比较线段的长短
比较线段的长短的方法

比较线段的长短的方法
比较线段的长短可以使用以下方法:
1. 测量法:使用直尺或量角器等工具测量线段的长度,并直接比较测量结果的数值大小。
2. 勾股定理:如果已知两条线段的起点和终点坐标,可以利用勾股定理计算出两条线段的长度,然后进行比较。
3. 向量法:将线段起点和终点的坐标表示为向量形式,计算出两条线段的向量长度,再比较向量长度的大小。
4. 直接求距离:根据两条线段的起点和终点坐标,利用几何公式直接求出两条线段的距离,然后进行比较。
需要注意的是,以上方法都是基于二维空间的情况。
对于三维空间中的线段长度比较,可以使用类似的方法,但需要考虑三维坐标的表示和计算。
初一数学《比较线段的长短》知识点精讲

初一数学《比较线段的长短》知识点精讲知识点总结1、线段的性质:两点之间,线段最短。
2、两点之间的距离:两点之间线段的长度叫做两点之间的距离。
3、比较线段长短的方法:(1)目测法;(2)度量法;(3)叠合法4、线段的中点:在线段上,到线段两个端点距离相等的点叫做线段的中点。
5、尺规作图:用没有刻度的直尺和圆规作图6、用尺规作线段:(1)作一条线段等于已知线段;(2)作一条线段等于已知线段的二倍;(3)作一条线段等于已知线段的和或差。
其方法是相同的,都是先画一条射线,然后用圆规在射线上截取即可,注意保留作图痕迹,画完图形后写出总结“某某线段即为所求作的线段”。
尺规作图的定义:仅用圆规和没有刻度的直尺作图的方法叫做尺规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.线段的中点:如下图,若点B在线段AC上,且把线段AC分成相等的两条线段AB与BC,这时点B叫做线段AC的中点.3. 用尺规作线段或比较线段(1)作一条线段等于已知线段:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.要点诠释:几何中连结两点,即画出以这两点为端点的线段.(2)线段的比较:叠合比较法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.如下图:要点诠释:线段的比较方法除了叠合比较法外,还可以用度量比较法.如图所示,在一条笔直公路a的两侧,分别有A、B两个村庄,现要在公路a上建一个汽车站C,使汽车站到A、B两村的距离之和最小,问汽车站C的位置应如何确定?【答案与解析】解:如图,连接AB与直线a交于点C,这个点C的位置就是符合条件的汽车站的位置.【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.举一反三:【变式】(1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.【答案】解:(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.思维导图教学设计一、教材分析:1、教材的地位和作用本节课是教材第五章《平面图形及其位置关系》的第二节,是平面图形的重要的基础知识。
比较线段的长短观评课报告

比较线段的长短观评课报告在我们日常生活和学习中,线段的长短比较是一种常见的数学问题。
在本次观评课中,我们学习了关于比较线段的长短的具体方法和技巧,本文将对此进行总结和说明。
一、线段的基本概念和表示首先,我们需要了解线段的基本概念和数学表示方法。
线段是由两个端点组成的一条有限长度的直线。
在数学上,表示线段的常用方法有坐标表示和向量表示。
坐标表示是将线段的两个端点在坐标系中用横纵坐标表示出来,如点A(x1,y1)和点B(x2,y2),则线段AB的长度为√((x2-x1)²+(y2-y1)²)。
向量表示是将线段的两个端点表示成一个向量的形式,如向量AB=向量OB-向量OA,则线段AB的长度为向量AB的模长。
二、比较线段长度的方法在比较线段长度时,我们可以使用以下方法:1. 直接比较法通过将两条线段放在一起进行直接比较,判断哪条线段更长。
这种方法的局限性在于,当两条线段长度相差不大时,很难判断出具体的长度差异。
2. 坐标表示法通过将线段的两个端点在坐标系中表示出来,然后计算两条线段的长度,最后进行比较。
这种方法的优点是比较直观,比较适合处理长度相差较大的线段。
3. 向量表示法将线段的两个端点表示为向量的形式,然后计算两个向量之间的距离,最后进行比较。
这种方法更加简洁和通用,可以处理各种长度的线段。
4. 图形比较法将两条线段画在同一的图形中进行比较,可以通过SAS、SSS等图形相似性来进行判断。
这种方法比较直观,但需要一定的图形绘制技能。
三、实例分析下面,我们通过一个实例来分析以上比较线段长度的方法:有一张图片,其中线段AB长度为3,线段CD长度为4,线段EF长度为5,请判断哪条线段最长。
