钢结构稳定的特点及设计计算原则
钢结构稳定计算

E ——欧拉临界应力, A ——压杆的截面面积 i ——回转半径( i2=I/A) l----构件的几何长度
1、理想轴心受压构件弯曲屈曲临界力随抗弯刚度的增加和构件长度 的减小而增大; 2、当构件两端为其它支承情况时,通过杆件计算长度的方法考虑。
钢结构设计原理 Design Principles of Steel Structure
长度l0x=6m ,l0y=3m,翼缘钢板为火焰切割边,钢材为Q345, f=315N/mm2,截面无削弱,试计算该轴心受压构件的整体稳
定性。
y
-250×8
x
x
y -250×12
钢结构设计原理 Design Principles of Steel Structure
第四章 构件稳定
1、截面及构件几何性质计算
钢结构设计原理 Design Principles of Steel Structure
第四章 构件稳定
§4.2 实腹式轴心受压构件的截面设计
轴心受压构件设计时应满足强度、刚度、整体稳定和局部稳定的要 求。设计时为取得安全、经济的效果应遵循以下原则。
截面设计原则
1.等稳定性原则
杆件在两个主轴方向上的整体稳定承载力尽量接近。因此尽可能 使两个方向的稳定系数或长细比相等,以达到经济效果。
截面关于x轴和y轴都属于b类,
x y
x
f y 50.4 235
345 61.1 235
查表得: 0.802
N 2000 103 311 .9N / mm 2 f 315 N / mm 2 A 0.802 8000
满足整体稳定性要求。
其整体稳定承载力为:
Nc Af 0.802 8000 315 2020000 N 2020 kN
《钢结构设计标准》

《钢结构设计标准》钢结构作为一种常见的结构形式,其设计标准对于工程质量和安全具有非常重要的影响。
钢结构设计标准包含了结构设计的基本原则、计算方法、设计规范等内容,对于工程设计师和施工方非常重要。
以下将从钢结构设计标准的基本要点、设计原则、计算方法以及设计规范等方面进行详细介绍。
一、基本要点1.1结构设计的基本原则钢结构设计的基本原则是根据结构的受力特点和建筑的使用要求,合理选择结构形式和材料,进行整体稳定的设计。
同时还要考虑结构的经济性和施工的可行性,满足设计要求的同时尽可能减小材料和成本。
此外,还要考虑结构的耐久性和抗震性等问题,确保结构的安全可靠。
1.2结构设计的计算方法钢结构的设计计算一般包括结构受力计算、材料力学计算、结构稳定计算等内容。
在进行设计计算时,一般需要考虑结构的静力和动力两种受力情况,根据结构的受力特点和使用要求,进行合理的计算方法选择和计算过程。
1.3结构设计的规范要求钢结构的设计要满足国家相关的建筑设计规范和标准的要求。
在进行设计时,必须按照规范的要求进行,严格遵循规范的设计原则和计算方法,确保结构设计的合理性和安全可靠性。
二、设计原则2.1强度原则钢结构设计的强度原则是指在结构设计时,必须保证结构的承载能力足够强,能够承受预期的荷载,保证结构的安全可靠。
2.2稳定原则稳定原则是指在结构设计中,必须考虑结构的稳定性,防止结构在受力过程中发生屈曲和失稳现象,确保结构的整体稳定。
2.3经济原则经济原则是指在满足设计要求的前提下,尽可能减小结构的材料和成本,提高结构的经济性。
2.4施工原则施工原则是指在结构设计中,必须考虑结构的施工可行性,确保结构在施工过程中能够顺利进行,提高施工效率。
三、计算方法3.1结构受力计算结构受力计算是指根据结构的受力特点和受力条件,进行结构受力分析和计算,得出结构的受力情况,为后续的材料选择和规格设计提供依据。
3.2材料力学计算材料力学计算是指根据材料的力学性能,对结构材料进行强度和刚度等方面的计算,确保选用的材料符合结构设计要求。
钢结构的特点

