.3 原子晶体的空间结构晶体的原子排列第七章:六方最密堆积晶胞7.1 六方最密堆积晶胞的定义与特点六方最密堆积晶胞的定义六方最密堆积晶胞的空间利用率7.2 六方最密堆积晶胞的结构类型简单六方最密堆积晶胞体心六方最密堆积晶胞7.3 六方最密堆积晶胞的空间结构晶胞的原子排列晶胞的堆积方式第八章:晶体的生长与形态8.1 晶体生长的基本过程成核过程生长过程8.2 影响晶体生长的因素温度压力溶液的浓度8.3 晶体的形态晶体的表面形状晶体的内部结构第九章:晶体的物理性质9.1 晶体物理性质的定义与特点晶体物理性质的定义晶体物理性质的分类9.2 晶体物理性质的测量方法热分析光谱分析电学测量9.3 晶体物理性质的应用光学器件电子器件传感器第十章:晶体的化学性质10.1 晶体化学性质的定义与特点晶体化学性质的定义晶体化学性质的分类10.2 晶体化学性质的表征方法化学反应电化学测量光谱分析10.3 晶体化学性质的应用催化剂材料腐蚀与保护药物设计第十一章:晶体的应用领域11.1 晶体在电子学中的应用半导体晶体集成电路11.2 晶体在光学中的应用激光晶体光纤11.3 晶体在材料科学中的应用超导材料耐高温材料第十二章:晶体结构的研究方法12.1 X射线晶体学X射线衍射原理晶体学方程12.2 核磁共振(NMR)NMR原理晶体结构分析12.3 电子显微镜透射电子显微镜(TEM)扫描电子显微镜(SEM)第十三章:现代晶体学技术13.1 自动化晶体学自动化晶体生长自动化晶体测试13.2 计算晶体学分子动力学模拟量子化学计算13.3 纳米晶体技术纳米晶体合成纳米晶体应用第十四章:晶体生长的实验技术14.1 晶体生长的实验室设备炉子培养皿温度控制器14.2 实验操作步骤晶体生长的准备晶体生长的监控晶体的提取与清洗14.3 实验中常见问题与解决方法晶体生长速率控制晶体质量评估实验失败分析第十五章:晶体学的未来发展趋势15.1 新型晶体材料的探索高温超导体拓扑绝缘体15.2 晶体学与其他学科的交叉生物学与晶体学的结合化学与晶体学的结合15.3 晶体学技术的创新新型衍射技术高通量晶体生长技术重点和难点解析重点:理解晶体与非晶体的区别,掌握不同类型晶体结构的特点,了解晶胞的概念和计算方法,以及晶体结构对晶体性质的影响。
初中物理第一册:晶体教案二字

初中物理第一册:晶体教案二字晶体教案晶体是指具有规则的排列方式和明显的晶格结构的固态物质。
晶体结构是由一定数量的原子或分子按照一定的规律排列,并沿着特定方向周期性排列形成的。
本篇教案将帮助学生学习晶体的基本概念、典型结构及特性。
一、基本概念:根据晶体的成分不同,晶体可以分为金属晶体、离子晶体、共价晶体和分子晶体四种。
金属晶体是由金属原子组成的晶体;离子晶体是由离子(正、负离子)组成的晶体;共价晶体是由共价键形成的晶体;分子晶体是由分子构成的晶体。
晶体的组成单位为晶胞,晶体的各项物理性质均与晶胞有关。
晶胞的大小和形状取决于晶体的结构类型。
晶体结构有点阵结构和层状结构两种。
点阵结构又分为立方晶系、六方晶系、四方晶系、正交晶系、单斜晶系和三斜晶系。
层状结构又分为全息结构和层间孔洞结构两种。
二、典型结构离子晶体的典型结构为NaCl晶体,它由钠离子和氯离子组成。
NaCl晶体的晶胞为面心立方晶胞,具有六个面,八个顶点和十二条边。
共价晶体的典型结构为金刚石晶体,它由碳原子组成。
金刚石晶体的晶胞为菱形晶胞,具有八个面,八个顶点和十二条边。
分子晶体的典型结构为冰晶体,它由H2O分子组成。
冰晶体的晶胞为基本平行六面体晶胞,具有六个面,八个顶点和十二条边。
三、特性晶体的特性包括晶体的硬度、光学性质、声学性质、电学性质等。
晶体的硬度指的是晶体的抵抗外力破坏的能力。