直接比较法通过将三条线段放在一起,我们可以很明显地看出线段EF最长。
坐标表示法将三条线段的端点坐标表示在平面直角坐标系中,我们可以得到以下三条线段的长度:线段AB长度为√(9+4)=√13,线段CD长度为√(9+16)=√25,线段EF长度为√(1+16)=√17。
比较线段的长短练习题

比较线段的长短练习题线段的长短是数学中一个基本的概念,也是我们日常生活中常常遇到的问题。
通过比较线段的长短,我们可以培养自己的观察力和思维能力。
下面,我们来做一些关于线段长短的练习题,通过解题来加深对这个概念的理解。
练习题一:小明有一条长为8厘米的线段,小红有一条长为5厘米的线段,那么小明的线段比小红的线段长多少厘米?解答:小明的线段长为8厘米,小红的线段长为5厘米。
我们可以通过减法来计算小明的线段比小红的线段长多少厘米。
8厘米 - 5厘米 = 3厘米所以,小明的线段比小红的线段长3厘米。
练习题二:小华有一条长为15厘米的线段,小李有一条长为10厘米的线段,那么小华的线段比小李的线段长多少厘米?小华的线段比小红的线段长多少倍?解答:小华的线段长为15厘米,小李的线段长为10厘米。
我们可以通过减法来计算小华的线段比小李的线段长多少厘米。
15厘米 - 10厘米 = 5厘米所以,小华的线段比小李的线段长5厘米。
我们还可以通过除法来计算小华的线段比小李的线段长多少倍。
15厘米÷ 10厘米 = 1.5倍所以,小华的线段比小李的线段长1.5倍。
通过这两道练习题,我们可以看出,比较线段的长短可以通过减法和除法来解决。
在解决问题的过程中,我们需要运用数学知识,进行计算和推理。
这样的练习可以培养我们的思维能力和逻辑思维能力。
练习题三:小明有一条线段长为12厘米,小红有一条线段长为10毫米,那么小明的线段比小红的线段长多少厘米?解答:小明的线段长为12厘米,小红的线段长为10毫米。
我们需要将小红的线段的单位转换为厘米,然后再进行比较。
10毫米 = 1厘米所以,小红的线段长为0.1厘米。
现在我们可以通过减法来计算小明的线段比小红的线段长多少厘米。
12厘米 - 0.1厘米 = 11.9厘米所以,小明的线段比小红的线段长11.9厘米。
通过这道练习题,我们可以看出,比较线段的长短时,需要注意单位的转换。
在解决问题的过程中,我们需要灵活运用数学知识,进行单位转换和计算。
线段的长短比较重难点题型

线段的长短比较-重难点题型【例1】(2021•鼓楼区校级模拟)如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC﹣BD B.CD=12BC C.CD=12AB﹣BD D.CD=AD﹣BC【变式1-1】(2021秋•荔湾区期末)延长线段AB到C,使BC=12AB,反向延长AC到D,使AD=12AC,若AB=8cm,则CD=cm.【变式1-2】(2021春•长兴县月考)如图,在线段AB上有C、D两点,CD长度为1cm,AB长为整数,则以A,B,C,D为端点的所有线段长度和不可能为()A.16cm B.21cm C.22cm D.31cm【变式1-3】(2021秋•天津期末)如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm.求CM和AD的长.【题型2 线段中点的有关计算】【例2】(2021春•松北区期末)如图,点G是AB的中点,点M是AC的中点,点N是BC的中点,则下列式子不成立的是()A.MN=GB B.CN=12(AG−GC)C.GN=12(BG+GC)D.MN=12(AC+GC)【变式2-1】(2021秋•邵阳县期末)如图,点C 、D 是线段AB 上任意两点,点M 是AC 的中点,点N 是DB 的中点,若AB =a ,MN =b ,则线段CD 的长是( )A .2b ﹣aB .2(a ﹣b )C .a ﹣bD .12(a +b )【变式2-2】(2021秋•奉化区校级期末)两根木条,一根长10cm ,另一根长12cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( ) A .1cmB .11cmC .1cm 或11cmD .2cm 或11cm【变式2-3】(2021秋•江岸区校级月考)如图,点M 在线段AN 的延长线上,且线段MN =20,第一次操作:分别取线段AM 和AN 的中点M 1,N 1;第二次操作:分别取线段AM 1和AN 1的中点M 2,N 2;第三次操作:分别取线段AM 2和AN 2的中点M 3,N 3;……连续这样操作10次,则每次的两个中点所形成的所有线段之和M 1N 1+M 2N 2+…+M 10N 10=( )A .20(12+122+123+⋯+1210) B .20+1029 C .20−10210 D .20+10210 【题型3 线段n 等分点的有关计算】【例3】(2021春•东平县期末)如图,已知AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间的距离是10cm ,则AB 的长是 .