简易数字存储示波器设计

合集下载

简易数字存储示波器实验报告

简易数字存储示波器实验报告

目录一.数字存储示波器简介及设计思路 (3)2.实验设计原理 (5)三、系统各模块的简单说明 (5)四.最终实现功能说明 (8)五.实验设计实现功能模块具体分析 (9)六、实验硬件分配及总体仿真波形 (15)一、数字存储示波器简介及设计思路数字存储示波器是20世纪70年代初发展起来的一种新型示波器。

这种类型的示波器可以方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。

而我们此次要设计的便是一种简易的数字存储示波器。

数字存储示波器可实现以下功能。

通过对来自信号源的信号进行采集(可分为实时取样和等效时间取样),将获得的值存储在内置RAM内,后期操作有对波形的显示、波形的测量(如测量频率、幅值、上升下降时延等)和波形处理(如双踪两波形的相加、相减、X-Y显示等等)。

其工作示意图如下所示:而我们设计的简易数字存储示波器实现的功能有对单一信道信号进行采样存储显示(分实时显示和存储后期调用显示)、对信号进行频率测量并显示数值、对波形进行上移、下移、扩展、收缩操作、示例波形演示(包括正弦波、锯齿波、方波)。

我们所用的硬件有实验箱上的高速的模数转换器TLC5510、FPGA芯片、单片机、LCD显示屏、FPGA内置RAM、外围扩展的RAM和键盘。

以下框图为实验箱硬件使用说明图:下移、扩展、收缩和测频的处理。

二、实验设计原理设计总体逻辑思路如下:系统开始工作时,通过按键选择是否开始检测波形,若是,则首先由频率检测器检测频率,然后根据测得的频率选择适当的采样频率。

信号源产生的信号通过A/D采样,采样结果保存在FPGA内置的存储器中。

待存储完一帧数据时进行输出到LCD上显示。

待显示100ms后暂停100ms以消除视觉暂留效应,然后准备下一帧数据的存储和显示。

如若需要存储波形,则在当前显示的同时,将采样得到的数据送往片外的SDRAM存储,直至存储结束或者存储容量达到上限。

简易数字存储示波器电子综合实验项目设计

简易数字存储示波器电子综合实验项目设计

2 实验要求
设 计 并 制 作 一 台 具 有 实 时 采 样 方 式和 等 效 采样方式的数字示 波器_示意 图如图1 示。 1 1 , 所
3 实验原理
3. 采 样 原 理 1
实 时 采 样 是 在 信 号 存 在 期 间 对 其 采
要 求 被 测 周 期 信 号 的 频 率 范 围 为 1 Iz l M Hz, 器 输 入 阻 抗 为 1 0 , 示 O ~ 0 I 仪 M 显 屏 的 刻 度 为 8 V× l d V, 直 分 辨 率 为 di i 垂 0

e in,ic i p o u to sse d b g i g nd r jc a c pa c tc n lg e c Th e tr p oe t e eo me p oe s n l d n p o a e h oo y t . e n ie rj c d v lp nt r cs i cu i g rgrm d sg cr u t r d cin, yt m e u g n a p oe t ce tn e,
ห้องสมุดไป่ตู้
计, 电路 制 作 、 到 最 后 的 调 试 验 收 整 个 项 目开 发 过 程 。 养 学 生 应 用 已 学 的 专 业 基 础 知 识 , 行 项 目设 计 和 开 发 的 能 力 。 直 培 进 关 键 词 : 合 实验 数 字 存 储 示 波 器 FP 等 效采 样 综 GA 中 图 分 类 号 : 20 TN 6 文 献 标 识 码 : A
he p Devel l opi s udent c ng t s ompr ehens ve app i at or abi i i s. i l i l c Ite
K y W o d I t g a e e p r me t Di t l s o a e o c lo c p FP e r s: n e r t d x e t n ; gia t r g s il s o e; GA ; u va e t Eq i l n

简易数字存储示波器设计报告[]

简易数字存储示波器设计报告[]