钻石是一种具有非常高硬度的晶体,具有非常好的韧性和熔点。
晶体的光学性质指的是晶体对光的吸收、偏振和缺陷等。
二氧化硅是一种具有特殊光学性质的晶体,可以透过包括紫外线和红外线在内的大部分波长范围的光。
晶体的声学性质指的是晶体对声波的传播和反射能力。
石英是一种非常有用的晶体,可以用于制造声振器,例如用于无线电收发器中的压电石英晶体。
晶体的电学性质指的是晶体在外电场或磁场下的电效应。
铁电体是一种具有独特电学性质的晶体,在应用电子学和光学器件制造中具有重要作用。
四、教学方法本节课程将采用多种交互式教学方法,包括小组讨论、问题解答、实验演示和模拟仿真。
金属的结构与结晶教案

金属的结构与结晶教案第一章:金属的结构1.1 金属原子的电子排布解释金属原子的电子排布特点,如自由电子的存在。
通过图示展示金属原子的电子排布。
1.2 金属键描述金属键的形成和特点,如金属原子之间的电子云共享。
使用模型或图示来解释金属键的概念。
1.3 金属的晶体结构介绍金属的晶体结构类型,如面心立方、体心立方和简单立方结构。
利用图示和实物模型来展示不同晶体结构的特点。
第二章:金属的结晶2.1 结晶过程解释金属结晶的过程,包括成核和生长阶段。
讨论影响结晶速率和晶体生长的因素。
2.2 晶粒大小和形状探讨晶粒大小和形状对金属性能的影响。
解释晶粒生长和晶界迁移的概念。
2.3 晶界的性质描述晶界的特点和性质,如晶界的能量和原子排列。
探讨晶界对金属性能的影响。
第三章:金属的塑性变形3.1 滑移机制解释金属塑性变形的滑移机制,如位错滑移。
使用图示和模型展示位错滑移的过程。
3.2 塑性变形的条件讨论金属发生塑性变形的条件,如应力、温度和晶体结构。
分析不同晶体结构对塑性变形的影响。
3.3 塑性变形的织构形成探讨塑性变形过程中织构的形成和变化。
解释织构对金属性能的影响。
第四章:金属的热处理4.1 退火处理解释退火处理的目的和过程,如消除晶界和改善塑性。
讨论退火处理对金属性能的影响。
4.2 固溶处理描述固溶处理的方法和目的,如提高金属的强度和硬度。
使用图示展示固溶处理过程中原子分布的变化。
4.3 时效处理解释时效处理的过程和作用,如形成沉淀相和提高金属的性能。
分析时效处理对金属性能的影响。
第五章:金属的腐蚀与防护5.1 腐蚀类型介绍金属腐蚀的类型,如均匀腐蚀、点蚀和腐蚀疲劳。
使用图示和实例来区分不同类型的腐蚀。
5.2 腐蚀原因讨论金属腐蚀的原因,如化学反应、电化学反应和微生物作用。
分析腐蚀过程的基本原理。
5.3 防护方法探讨金属腐蚀的防护方法,如涂层、阴极保护和腐蚀抑制剂。
解释各种防护方法的原理和应用。
第六章:金属的机械性能6.1 强度与韧性解释金属的强度和韧性概念。
《晶体的常识》教案最全版

《晶体的常识》教案最全版第一章:引言1.1 教学目标让学生了解晶体的基本概念和特点。
激发学生对晶体研究的兴趣。
1.2 教学内容晶体的定义与分类晶体的基本特点晶体的重要性1.3 教学方法讲授法:介绍晶体的基本概念和特点。
互动法:引导学生讨论晶体的实际应用。
1.4 教学资源课件:展示晶体的图片和实例。
视频:播放晶体生长的实验过程。
1.5 教学步骤1. 导入:通过展示晶体图片,引发学生的好奇心。
2. 讲解:介绍晶体的定义、分类和基本特点。
3. 实例分析:分析晶体的实际应用。
4. 讨论:引导学生探讨晶体的重要性。
5. 总结:强调本节课的重点内容。
第二章:晶体的定义与分类让学生了解晶体的定义和分类。
2.2 教学内容晶体的定义晶体的分类:原子晶体、离子晶体、分子晶体和金属晶体2.3 教学方法讲授法:讲解晶体的定义和分类。