【变式3-1】(2021春•奉贤区期末)如图,已知BD =16cm ,BD =25AB ,点C 是线段BD 的中点,那么AC = cm .【变式3-2】(2021秋•宝鸡期末)如图,P是线段AB上一点,AB=12cm,M、N两点分别从P、B出发以1cm/s、3cm/s的速度同时向左运动(M在线段AP上,N在线段BP上),运动时间为ts.(1)若M、N运动1s时,且PN=3AM,求AP的长;(2)若M、N运动到任一时刻时,总有PN=3AM,AP的长度是否变化?若不变,请求出AP的长;若变化,请说明理由;(3)在(2)的条件下,Q是直线AB上一点,且AQ=PQ+BQ,求PQ的长.【变式3-3】(2021秋•甘井子区期末)已知,点D是射线AB上的点,线段AB=4a,BD =nAB(0<n<1),点C是线段AD的中点.(1)如图1,若点D在线段AB上,当a=1,n=12时,求线段CD的长;(2)如图2,若点D在线段AB的延长线上,当n=12时,求线段CD的长;(用含a的式子表示)(3)若点D在射线AB上,请直接写出线段CD的长.(用含a和n的式子表示)【题型4 线段的数量关系】【例4】(2021秋•江门期末)如图,点B 在线段AC 上,D 是AC 的中点.若AB =a ,BC =b ,则BD =( )A .12b −12a B .12a −12bC .b −12aD .a −12b【变式4-1】(2021秋•沙湾区期末)如图,已知A ,B ,C ,D 是同一直线上的四点,看图填空:AC = +BC ,BD =AD ﹣ ,AC < .【变式4-2】(2021春•莱阳市期末)线段AB 的长为2cm ,延长AB 到点C ,使AC =3AB ,再延长BA 到点D ,使BD =2BC ,则线段CD 的长为 cm .【变式4-3】(2021秋•成都期末)已知点C 在线段AB 上,AC =2BC ,点D ,E 在直线AB 上,点D 在点E 的左侧.若AB =15,DE =6,线段DE 在线段AB 上移动. ①如图1,当E 为BC 中点时,求AD 的长;②点F (异于A ,B ,C 点)在线段AB 上,AF =3AD ,CF =3,求AD 的长;【题型5 两点之间线段最短】【例5】(2021春•莱州市期末)如图,A ,C 两村相距6km ,B ,D 两村相距5km .现要建一个自来水厂,使得该厂到四个村的距离之和最小.下列说法正确的是( )A .自来水厂应建在AC 的中点B .自来水厂应建在BD 的延长线上C .自来水厂到四个村的距离之和最小为11kmD .自来水厂到四个村的距离之和可能小于11km【变式5-1】(2021秋•丛台区校级期末)下列生活,生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着直线AB架设;④把弯曲的公路改直,就能缩短路程,其中可用“两点确定一条直线”来解释的现象有()A.①②B.①③C.②④D.③④【变式5-2】(2021秋•兴义市期末)如图,一只蚂蚁从长方体的一个顶点A沿表面爬行到顶点C处,有多条爬行线路,其中沿AC爬行一定是最短路线,其依据的数学道理是.【变式5-3】(2021秋•渠县期末)知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?【题型6 两点间的距离】【例6】(2021秋•罗湖区校级期末)如果在数轴上的A、B两点所表示的有理数分别是x,y,且|x|=3,|y|=1,则A,B两点间的距离是()A.4B.2C.4或2D.以上都不对【变式6-1】(2021秋•奉化区校级期末)如图,已知点A、点B是直线上的两点,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过多少时间线段PQ的长为5厘米.【变式6-2】(2021秋•秦淮区期末)直线l上的三个点A、B、C,若满足BC=12AB,则称点C是点A关于点B的“半距点”.如图1,BC=12AB,此时点C就是点A关于点B的一个“半距点”.若M、N、P三个点在同一条直线m上,且点P是点M关于点N的“半距点”,MN=6cm.(1)MP=cm;(2)若点G也是直线m上一点,且点G是线段MP的中点,求线段GN的长度.【变式6-3】(2021秋•姜堰区期末)如图,点C在线段AB上,AC=6cm,CB=4cm,点M以1cm/s的速度从点A沿线段AC向点C运动;同时点N以2cm/s从点C出发,在线段CB上做来回往返运动(即沿C→B→C→B→…运动),当点M运动到点C时,点M、N都停止运动,设点M运动的时间为ts.