简易数字存储示波器设计报告摘要本设计分为四个模块,分别是:信号前向调整模块,数据采集模块,数据输出模块和控制模块。

信号前向调整模块采用高速低噪音模拟开关(MAX4545)和宽带运算放大器(MAX817)构成可编程运算放大器,对幅度不等的输入信号分别进行不同等级的放大处理.数据采集模块采用可编程器件(EPM7128SLC84—15)控制高速A/D(TLC5510)对不同频率的输入信号分别以相应的采样速度予以采样,并将采样数据存在双口RAM(IDT7132)中.数据输出模块采用另一片可编程器件(EPM7128SLC84—15)控制两片D/A(DAC0800)分别输出采样信号和锯齿波,在示波器上以X-Y的方式显示波形.控制模块以AT89C52单片机为控制核心,协调两片可编程器件的工作,并完成其它的测量,计算及控制功能.一.总体方案设计与论证:方案一:数字示波器采用数字电路,将输入信号先经过A/D变换器,把模拟波形变换成数字信息,暂存于存储器中。

显示时通过D/A变换器将存储器中的数字信息变换成模拟波形显示在模拟示波器的示波管上。

对于存储器的地址计数及数据存取可通过数字电路对时钟脉冲计数产生地址,并选通存储器来实现;对输入信号何时触发采集可通过模拟比较器及其它简单的模拟电路实现。

但是,这种方法的硬件电路过于复杂,调试起来也不方便,不利于系统的其它功能扩展,因而不可采取。

方案二:采用AT89C52单片机。

单片机软件编程灵活,自由度大。

可通过软件编程实现对模拟信号的采集,存储数据的输出以及各种测量,逻辑控制等功能。

但是,系统要求的频带上限为50KHZ,根据采样定理,采样速度的下限为100KHZ,需要用高速A/D进行采样.假设单片机系统用12M的晶体振荡器作为系统时钟,那麽一条指令就需要1us或2us,根本无法控制A/D高速工作.因此,单纯用软件是不可能实现该系统的。

方案三:采用AT89C52单片机作为控制核心,采用可编程器件(ALTERA公司的EPM7128SLC84—15)来实现对数字系统的控制。

简易数字示波器的设计论文

简易数字示波器的设计论文

简易数字示波器的设计摘要示波器是用量最多、用途最广的测量仪器之一,是观察和测量电子波形不可缺少的工具。

传统的模拟示波器在观测周期性重复频率较高的波形方面仍然得到普遍使用,但对于不能重复出现的单次信号、持续的非周期信号以及重复频率较低的周期信号则显得无能为力。

数字存储示波器正是基于上述要求而出现的。

数字示波器是新型智能化示波器,其技术基础是数据的采集,该技术可以应用于更广泛的数据采集产品中,具有深远意义。

本论文对示波器的工作原理进行了介绍,提出了一种基于STC12C5A60S2单片机和12864点阵液晶屏的数字示波器设计方案,实现对被测信号的采样、存储以及显示;扫描频率可调,幅度可调;设置10ms/div、2ms/div、1ms/div、500μs/div、400μs/div五档扫描速度,仪器的频率范围为DC~3kHz。

