无线电导航的原理与应用
第2章-无线电导航基本原理(3-5)

中国计量科学研究院从90年代开始利用GPS共视技术参加国际原子时合作。
tAGPS tBGPS (tA tGPS ) (tB tGPS ) tAB
对于远程导航系统而言,系统的工作半径主要 看信号的衰减程度,需要进行具体的工程测定。
对于中近程视距导航系统而言,系统的工作半 径主要取决于系统的视距
视线距离
d0 d1 d2
(R0 h1 )2 R02 (R0 h2 )2 R02
2R0 ( h1 h2 )
uu21
u1 (x, y, z) u2 (x, y, z)
u3 u3 (x, y, z)
u
u1 u2
,
X
x
y
u3
z
u1
u1 x
* x
u1 y
*
y
u1 z
* z
u2
用超长波即用奥米伽台授时,其授时精度约 μs左右。
用长波即用罗兰C台链兼顾授时,其授时精度 可达到μs。
用卫星超短波信号作搬钟,可以全球时间同 步,授时精度可达到ns精度
2.4.1 单向时间同步
单向时间同步,也叫做单向授时,实际上是一 种无源(被动)同步方式。
基本出发点是利用伪距中钟差的信息。
(xu xs )2 ( yu ys )2 (zu zs )2
rc c tsu
已知用户的位置和源的位置,就可以估计出两者之 间的钟差,从而完成时间同步。
什么是无线电导航

无线电导航是利用无线电保障航空、航海等飞行器以及其他交通工具或运动物体准确完成运动任务,使其能够安全、准确地沿着选定的路线,准时到达目的地的一种手段。
人类最初的导航,只能通过石头、树、山脉等作为参照物,渐渐
发展到天文观测法,即通过天上的太阳、月亮和星星来判断位置。
中
国四大发明之一的指南针就是人类导航领域的一个里程碑。
无线电导
航的发明,使导航系统成为航行中真正可以依赖的工具,因此具有划
时代的意义。
无线电导航主要利用电磁波传播的3个基本特性:
(1)电磁波在自由空间直线传播。
(2)电磁波在自由空间的传播速度是恒定的。
(3)电磁波在传播路线上遇到障碍物时会发生反射。
通过测量
无线电导航台所发射信号(无线电电磁
波)的时间、相位、幅度、
频率参量,可确定运动载体相对于导航台的方位、距离和距离差等几
何参量,从而确定运动载体与导航台之间的相对位置关系,据此实现
对运动载体的定位和导航。
导航系统包括装在运载体上的导航设备以及装在其他地方与导航
设备配合使用的导航台。
从导航台的位置来看,主要有:
(1)陆基导航系统:即导航台位于陆地上,导航台与导航设备之
间用无线电联系。
(2)星基导航系统:导航台设在人造卫星上,可扩大覆盖范围。
导航是人类从事政治、经济和军事活动所必不可少的信息技术。
今
天,随着人类活动的发展,对导航的要求越来越高。
无线电导航在军
事和民用等方面都有着广阔的应用前景。
文章来源:/。
如何使用无线电定位仪进行定位和导航

如何使用无线电定位仪进行定位和导航无线电定位仪是一种基于无线电通信原理的定位和导航工具,通过接收和解析无线电信号来确定用户的位置和导航方向。
本文将介绍如何使用无线电定位仪进行定位和导航。
1. 介绍无线电定位仪的原理无线电定位仪利用无线电信号的传播和接收特性来实现定位和导航。
它通过接收来自卫星或地面基站发射的无线电信号,并利用信号传播的时间差或信号强度等信息来计算用户的位置和导航方向。
2. 定位功能的使用方法使用无线电定位仪进行定位需要将设备接收到的信号传输到定位算法中进行处理。
首先,确保无线电定位仪的天线朝向开放,接收到的信号质量较好。
然后,启动定位仪设备并等待设备自动搜索卫星或地面基站的信号。
一旦信号被接收到并稳定下来,设备将会计算用户的位置,并显示在设备的屏幕上。
3. 导航功能的使用方法无线电定位仪的导航功能可以将用户的位置和目的地进行比对,并通过设备的屏幕或声音提示等方式指引用户前进方向。
在使用导航功能前,需要首先设置目的地。
可以通过设备的菜单或导航界面进行设置,输入目的地的地址或坐标信息。
确定目的地后,设备会根据当前位置和目的地自动生成导航路线,并提供具体的导航指引。
4. 常见问题及解决方法使用无线电定位仪进行定位和导航时,可能会遇到一些问题,如信号质量不稳定、导航路线错误等。
对于信号质量不稳定的问题,可以尝试调整设备的天线朝向,或切换到其他卫星或基站的信号。
对于导航路线错误的问题,可以检查目的地输入是否正确,或重新设置目的地。
此外,还可以参考设备使用手册或在线帮助文档,寻找解决问题的方法。
5. 无线电定位仪的发展趋势随着技术的不断进步,无线电定位仪也在不断发展。
未来,无线电定位仪有望具备更加精确和稳定的定位能力,以满足用户对精准定位的需求。
同时,无线电定位仪可能会与其他设备进行融合,如智能手机、车载导航系统等,提供更加方便和全面的导航服务。
总结:无线电定位仪是一种利用无线电信号进行定位和导航的工具。
导航系统无线电导航