钢结构的特点、设计方法和材料一、钢结构的特点(1)强度高,塑性和韧性好强度高,适用于建造跨度大、承载重的结构。
塑性好,结构在一般条件下不会因超载而突然破坏。
韧性好,适宜在动力荷载下工作。
(2)重量轻(3)材质均匀,和力学计算的假定比较符合钢材内部组织比较均匀,接近各向同性,实际受力情况和工程力学计算结果比较符合。
(4)钢结构制作简便,施工工期短钢结构加工制作简便,连接简单,安装方便,施工周期短。
(5)钢结构密闭性较好水密性和气密性较好,适宜建造密闭的板壳结构。
(6)钢结构耐腐蚀性差容易腐蚀,处于较强腐蚀性介质内的建筑物不宜采用钢结构。
(7)钢材耐热但不耐火温度在200℃以内时,钢材主要力学性能降低不多。
温度超过200℃后,不仅强度逐步降低,还会发生兰脆和徐变现象。
温度达600℃时,钢材进入塑性状态不能继续承载。
(8)在低温和其他条件下,可能发生脆性断裂。
二、钢结构的设计方法和设计表达式《钢结构设计规范》除疲劳计算外,采用以概率理论为基础的极限状态设计方法,用分项系数的设计表达式进行计算。
1.极限状态当结构或其组成部分超过某一特定状态就不能满足设计规定的某一功能要求时,此特定状态就称为该功能的极限状态。
(1)承载能力极限状态 包括构件和连接的强度破坏、疲劳破坏和因过度变形而不适于继续承载,结构和构件丧失稳定,结构转变为机动体系和结构倾覆。
(2)正常使用极限状态 包括影响结构、构件和非结构构件正常使用或外观的变形,影响正常使用的振动,影响正常使用或耐久性能的局部损坏(包括混凝土裂缝)。
以结构构件的荷载效应S 和抗力R 这两个随机变量来表达结构的功能函数,则Z =g (R ,S )=R -S (1)在实际工程中,可能出现下列三种情况:Z >0 结构处于可靠状态;Z =0 结构达到临界状态,即极限状态;Z <0 结构处于失效状态。
按照概率极限状态设计方法,结构的可靠度定义为:结构在规定的时间内,在规定的条件下,完成预定功能的概率。
钢结构的特点及技术要求

钢结构的特点及技术要求钢结构建筑是以建筑钢材构成承重结构的建筑。
通常由型钢和钢板制成的梁、柱、桁架等构件构成承重结构,其与屋面、楼面和墙面等围护结构共同组成建筑物。
一、钢结构的特点建筑型钢通常指热轧成型的角钢、槽钢、工字钢、H型钢和钢管等。
由其构件构成承重结构的建筑称型钢结构建筑。
另外由薄钢板冷轧成型的、卷边或不卷边的工形、U形Z形和管形等薄壁型钢,以及其与小型钢材如角钢、钢筋等制成的构件所形成的承重结构建筑,一般称轻型钢结构建筑。
还有采用钢索的悬索结构建筑等,也属于钢结构建筑。
钢结构具有以下主要优点:(1)材料强度高,自重轻,塑性和韧性好,材质均匀;(2)便于工厂生产和机械化施工,便于拆卸,施工工期短;(3)具有优越的抗震性能;(4)无污染、可再生、节能、安全,符合建筑可持续发展的原则,可以说钢结构的发展是21 世纪建筑文明的体现。
钢结构的缺点是易腐蚀,需经常油漆维护,故维护费用较高。
结构的耐火性差,当温度达到250℃时,钢结构的材质将会发生较大变化;当温度达到500℃时,结构会瞬间崩溃,完全丧失承载能力。
二、钢结构的主要技术要求现行国家标准《钢结构通用规范》CB55006-2021对钢结构设计与施工规定如下:(一)钢结构工程建设应遵循的原则1.满足适用、经济和耐久性要求;2.提高工程建设质量和运营维护水平;3.符合国家节能、环保、防灾减灾和应急管理等政策;4.符合建筑技术的发展方向,鼓励新技术应用。
(二)基本规定当施工方法对结构的内力和变形有较大影响时,应进行施工方法对主体结构影响的分析,并应对施工阶段结构的强度、稳定性和刚度进行验算。
三)材料要求钢结构承重构件所用的钢材应具有屈服强度、断后伸长率、抗拉强度和磷、硫含量的合格保证、在低温使用环境下尚应具有冲击韧性的合格保证;对焊接结构尚应具有碳或碳当量的合格保证。
(四)设计要求1.螺栓孔加工精度、高强度螺栓施加的预拉力、高强度螺栓摩擦型连接的连接板摩擦面处理工艺应保证螺栓连接的可靠性:已施加过预拉力的高强度螺栓拆卸后不应作为受力螺栓循环使用。
钢结构设计中的强度与稳定性分析

钢结构设计中的强度与稳定性分析钢结构作为一种重要的建筑构造形式,在现代建筑中得到了广泛的应用。
其独特的特点使其成为了建筑设计师们的首选,然而,正确理解和分析钢结构的强度与稳定性是确保其安全性和可靠性的关键。
本文将深入探讨钢结构设计中的强度与稳定性分析,以期对读者有所启发。
一、强度分析钢结构的强度分析是确保建筑结构能够承受正常和异常荷载的重要步骤。
在设计过程中,工程师需要考虑到以下几个关键因素。
1.1 材料强度钢材作为钢结构的主要构造材料,其强度参数决定了整个结构的抗力能力。
工程师需要详细了解所选用的钢材的性能指标,包括屈服强度、抗拉强度、弹性模量等,以确保设计结构的强度能够满足要求。
1.2 荷载计算在设计过程中,荷载计算是非常重要的一环。
工程师需要根据建筑的用途和具体情况,准确计算出可变荷载、恒载和地震荷载等,以保证设计的结构能够承受这些荷载。
当荷载不均匀分配时,还需要进行统一系数的计算。
1.3 结构稳定钢结构的稳定性是强度分析中不可忽视的一部分。
当结构受到垂直或水平方向的外力作用时,其稳定性要求结构能够保持稳定。
工程师需要根据实际情况,采用适当的稳定性分析方法,确保设计的结构能够满足要求。
二、稳定性分析稳定性分析是钢结构设计中非常重要的一环,它主要考虑结构在受荷时的稳定性能。
以下是一些常见的稳定性分析方法。
2.1 弯曲稳定性分析在弯曲稳定性分析中,工程师需要计算并分析结构受弯矩作用下的稳定性。
通过计算结构的屈曲系数和容许屈曲荷载,可以确定结构的弯曲稳定性是否得到满足。
2.2 屈曲稳定性分析屈曲稳定性分析主要考虑结构在压力作用下的稳定性。
工程师需要计算结构的临界荷载和理论强度,以保证结构在受压力作用时不发生屈曲。
2.3 应力稳定性分析应力稳定性分析是为了保证结构在受荷时不发生破坏。
工程师需要计算结构的应力集中系数和容许应力,以确保结构在实际使用条件下能够稳定且不发生破坏。
三、结构设计的实践在实际结构设计中,强度与稳定性分析是紧密相连的。
钢结构设计稳定性原则和设计要点