其依据是利用STC12C5A60S2芯片的AD转换器对输入的模拟信号进行采样,将采样值存入缓冲区经程序处理后在LCD液晶屏上显示出对应的波形。

实验结果表明本设计电路结构简单,运算速度高,频率显示准确,可以实现快速读取,波形显示刷新速度较快。

设计中采用的模块化设计方法,提高了设计效率。

整个系统成本廉价,并且实现了数字示波器的所有功能要求,达到了较高的性能指标。

关键词:单片机,液晶显示,数字示波器,AD采样THE DESIGN OF SIMPLE DIGITAL OSCILLOSCOPEABSTRACTThe oscilloscope is one of the most widely used measuring instruments, is an indispensable tool of observation and measurement of electronic waveform. Traditional analog oscilloscope observation cyclical high repetition frequency waveform is still widely used, but for a single signal that can not be repeated, sustained non-periodic signal, and low repetition frequency of periodic signals look powerless. Digital storage oscilloscope is based on the above requirements emerge. The digital oscilloscope is a new intelligent oscilloscope, its technology is based on the data acquisition, and the technology can be applied to a wider range of data acquisition products and has far-reaching significance.The paper describes the working principle of the oscilloscope, it puts forward a solution that based microcontroller STC12C5A60S2 and 12864 dot matrix LCD screen, digital oscilloscope design to achieve the measured signal, sampling, storage and display; scanning frequency is adjustable, amplitude adjustable; set 10ms/div、2ms/div、1ms/div、500μs/div、400μs/div fifth gear scanning speed, the frequency range of the instrument for DC ~ 3kHz. It is based on the AD converter in STC12C5A60S2 chip sample the input analog signal, the sampled values are stored in the buffer, then shows the corresponding waveform on the LCD screen after procedures.Experimental results show that this design is a simple circuit structure, high-speed operation, accurate frequency display, can be quickly read, waveform display refresh rate faster. Equivalent sampling techniques used in the design, can be a good high-speed periodic signal measurements require high-speed sampling, to reduce the requirements for the A / D conversion rate, reduce thehardware cost of the oscilloscope. The modular design approach adopted in the design, improves design efficiency highly. The whole system is very cheap, and fulfills all the functional requirements of the digital oscilloscope to achieve a higher performance.KEY WORDS:Single-chip Microcomputer, LCD, Digital Oscilloscope, AD Sample目录第1章绪论 (1)§1.1 课题背景 (1)§1.2 课题研究的目的和意义 (2)§1.3 课题的主要研究工作 (2)第2章系统设计方案的研究 (3)§2.1 系统设计的总体思路 (3)§2.2 系统设计任务 (3)§2.3系统设计的原理 (4)§2.4总体方案的选定 (5)§2.4.1 方案论证 (5)§2.4.2 系统框图 (5)第3章硬件电路设计 (7)§3.1 单片机的选型 (7)§3.1.1 STC12C5A60S2的内部结构 (7)§3.1.2 STC12C5A60S2的管脚说明 (8)§3.1.3 STC12C5A60S2的时钟 (9)§3.1.4 STC12C5A60S2的复位 (10)§3.2 A/D采样 (11)§3.2.1 A/D采样的基本原理 (11)§3.2.2 STC12C5A60S2的A/D结构和操作方法 (12)§3.3 12864液晶显示模块 (14)§3.3.1液晶显示模块概述 (14)§3.3.2显示RAM (14)§3.3.3点阵LCD的显示原理 (15)§3.4信号保持电路 (16)§3.5串口通信电路 (18)§3.6键盘控制电路 (19)第4章系统软件设计 (21)§4.1 软件架构 (21)§4.2 主程序的设计 (22)§4.3 波形显示程序的设计 (23)§4.4 按键检测程序的设计 (25)§4.5 软硬联调结果 (26)结论 (28)参考文献 (29)致谢 (30)附录 (31)第1章绪论§1.1课题背景本世纪70年代起,数字集成电路和微处理机技术获得了迅速发展,示波器也开始应用这些新技术来适应各种需要。

简易数字存储示波器设计

简易数字存储示波器设计

数字电子技术
1.2 时序分析
图11-42 图11-38的仿真波形
1.3 硬件测试
可以为图11-38的电路增加一个输出口,即将作为地址 信号发生器的计数器的计数信号中的高8位直接输出,与实 验系统上的第2个DAC0832相接,使此DAC输出锯齿波, 然后用此锯齿波控制示波器的X轴,而Y轴输入负责ADC采 样数据输出的DAC的信号,从而选择示波器的X-Y控制波形 显示。
数字电子技术
简易数字存储示波器设计
1.1 电路结构与工作原理
图11-38 ADC0809采样电路系统:RSV.bdf
1.1 电路结构Biblioteka 工作原理图11-39 CNT8B设置界面
1.1 电路结构与工作原理
图11-40 CNT10B设置界面
1.1 电路结构与工作原理
图11-41 21max电路结构