2.4 教学资源课件:展示晶体的定义和分类。
2.5 教学步骤1. 复习:回顾上一节课的内容。
2. 讲解:讲解晶体的定义和分类。
3. 示例:展示不同类型的晶体实例。
4. 练习:让学生区分不同类型的晶体。
5. 总结:强调本节课的重点内容。
第三章:晶体的基本特点3.1 教学目标让学生了解晶体的基本特点。
3.2 教学内容晶体的周期性结构晶体的点阵参数晶体的对称性讲授法:讲解晶体的基本特点。
互动法:引导学生探讨晶体的对称性。
3.4 教学资源课件:展示晶体的基本特点。
3.5 教学步骤1. 复习:回顾上一节课的内容。
2. 讲解:讲解晶体的周期性结构、点阵参数和对称性。
3. 示例:展示晶体的对称性实例。
4. 练习:让学生分析晶体的对称性。
5. 总结:强调本节课的重点内容。
第四章:晶体的重要性4.1 教学目标让学生了解晶体的重要性。
4.2 教学内容晶体在材料科学中的应用晶体在自然界中的分布晶体在现代科技领域中的应用4.3 教学方法讲授法:讲解晶体的重要性。
互动法:引导学生探讨晶体在实际应用中的重要性。
4.4 教学资源课件:展示晶体的重要性和应用实例。
金属晶体教案

金属晶体教案教案主题:金属晶体的形成和结构一、教学目标1. 了解金属晶体的基本概念和特点。
2. 掌握金属晶体形成的原因和过程。
3. 认识金属晶体的结构特点,了解常见的金属晶体结构类型。
4. 学会绘制和解析金属晶体的晶体结构图。
二、教学重点1. 金属晶体的形成原因和过程。
2. 不同金属晶体的结构特点和常见结构类型。
三、教学难点1. 金属晶体结构类型的解析和分析。
四、教学过程1. 导入(5分钟)通过展示一些金属制品,如铁锅、铜器等,引导学生思考金属是如何组成的,以激发学生对金属晶体的兴趣。
2. 提出问题(5分钟)提问学生:金属晶体是如何形成的?为什么金属晶体具有特殊的物理和化学性质?3. 探究讨论(15分钟)通过讲解和讨论,引导学生了解金属晶体的形成过程和原因,并结合微观层面的粒子排列现象,分析金属晶体的结构特点。
4. 学习和总结(20分钟)讲解金属晶体的结构类型,包括面心立方、体心立方和简单立方,介绍不同结构类型的特点和应用领域。
5. 练习和巩固(15分钟)让学生根据所学内容,绘制铁、铜、铝等金属晶体的晶体结构图,并解析其结构特点。
6. 拓展应用(10分钟)引导学生思考:除了金属,还有哪些物质可以形成晶体结构?为什么晶体结构具有稳定性和规律性?7. 总结与展望(5分钟)总结金属晶体的形成原因、结构特点以及与其他晶体的联系,展望金属晶体结构的研究和应用前景。
五、教学辅助手段1. 多媒体投影仪和电脑。
2. 金属图样和实物展示。
3. 学生练习册和作业本。
六、教学评估1. 教师观察学生在讨论和练习过程中的表现。
2. 学生完成练习册和作业本中的题目。
七、教学反思通过本节课的教学,学生能够了解金属晶体的形成原因和特点,并掌握不同金属晶体结构类型的解析和绘制。
但是,在讲解金属晶体结构类型时,可能存在学生难以理解的情况,可以通过举例和多次训练加深学生的理解和掌握程度。
高中化学金属元素讲解教案

高中化学金属元素讲解教案
教学目标:
1. 理解金属元素的基本性质。
2. 掌握金属元素的周期表位置和化学性质。
3. 熟悉金属元素的常见用途和重要性。
教学重点:
1. 金属元素的电子结构。
2. 金属元素的物理性质和化学性质。
3. 金属元素的应用。
教学难点:
1. 理解金属元素的晶体结构。
2. 掌握金属元素的合金制备和特性。
教学准备:
1. PowerPoint课件。
2. 实验设备和化学品。
教学步骤:
Step 1:引入