(1)当t=1时,求MN的长;(2)当t为何值时,点C为线段MN的中点?(3)若点P是线段CN的中点,在整个运动过程中,是否存在某个时间段,使PM的长度保持不变?如果存在,求出PM的长度;如果不存在,请说明理由.【题型7 简单的线段的长短比较】【例7】(2021秋•攀枝花校级期中)从A地到B地有两条路,第一条从A地直接到B地,第二条从A地经过C,D到B地,两条路相比,第一条的长度第二条的长度(填“<”“>”“=”)【变式7-1】(2021秋•双流区期末)体育课上,小明在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q【变式7-2】(2021秋•南海区期末)我们知道,比较两条线段的长短有两种方法:一种是度量法,是用刻度尺量出它们的长度,再进行比较;另一种方法是叠合法,就是把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较.(1)已知线段AB,C是线段AB上一点(如图①).请你应用叠合法,用尺规作图的方法,比较线段AC与BC的长短,并简单说明理由(要求保留作图痕迹);(2)如图②,小明用刻度尺量得AC=4cm,BC=3cm,若D是AC的中点,E是BC的中点,求DE的长.【变式7-3】(2021秋•宁波期末)已知数轴上的三点A、B、C所对应的数a、b、c满足a <b<c、abc<0和a+b+c=0.那么线段AB与BC的大小关系是()A.AB>BC B.AB=BC C.AB<BC D.不确定的【题型8 与线段的长短比较有关的应用】【例8】(2021秋•南沙区期末)如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处【变式8-1】(2021秋•海淀区校级期中)如图,在公路MN两侧分别有A1,A2…A7,七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是()①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A.①B.②C.①③D.②③【变式8-2】一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.【变式8-3】(2021•烟台)先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.。
2 比较线段的长短一等奖创新教案_1

2 比较线段的长短一等奖创新教案《比较线段的长短》教学设计一、课标解读在初中数学课程标准,第三学段《图形与几何》对《比较线段的长短》部分是这样描述的:1.会比较线段的长短,理解线段的和、差,以及线段中点的意义.2.掌握基本事实:两点之间线段最短.3.理解两点间距离的意义,能度量两点间的距离.二、教材分析1.教材的地位和作用本节课是教材第四章《基本平面图形》的第二节。
是继《线段、射线、直线》之后的内容,它是学生对几何语言、几何基本事实、几何定义的初步接触,是很基础的一节课,所以在教学中要注重培养学生文字语言、图形、几何语言的转化能力,发展学生的符号感、空间观念.知识主要分为四大块:如何比较线段的大小、中点的概念和几何语言的表示、两点之间线段最短的基本事实、两点之间的距离;主要思想方法有:数形结合思想、分类思想.教好本节内容,不仅是对前一节所学内容的复习巩固,也是学生以后学习线与线的位置关系、三角形全等等知识的基础,它为将来进一步学习几何,起到了一个支撑点的作用.2.教学目标依据《课程标准》对7—9年级《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:(1)借助具体情景了解“两点之间所有连线中,线段最短”的性质.(2) 能用圆规作一条线段等于已知线段.(3) 能借助直尺、圆规等工具,比较两条线段的长短.(4)立足具体情景,尽可能从学生感兴趣的话题出发,去发展有条理的思考,并能用语言表达自己发展的成果.(5)创设教学情境,鼓励学生独立思考、独立操作,然后通过合作、交流去探索问题,解决问题.3.教学重点.难点重点:了解线段性质及线段的比较方法,两点之间的距离的概念和线段中点的概念.难点:比较线段长短的方法,线段中点的表示方法及应用.三、学情分析1.教学方法:“微视频情境导入----合作交流、探索新知----巩固练习----拓展延伸”,努力构建合作探索性的课堂教学模式.2.学法指导:借鉴杜威的“做中学”的思想,让学生经历动脑、动口、动手的过程,采用自主、合作、探究的学习方法.四、评价设计1.通过微视频预习达成目标一和目标2;2.从实例出发探究讨论比较线段长短达成目标3;3.通过评价练习题的延伸,借助尺规作图引出线段中点的定义达成目标4;4.通过变式训练强化提升达成目标5.学科素养:逻辑推理、数学运算德育范畴:思维严谨五、教学过程设计(一)录制微视频,学生预习探究新知微视频一(线段公理):任务单问题一:为什么大家都喜欢走捷径?基本事实:两点之间的所有连线中,线段最短.实际应用:学生举例.把弯曲的河道改直可以缩短航程,其几何道理是___ .【设计意图】六年级学生的学习带有强烈的情感色彩,对于熟悉的情境、感兴趣的问题能够很容易的展开思维。