简易数字存储示波器设计

简易数字存储示波器设计

简易数字存储示波器设计【摘要】:该简易数字存储示波器的设计是介绍基于FPGA高速数据实时采集与存储、显示技术,采用FPGA中的A/D采样控制器负责对A/D模拟信号的采样控制,并将A/D转换好的数据送到FPGA的内部RAM中存储;RAM的地址信号由地址发生计数器产生。

当完成1至数个周期的被测信号的采样后,在地址发生计数器的地址扫描下,将存于RAM中的数据通过外部的D/A进入示波器的Y端;与此同时,地址发生计数器的地址信号分配后通过另一个D/A构成锯齿波信号,进入示波器的X端。

从而实现数字存储示波器的功能。

本设计的ADC0809芯片作为高速信号的A/D转换,SRAM6264存储器作为采样后数据的存储,DAC0832芯片作为信号的 D/A转换。

程序设计采用超高速硬件描述语言VHDL描述,对其A/D转换、A/D采样控制器及数据的存储、数字输出进行编程、仿真,完成硬件和软件的设计,以及实验样机的部分调试。

关键词:数字存储示波器,FPGA,0809ADC,0832ADC, S RAM6264存储器Abstract:The simple design of digital storage oscilloscope is to introduce high-speed FPGA-based real-time data acquisition and storage, display technology, the use of FPGA in the A / D sampling controller is responsible for A / D analog signal to control the sampling and A / D conversion to the good data in the FPGA is internal RAM memory; RAM address signal generated by the address counter. Upon the completion of cycle 1 to a few samples of the measured signal, the address counter in the address scan, will keep the data in RAM through the external D / A into the scope of the Y-side; At the same time, address counter After the allocation of the address signal through a D / A constitute a sawtooth signal, the X-side into the oscilloscope. In order to achieve the functions of digital storage oscilloscope.The design of the chip as a high-speed signal ADC0809 the A / D converter, SRAM6264 memory for data storage after sampling, DAC0832 chip as a signal of D / A conversion. Programming using ultra-high-speed hardware description language VHDL description of its A / D conversion, A / D sampling controller and data storage, digital output programming, simulation, the completion of the design of hardware and software, as well as some of the experimental prototype debugging .Key words:digital storage oscilloscope, FPGA, ADC0809, DAC0832, SRAM6264 memory目录【摘要】 1【Abstract】:错误!未定义书签。

简易数字存储示波器电子综合实验项目设计

简易数字存储示波器电子综合实验项目设计

简易数字存储示波器电子综合实验项目设计
简易数字存储示波器电子综合实验项目设计详述如下:本实验要
求设计一台简易数字存储示波器(以下简称DSO),完成对信号的观察、测量和分析。

DSO在两个不同时间尺度上对电子信号进行测量,以查看
信号的周期性变化。

它的典型用途包括检测波形的工作,分析低频信
号的幅度变化,检测瞬态信号的持续时间,跟踪数字电路的时间变化等。

本实验以AD8009-18G作为DSO的A/D转换器,该模块带有基于CPLD设计的熔丝接口和控制单元,用于控制和监控示波器工作状态。

此外,本实验将使用AT89C51作为微控制器,主要用来提供操作系统,通过HD44780液晶显示屏与用户进行交互,控制数据采集和存储。

另外,为了实现示波器多功能功能,本实验系统中还设有一个键
盘输入单元,用户可以通过该单元输入控制信号,以控制显示器的分
辨率和数据采集的时间等;同时,系统还集成了一个EEPROM,用于存
储系统参数,方便用户查看和修改参数。