通过展示金属元素的图片和化学式引入课题,激发学生对金属元素的兴趣。
Step 2:金属元素的基本性质
介绍金属元素的晶体结构、导电性、热传导性等基本性质,并通过实验展示金属的导电性和塑性。
Step 3:金属元素的周期表位置和化学性质
讲解金属元素在周期表中的位置和性质,介绍金属元素的原子结构和反应特点。
Step 4:金属元素的应用
通过案例介绍金属元素的常见用途,如铁的制造、铝的生产和金的应用等。
Step 5:小结
总结本节课的内容,概括金属元素的基本特点和重要性,鼓励学生深入学习和探索金属元素的世界。
教学延伸:
1. 分组讨论金属元素的应用和特性。
2. 实验探究金属元素的物理性质和化学性质。
3. 观察金属元素在现实生活中的应用场景。
教学反思:
通过本节课的教学,学生可以深入了解金属元素的性质和应用,提高他们对金属元素的认识和学习兴趣,激发他们对化学学科的热爱和求知欲。
高中化学 第三章 第三节 金属晶体教案 新人教版选修3-新人教版高二选修3化学教案

第三节金属晶体[核心素养发展目标] 1.宏观辨识与微观探析:能辨识常见的金属晶体,能从微观角度分析金属晶体中的构成微粒及微粒间的相互作用。
2.证据推理与模型认知:能利用金属晶体的通性推导晶体类型,从而理解金属晶体中各微粒之间的作用,理解金属晶体的堆积模型,并能用均摊法分析其晶胞结构。
一、金属键和金属晶体1.金属键(1)概念:金属阳离子与自由电子之间的强烈的相互作用。
(2)实质:金属原子脱落下来的价电子形成遍布整块晶体的“电子气〞,被所有原子所共用,从而把所有的金属原子维系在一起,形成一种“巨分子〞。
(3)特征:金属键没有方向性和饱和性。
2.金属晶体(1)金属晶体通过金属阳离子与自由电子之间的较强作用形成的晶体,叫做金属晶体。
(2)用电子气理论解释金属的性质(1)金属单质和合金都属于金属晶体。
(2)金属晶体中含有金属阳离子,但没有阴离子。
(3)金属导电的微粒是自由电子,电解质溶液导电的微粒是自由移动的阳离子和阴离子;前者导电过程中不生成新物质,为物理变化,后者导电过程中有新物质生成,为化学变化。
因而,二者导电的本质不同。
例1以下关于金属键的表达中,不正确的选项是( )A.金属键是金属阳离子和自由电子这两种带异性电荷的微粒间的强烈相互作用,其实质与离子键类似,也是一种电性作用B.金属键可以看作是许多原子共用许多电子所形成的强烈的相互作用,所以与共价键类似,也有方向性和饱和性C.金属键是带异性电荷的金属阳离子和自由电子间的相互作用,故金属键无饱和性和方向性D.构成金属键的自由电子在整个金属内部的三维空间中做自由运动[考点] 金属键和金属晶体[题点] 金属键的理解答案 B解析从基本构成微粒的性质看,金属键与离子键的实质类似,都属于电性作用,特征都是无方向性和饱和性;自由电子是由金属原子提供的,并且在整个金属内部的三维空间内运动,为整个金属的所有阳离子所共有,从这个角度看,金属键与共价键有类似之处,但两者又有明显的不同,如金属键无方向性和饱和性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属工艺学教案
一、课题:第一节金属的晶体结构
二、课型:新授
三、教学内容:1.晶体与非晶体
2.金属的晶体结构
3.实际金属的晶体结构
四、教学目的:
掌握晶体结构及其对材料的物理化学性能、力学性能及工艺性能的影响,为后续课程的学习做好理论知识的准备。
五、教学重点:常见的金属晶格类型
六、教学难点:实际晶体结构中的晶体缺陷
七、教学过程:
(一)、课程导入
回顾前一章所学知识。
提出问题:金属材料的使用性能包括哪些?其中什么是力学性能?什么是物理性能?什么是化学性能?