2021年2月26日
23
传统导航—无线电导航 EHSI的指示
2021年2月26日
24
传统导航—无线电导航 甚高频全向信标(VOR)
2021年2月26日
25
传统导航—无线电导航
甚高频全向信标(VOR)
VOR系统概念
地面台与机载设备配合提供飞机相对地面台及地面台相对飞机的方 位角的系统。
磁航向、飞机的磁方位、VOR方位、相对方位
2021年2月26日
50
传统导航—无线电导航
ADF指示器
RMI
EFIS
2021年2月26日
51
传统导航—无线电导航 仪表着陆系统(ILS)
2021年2月26日
52
传统导航—无线电导航
仪表着陆系统---ILS
1. 作用:使用地面台和机载设备,能够对飞机进近到跑 道提供水平、垂直和距离引导。
2. 系统组成:2021源自2月26日26传统导航—无线电导航 甚高频全向信标(VOR)
VOR的功用:测量飞机磁方位QDR。
VOR系统的组成
地面设备
航路VOR台(A类)
终端VOR台(B类)
机载VOR设备: 控制盒、天线、接收机和指示器
2021年2月26日
27
传统导航—无线电导航
甚高频全向信标(VOR)
航路VOR台(A类) 频率112.00——118.00MHZ(频率间隔50KHZ),功率
➢ 机载设备
定向接收机、控制盒、方位指示器、环形大线和垂直天线。
➢ 选用中长波的原因
ADF定向主要使用地面波(天波,由于电离层变化,不稳定), 中长波地波衰减少。
2021年2月26日
8
传统导航—无线电导航
无线电导航基本原理

导航是一个时间和空间的联合概念,需要在特定的时刻描 述在特定空间位置的状态。空间位置的描述可以采用极坐标, 也可用直角坐标。由于导航通常是相对于某一具体目的地而 言的,因此采用极坐标(角度和距离)是方便而合理的。
在无线电导航的设计中往往构建一定的机制使得实际中测 量的无线电信号参量(幅度、频率及相位等)与角度(导航 台方位角、载体姿态角)、距离(距离、距离差)等几何参 量建立对应关系。然后利用几何参量与待求导航参数之间的 数学关系,即可求得所需的导航参量。
位置之间的数学关系进行位置的确定,称之为位置 线/面法; ➢ 另一种定位通过所测得的高阶运动参量,如速度等, 以积分的形势确定位置,称之为推航定位。
THANKS
飞机导航设备与维修
Aircraft navigation equipment and maintenance
raft navigation equipment and maintenance
第五节 无线电导航的基本原理
5.1 角度(方位)测量原理 5.2 距离测量原理 5.3 速度测量原理 5.4 定位原理
(1)脉冲测距测量 脉冲法测距,实质上是用窄脉冲对时间轴进行标定, 通过脉冲间隔读取时间,进而测量距离。通常,脉冲测 距有两种方式:有源方式和无源方式。
(2)相位测距测量 相位测距(差)是通 过测量电波在载体和导 航台之间信号相位的变 化来确定距离(差)。 如下图2-x为相位测距 示意图。
图 频率测距示意图
即如果将构成天线方向图的两个波束,部分的重叠起来, 则可以获得一条等讯号线。转动天线到两个波束接收信号 强度相等的方向,即可确定出导航台方位。 这种方法与最小值法类似,当两个波束的调制频率不同时 可以很容易地判断出载体偏离等讯号线的方向,其测量灵 敏度介于最大值法和最小值法之间。如下图2-x所示为比 较测向示意图。
无线电导航原理与系统-