本实验的最终目标是通过本实验的设计,使学生能够掌握示波器
所对应的原理,了解数字存储技术,熟悉相关芯片的操作,以及学d
习数字系统设计和控制等方面的知识。

简易数字存储示波器实验报告.doc

简易数字存储示波器实验报告.doc

简易数字存储示波器实验报告基于FPGA的简易数字存储示波器的设计ⅰ.数字存储示波器的介绍和设计思路ⅱ。

实验设计原则三。

系统模块四简述。

最终实施功能描述八。

实验设计实现功能模块具体分析9六.实验硬件和整体仿真波形的分配15数字存储示波器简介及设计思路数字存储示波器是XXXX早期开发的一种新型示波器。

这种示波器可以方便地实现模拟信号波形的长期存储,并且可以通过使用机内微处理器系统进一步处理存储的信号,例如自动测量参数,例如频率、幅度、前后沿时间、平均值等。

和各种复杂的过程。

这次我们将设计一个简单的数字存储示波器。

数字存储示波器可以实现以下功能。

通过从信号源收集信号(可分为实时采样和等效时间采样),获得的值存储在内置的随机存取存储器中。

后期操作包括波形显示、波形测量(如测量频率、幅度、上升和下降时间延迟等)。

)和波形处理(例如两个波形的加法、减法、X- 3,以及系统的每个模块的简要描述...............六.实验硬件和整体仿真波形的分配15数字存储示波器简介及设计思路数字存储示波器是XXXX早期开发的一种新型示波器。

这种示波器可以方便地实现模拟信号波形的长期存储,并且可以通过使用机内微处理器系统进一步处理存储的信号,例如自动测量参数,例如频率、幅度、前后沿时间、平均值等。

和各种复杂的过程。

这次我们将设计一个简单的数字存储示波器。

数字存储示波器可以实现以下功能。

通过从信号源收集信号(可分为实时采样和等效时间采样),获得的值存储在内置的随机存取存储器中。

后期操作包括波形显示、波形测量(如测量频率、幅度、上升和下降时间延迟等)。

)和波形处理(如加法、减法和双迹X两种波形)。

我们设计的简易数字存储示波器具有单通道信号的采样、存储和显示(包括实时显示、存储和后期调用显示)、信号的频率测量和数值显示、波形的向上、向下、扩展和收缩以及采样波形的演示(包括正弦波、锯齿波和方波)等功能。

我们使用的硬件包括实验箱上的高速模数转换器TLC55。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简易数字存储示波器设计
数字存储示波器是一款用于测量电信号的仪器,它可以将收集到的信号进行数字化处理,并将结果显示在屏幕上。