金属材料的性能与金属的化学成分和内部组织结构有着密切的联系。
即使是同一种金属材料,由于加工工艺不同也将使金属材料具有不同的内部结构,从而是金属材料具有不同的性能。
(二)、新课
1.晶体与非晶体
固态物质按其原子(或分子)聚集状态可分为晶体和非晶体两大类。
晶体:晶体是指组成微粒(原子、离子或分子)呈规则排列的物质。
非晶体:非晶体是指其组成微粒无规则堆积在一起的物质。
(如松香、玻璃、沥青)晶体的特点:a.原子在三维空间呈有规则的周期性重复排列;
b.具有一定的熔点,如铁的熔点为1538℃,铜的熔点为1083℃
c.晶体的性能随着原子的排列方位而改变,即单晶体具有各向异性;
d4.在一定条件下有规则的几何外形
非晶体的特点:a.原子在三维空间呈不规则的排列。
b.没有固定熔点,随着温度的升高将逐渐变软,最终变为有明显
流动性的液体。
如塑料、玻璃、沥青等。
c.各个方向上的原子聚集密集大致相同,即具有各向同性。
晶体与非晶体的本质区别在于原子三维空间内排列是否规则。
2晶体结构的基本知识
为了便于表明晶体内部原子排列的规律,把每个原子看成是固定不动的刚性小球,并用一些几何线条将晶格中各原子的中心连接起
来,构成一个空间格架,各原子的中心就处在格架的几
个结点上,这种抽象的、用于描述原子在晶体中排列形
式的几何空间格架,简称晶格。
由于晶体中原子有规则排列且有周期性的特点,为
了便于讨论通常只从晶格中,选取一个能够完全反映
晶格特征的、最小的几何单元来分析晶体中原子排列的规律,这个最小的几何单元称为晶胞
在晶体学中,通常取晶胞角上某一结点作为原点,沿其三条棱边作三个坐标轴X、Y、Z,并称之为晶轴,而且规定坐标原点的前、右、上方为轴的正方向,反之为反方向,并以(晶格常数)棱边长度和棱面夹角来表示晶胞的形状和大小。
整个晶格就是有许多大小、形状和位向相同的晶胞在空间重复堆积而成的。
3. 常见金属的晶格类型
a.体心立方晶格:体心立方晶格的晶胞是立方体,立方体的八个顶角和中心各有一
个原子,晶胞中实际含有的原子数为2个。
具有体心立方晶格的金属:α-Fe、Cr、W、Mo、V、等30余种金
属。
b.面心立方晶格:面心立方晶格的晶胞是立方体,立方体的八个顶角和六个面的中
心各有一个原子,晶胞中实际含有的原子数为4个。
具有面心立方晶格的金属:γ-Fe、Ni、Al、Cu、Au、Ag
c.密排六方晶格:密排六方晶格的晶胞是六方柱体,在六方柱体的十二个顶角和上
下底面中心各有一个原子,另外在上下面之间还有三个原子,晶胞
中实际含有原子数为6个。
具有密排六方晶格的金属:Mg、Cd、Zn、Be、α-Ti
4.金属的实际晶体结构
晶格位向完全一致的晶体叫做单晶体。
实际使用的金属材料,由于受结晶条件和其它因素的限制,其内部结构都是由许
多尺寸很小,各自结晶方位都不同的小单晶体组合在一起的多晶体构成。
由多晶粒构成的晶体称为多晶体。
多晶体材料内部以晶界分开的、晶体学位向相同的晶体称为晶粒。
两晶粒之间的
交界处称为晶界
5. 晶体缺陷
实际晶体中存在的晶体缺陷,按缺陷几何特征可分为三种:点缺陷、线缺陷、面缺。
a.点缺陷:点缺陷是晶体中成点状的缺陷,即在三维空间上的尺寸都很小的晶
体缺陷。
在实际晶体结构中,晶格的某些结点,往往未被原子所占据,这种
空着的位置称为空位。
同时又可能在个别空隙处出现多余的原子,这种不占有正常的晶格
位置,而处在晶格空隙之间的原子称为间隙原子。
b.线缺陷:线缺陷是指在三维空间的两个方向上尺寸都很小的晶体缺陷。
晶体中,某处有一列或若干列原子发生有规律的错排现象,称为位
错。
其特征是在一个方向上的尺寸很长,而另两个方向的尺寸很短。
位错的主要类型有刃型位错和螺旋位错。
由于错位的存在,造成金属晶格畸变,并对金属的性能,如强度、
塑性、疲劳及原子扩散、相变过程等都将产生重要影响。
c.面缺陷:面缺陷是指二维尺度都很大,在第三个方向上的尺寸却很小,呈面
状分布的缺陷。
在晶界处,由于原子呈不规则排列,使晶格处于畸变状态,它在常
温下对金属的塑性变形起阻碍作用,从而使金属材料的强度和硬度
都有所提高。
(三)、课后作业
教材第31页,第一题中的1~7题;第二题中的1~3题
八、板书设计。