比较线段的长短的教案

4.2 比较线段的长短教学目标知识与能力1、借助具体情境了解“两点之间所有连线中,线段最短”的性质。
2、能借助直尺、圆规等工具比较两条线段的长短。
3、能用圆规作一条线段等于已知线段。
教学思考创设现实情境,鼓励学生独立思考、独立操作,然后通过合作、交流去探索问题,解决问题。
解决问题`立足具体情境,尽可能从学生感兴趣的话题出发,去发展有条理的思考,并能用语言表达自己的发现成果。
情感态度与价值观调动学生的主观能动性,积极参与数学活动,促使学生在学习中培养良好的情感态度、主动参与、合作的意识,进一步提高观察、分析和抽象的能力。
教学重点:了解线段性质及线段比较方法,两点之间的距离的概念和线段中点的概念。
教学难点用直尺和圆规作一条线段等于已知线段,比较线段长短的方法,线段中点的表示方法及应用。
教学过程一、创设情境,检查预习效果,引入新课想一想1、(1)由我家到八中的路线有四条,哪一条最近?我家到八中的距离是什么?检查学案探究一中的(1)到(4)小题。
线段的性质:两点之间的所有连线中,线段最短。
也可简述为:“两点之间,线段最短”这就是线段的基本性质两点之间的距离:两点之间线段的长度叫做这两点之间的距离(强调长度)(2)由小狗跑得远,还是小猫跑远?你是怎样比较的?(经过讨论、交流后,有的说“目测”,有的说“自己去度量”等。
)引出本节课题如果把小狗、小猫、骨头和鱼看作点,路径看作线段,其实质就是比较线段A B 的长短,这节课我们来研究比较线段的长短。
二、探究新知,学习新课在研究如何比较之前大家来看这个问题:如何在黑板上画一条和一根细木棍等长度的线段?学生独立思考后回答。
为后面的尺规作图打好基础,让学生初步感受类比法学习新知。
做一做怎样用圆规作一条线段等于已知线段(师生互动作图)1、例:已知线段a .求作线段,使AC =a 做法:①先作一条射线AB 。
②用圆规量出已知线段的长度a 。
③在射线AB 上以A 为圆心,截取AC = a 。
北师大版数学七年级上册4.2《比较线段的长短》教学设计

北师大版数学七年级上册4.2《比较线段的长短》教学设计一. 教材分析《比较线段的长短》是北师大版数学七年级上册第4章《几何图形》中的一个知识点。
这部分内容主要是让学生掌握比较线段长短的方法,培养学生的观察、操作和推理能力。
教材通过生活实例引入线段的比较,让学生在实际情境中体会数学与生活的联系,感受数学的价值。
二. 学情分析七年级的学生已经具备了一定的空间观念和逻辑思维能力,但对线段的认识还停留在直观层面。
因此,在教学过程中,教师需要从学生的实际出发,引导学生通过观察、操作、思考、交流等活动,逐步理解和掌握线段的比较方法。
三. 教学目标1.知识与技能:让学生掌握比较线段长短的方法,能运用这些方法解决实际问题。
2.过程与方法:培养学生的观察、操作和推理能力,提高学生解决问题的能力。
3.情感态度与价值观:让学生感受数学与生活的联系,体验数学的价值。
四. 教学重难点1.重点:比较线段长短的方法。
2.难点:如何在实际问题中灵活运用比较线段长短的方法。
五. 教学方法1.情境教学法:通过生活实例引入线段的比较,激发学生的学习兴趣。
2.观察法:引导学生观察线段的特点,发现比较线段长短的方法。
3.操作法:让学生动手操作,加深对线段比较方法的理解。
4.讨论法:分组讨论,培养学生的合作意识和沟通能力。
六. 教学准备1.教学课件:制作课件,展示线段比较的方法和实际应用。
2.教学素材:准备一些生活中的图片和实例,用于导入和巩固环节。
3.学具:为学生准备尺子、直线等工具,便于操作和实践。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的线段,如尺子、书桌、道路等,引导学生关注线段。
然后提出问题:“如何比较这些线段的长短?”激发学生的思考和兴趣。
2.呈现(10分钟)展示一些线段,让学生观察并尝试比较它们的长短。
引导学生发现,可以通过观察线段的形状、位置和度量工具来比较长短。
同时,介绍线段的度量方法,如用尺子量、用直角三角板比较等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。