引导各种运载体飞机船舶车辆等以及个人按既定航线航行的过程称为导航它是保证运载体安全准确地沿着选定路线准时到达目的地的一种手段无线电导航系统一般由装在运载体上的导航设备和设在地面或卫星上的导航台站组成通过在导航设备和导航台站之间的无线电信号传播和通信获得导航信息给飞机或船只指示出它们的实时位置或方位使运载体在不同的运动空间和环境不同的气象气候条件下都能够顺利地完成导航任务确定运载体当前所处的位置及其航行参数包括航向速度姿态等实时运动状态
二. 无线电导航的基本知识
导航系统的分类 按所测量的电气参量 振幅式,相位式,频率式, 脉冲(时间)式,复合式 测角 ,测距 ,测距差
按所测量的几何参量 按系统的组成情况
自主式(自备式) ,非自主 式(它备式) 按无线电导航台(站)的 陆基 ,空基,星基 安装地点 按有效作用距离 近程 ,远程
按工作方式 有源 ,无源
三.无线电导航的应用及发展历史
②
GPS和GLONASS卫星导航系统:
1973 年美国国防部开始研制第二代卫星导 航 系 统 , 即 现 在 的 GPS ( Navigation Satellite Timing And Ranging/Global Positioning System, NAVSTAR GPS),其全称为“导航星授时和测距 全球定位系统”。 GPS 于 1994 年部署完毕,全部 24 颗卫星升 空, 1996 年进入“完全工作能力( FOC)阶段”。
导航工程技术专业学习教程无线电导航原理与技术

导航工程技术专业学习教程无线电导航原理与技术导航工程技术专业学习教程:无线电导航原理与技术无线电导航是现代导航系统中的重要组成部分,它利用无线电信号来确定目标位置和导航航行的技术。
本文将介绍无线电导航的原理及相关技术。
一、无线电导航原理无线电导航的原理基于无线电信号的传播和接收。
导航系统通过测量无线电信号的时间、频率和幅度等参数,来判断接收器与发射器之间的距离和方向,从而实现目标的定位和导航。
1. 无线电信号传播无线电信号在空间中传播时会受到衰减和干扰。
衰减是指信号在传播过程中损失能量,其程度与距离和介质特性有关。
干扰是指其他无线电信号或物体对信号传播造成的影响。
了解信号传播的特性对于设计和优化导航系统至关重要。
2. 接收信号处理导航系统的接收器通过接收信号并进行处理来获取目标的位置和导航信息。
接收信号处理的关键是信号的解调和解调。
解调是指恢复信号的调制特性,包括频率、幅度和相位等。
解调则是指从解调信号中提取目标信息,例如距离、速度和方向等。
二、无线电导航技术无线电导航技术应用广泛,包括卫星导航系统、无线电信标和无线电方位器等。
1. 卫星导航系统卫星导航系统是利用卫星发射无线电信号,通过接收卫星信号来确定目标位置和导航。
全球定位系统(GPS)是最常用的卫星导航系统之一,它由多颗卫星组成,可提供全球覆盖的导航服务。
其他卫星导航系统还包括伽利略导航系统和北斗导航系统等。
2. 无线电信标无线电信标是一种用于导航的无线电设备,它发射特定的无线电信号,标记着特定的位置。
航空器和船舶等可以通过接收和识别无线电信标的信号,来确定自身的位置和导航航行。
无线电信标的种类有很多,例如雷达信标、无线电信号灯和无线电浮标等。
3. 无线电方位器无线电方位器是一种利用无线电信号进行方位测量的设备,常用于航空和海洋导航中。
通过测量接收到的信号到达时间差异和信号强度,无线电方位器可以确定目标相对于其位置的角度和方向。
无线电方位器的应用包括无线电导航台和无线电方位查找器等。
简述无线电定位的原理及应用范围