本文将介绍一个简易的数字存储示波器的设计。

1. 设计目标
设计一个简易的数字存储示波器,使其能够接收并显示电信号的波形,并具备一定的存储功能。

该示波器需要具备以下功能:能够调节触发电平、可以调节扫描速度、能够通过按钮进行保存和回放存储的波形。

设计需要保证简易、易于操作、能够满足基本的测量需求。

2. 硬件设计
(1)电路板设计:设计一个电路板用于信号的采集和存储。

该电路板包括模拟前端电路用于信号的采集,数字转换电路将模拟信号转换为数字信号,以及存储器用于存储采集到的数据。

(2)显示屏和按键:电路板上需要配备一个液晶显示屏,用
于显示采集到的波形图像。

同时,设计按键用于调节触发电平、扫描速度以及保存和回放。

3. 软件设计
(1)数据采集:通过模拟前端电路采集信号,并使用数字转
换电路将模拟信号转换为数字信号。

采用适当的采样率,将数据进行采样,并存储到存储器中。

(2)数据显示:通过显示屏将存储器中的数据显示为波形图像。

根据采样率和扫描速度,将存储器中的数字信号转换为波形,并在屏幕上显示。

(3)触发控制:通过按键调节触发电平,设置触发条件,使
得波形显示能够达到最佳效果。

设计合适的触发电路用于触发信号。

(4)数据存储和回放:设计按键和存储器用于保存和回放采
集到的波形。

按下保存键后,将当前的波形数据保存到存储器中,按下回放键后,将存储器中的波形数据重新显示在屏幕上。

4. 使用方法
使用该简易数字存储示波器,首先将信号源连接到示波器的输入端,然后通过按键进行触发电平的调节和扫描速度的设置。

在适当的触发条件下,示波器将开始采集并显示信号的波形。

当波形满足要求后,可以通过按键将波形数据保存到存储器中。

保存后的波形可以通过按键进行回放,重新显示在屏幕上。

5. 总结
通过以上的设计和实现,可以得到一个简易的数字存储示波器。

该示波器具备了基本的测量功能,能够采集和显示电信号的波形,并且能够保存和回放采集到的数据。

本设计的示波器体积小巧,操作简单,适合学习和基本测量使用。

当然,这仅仅是一个简易的设计,如果需要更高级的功能,还需要更为复杂的电路和软件设计。

6. 具体实现
为了实现数字存储示波器的基本功能,需要采取多个措施来完成。

6.1 模拟前端电路设计
模拟前端电路是示波器的核心,它负责将输入信号进行放大和滤波,以保证信号的准确采集。

一般情况下,模拟前端电路由
放大器、滤波器和输入电位器等组成。

放大器负责将输入信号放大到适当的幅度范围内,滤波器则用于滤除不需要的噪声和高频成分。

6.2 数字转换电路设计
模拟信号需要转换为数字信号,才能被存储和进一步处理。

常见的数字转换电路包括模数转换器(ADC)和采样保持电路。

ADC负责将模拟信号转换为数字信号,采样保持电路则用于
将模拟信号进行采样并保持其幅度不变。

6.3 存储器设计
存储器用于存储采集到的数据,以便将其显示和进一步处理。

在设计中,可以选用SRAM(静态随机存储器)或者Flash存
储器。

SRAM具有存取速度快、写入多次不损坏等优点,但
是它需要保持电源供电才能存储数据。

Flash存储器则更加适
合作为存储器,因为它不需要维持电源供电才能保存数据。

6.4 显示屏和按键设计
显示屏和按键是用户与示波器进行交互的界面,因此在设计中需要考虑到其易用性和可靠性。

显示屏一般采用液晶显示屏,因为它具有较高的分辨率和对比度。

按键可以采用触摸屏或机械按键,根据实际需求进行选择。

6.5 软件设计
软件设计主要包括数据采集、数据显示、触发控制和数据存储与回放等功能。

数据采集需要根据设定的采样率对输入信号进行采样,并将采样的数据存储到存储器中。

数据显示需要根据
采样的数据进行波形的绘制和显示。

触发控制功能可以让用户设置合适的触发电平,以便最佳地显示波形。

数据存储与回放功能可以将采集到的波形数据保存到存储器中,并在用户需要时重新显示出来。

7. 示例应用
数字存储示波器可以应用于多个领域,在电子工程、通信、医学等领域有着广泛的应用。

7.1 电子工程
在电子工程领域,数字存储示波器可以用于检测和分析各种电子设备和电路的工作情况。

通过观察和分析输入和输出信号的波形,可以判断设备是否正常工作,帮助工程师诊断和解决问题。

7.2 通信
在通信领域,数字存储示波器可用于测量和分析各种通信信号的传输特性。

通过观察和分析信号波形,可以判断信号的传输质量,帮助工程师优化通信系统的性能。

7.3 医学
在医学领域,数字存储示波器可以应用于生物信号的测量和分析。

例如,心电图和脑电图信号的采集和分析都需要示波器来显示和存储波形,以帮助医生进行诊断。

8. 总结
本文介绍了一个简易的数字存储示波器的设计。

通过合理的硬
件和软件设计,以及模拟前端电路、数字转换电路、存储器、显示屏和按键等组成,完成了基本的测量和数据存储功能。

该示波器可以广泛应用于电子工程、通信和医学等领域,满足基本的测量需求。

然而,值得注意的是,这只是一个简易示波器,如果需要更高级的功能和性能,还需要更为复杂的设计和实现。

相关文档
最新文档