简述无线电定位的原理及应用范围1. 无线电定位的原理无线电定位是一种通过利用无线电波的传播和接收特性,确定物体位置的技术。
它基于无线电信号的传播时间、信号强度、频率等参数的变化,利用数学算法和信号处理来计算物体或者信号源的位置。
1.1 无线电定位的基本原理无线电定位的基本原理是利用无线电信号在空间中的传播时间差和信号到达的角度差来计算物体的位置。
主要包括以下几个步骤:•发射信号:通过无线电发射设备,发送特定频率和功率的无线电信号。
•接收信号:通过接收设备,接收到发射设备发送的无线电信号。
•信号处理:通过计算信号的到达时间差和角度差,利用三角定位法或者其它数学算法计算出物体的位置。
1.2 无线电定位的技术方法无线电定位可以通过多种技术方法实现,主要包括以下几种:•时间差测量(Time Difference of Arrival,TDOA):利用接收设备同时接收多个信号源发射的信号,通过测量信号到达时间的差异计算物体的位置。
•相位差测量(Phase Difference of Arrival,PDOA):利用接收设备测量不同信号源发射的信号的相位差,计算物体位置。
•信号强度测量(Received Signal Strength Indicator,RSSI):通过测量不同位置接收到的信号强度,计算物体位置。
•角度测量(Angle of Arrival,AOA):利用接收设备测量接收到信号的方向,计算物体位置。
2. 无线电定位的应用范围无线电定位技术在许多领域中有广泛的应用。
以下是一些常见的应用范围:2.1 跟踪定位无线电定位技术可以用于物体的跟踪定位,如车辆定位、人员追踪、宠物定位等。
通过在这些物体上搭载无线电设备,可以实时获取物体的位置信息,以实现精确的跟踪和定位。
2.2 安全监控无线电定位技术在安全监控领域有广泛的应用。
例如,利用无线电定位技术可以实时监测建筑物内的人员位置,以及火灾等紧急事件的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线电导航的原理与应用
一、导言
无线电导航是一种利用无线电信号进行定位和导航的技术。
它广泛应用于航空、航海、车载导航和无人机系统等领域。
了解无线电导航的原理与应用对于理解现代导航系统的工作方式至关重要。
本文将深入介绍无线电导航的原理和其在不同领域的应用。
二、无线电导航原理
无线电导航是基于无线电波传播的定位和导航技术。
其原理基于以下几个关键
要素:
1. 信号发射器
无线电导航的系统中,会有一个或多个信号发射器,常用的是卫星导航系统中
的卫星。
信号发射器会发送特定频率的无线电波信号。
2. 接收器
接收器负责接收信号发射器发出的无线电波信号,并将其转化为导航系统能够
识别和处理的信息。
3. 测距原理
无线电导航中常用的测距原理包括时间测距、多普勒效应和信号强度测距等。
这些原理可以通过接收到的信号特征来确定位置和距离。
4. 三角定位法
利用多个信号发射器和接收器,可以采用三角定位法来确定准确的位置。
通过
测量不同信号到达接收器的时间差和距离,可以计算出接收器的位置。
三、无线电导航的应用
1. 航空导航
航空领域是无线电导航最常见的应用之一。
航空导航系统利用全球定位系统(GPS)等技术,能够实时、准确地定位飞机的位置。
无线电导航在航空领域中的
应用使得飞行变得更加安全和高效。
2. 航海导航
航海导航依赖于无线电导航系统来确定船只的位置和航向。
借助GPS和其他卫星导航系统,船只可以在海上定位和导航,避免撞船和迷航等危险情况。
3. 车载导航
车载导航系统利用无线电导航原理来为驾驶员提供路线指引和实时导航。
通过全球定位系统和地图数据,驾驶员可以更好地规划行驶路线并避开交通拥堵。
4. 无人机导航
无人机的导航是依赖于无线电导航技术实现的。
无人机可以利用GPS等定位系统精确导航,实现自主飞行和遥控飞行。
5. 军事应用
无线电导航在军事领域也有广泛的应用。
军事导航系统能够为士兵和战机提供准确的定位和导航信息,提升军事行动的效率。
结论
无线电导航作为一种基于无线电信号的定位和导航技术,广泛应用于航空、航海、车载导航和无人机等领域。
通过了解无线电导航的原理和应用,我们可以更好地理解现代导航系统的工作原理和优势。
无线电导航技术的不断发展将为人类的出行和军事行动带来更多便利和效率。