钢结构设计稳定性原则和设计要点摘要:钢结构广泛应用于工程领域。
由于它的强度、韧性和塑性、便携性和节省施工时间,在建筑行业中发挥着重要作用。
但钢结构施工过程中如果稳定性和强度不匹配,其稳定性无法保证,不仅可能给施工队伍造成经济损失,还可能危及生命。
由于建筑工程的钢结构设计关系到建筑物的稳定性,对建筑物的质量有很大的影响,所以在实践中研究稳定性设计的原则和要点是非常重要的。
本文通过以建筑工程学视角分析钢结构在建筑工程中的稳定性与要点,解决我国目前领域内钢结构的应用安全隐患等问题。
关键词:钢结构;建筑工程;稳定性引言:自上世纪八十年代改革开放以来,我国经济步入兴盛时期,其中随着农村城市建设化的发展,我国建筑行业也随之在市场内繁荣。
钢材是我国建筑行业不可或缺的主要原材料,为了减少安全隐患,加强工程质量,行业有必要进行钢结构分析,提高钢结构性能。
一、钢结构的特点概述(一)钢结构特质简述在建筑工程应用中以钢材为主的建筑结构类型统称钢结构,传统设计中的钢结构具有刚性强、硬度强、韧性强、变形能力较好等优点[1]。
相较于钢材,钢结构具有多样性、整体性、相关性、稳定性等特质。
我国目前主流的钢结构设计主要应用钢结构的相关性与稳定性:将钢材通过合理设计搭建承压,从而在整个结构整体上维持建筑的稳定性。
(二)钢结构设计通过计算简图搭建钢结构的稳定性与关联性一旦被破坏将对建筑工程造成毁灭性打击,因此,为了避免不必要的人力浪费与时间损耗,我国目前的建设工程设计主流中不论单层结构框架还是多层结构框架均以稳定计算为前提。
遵循稳定计算的提前,为了避免钢结构在构建过程中失衡,行业要求将钢结构设计与计算图纸保持高度一致。
在现代化高维超级计算机的帮助下,建筑工程以计算简图代替了传统分析,得出数据化长宽高、受力点与受压部分,通过三维视图进行分析、调整、计算、核对等步骤使得计算简图在数据上保持准确性,也让钢结构框架在设计上、实施过程中保持稳定性、相关性。
第四章 钢结构的稳定

②型钢热轧后的不均匀冷却;
③板边缘经火焰切割后的热塑性收缩; ④构件经冷校正产生的塑性变形。其中,以热轧残余应力的影响 最大。
4.2 轴心受压构件的整体稳定性
残余应力对轴心受压构件稳定性的影响与它的分布有关。下面以 热轧制H型钢为例说明残余应力对轴心受压的影响(如下图所示)。
H型钢轧制时,翼缘端出现纵向残余压应力(图中阴影区称为I区),其余部分存在 纵向拉应力(称为Ⅱ区),并假定纵向残余应力最大值为0.3fy,由于轴心压应力 与残余应力相叠加,使得I区先进入塑料性状态而Ⅱ区仍工作于弹性状态,图(b), (c),(d),(e)反应了弹性区域的变化过程。 I区进入塑性状态后其截面应力不可 能再增加,能够抵抗外力矩(屈曲弯矩)的只有截面的弹性区,此时构件的欧拉临 界力和临界应力为:
根据上式可绘出N—V变化曲线, 如图所示。由此图可以看出:
(1)当轴心压力较小时,总挠
度增加较慢,到达 A或A’后,总
挠度增加加快。 (2)杆件开始时就处于弯曲平
衡状态,这与理想轴心压杆的直线平衡状态不同。
(3)对无限弹性材料,当轴压力达到欧拉临界力时,总挠度无限增大。 而实际材料是,当轴压力达到图中B或B'时,杆件中点截面边缘纤维屈 服而进入塑性状态,杆件挠度增加,而轴力减小,构件开始弹性卸载。
临界状态 (微弯平衡)
【又称】分岔失稳或第一类稳定问题 (bifurcation instability) 【定义】由原来的平衡状态变为一种新的微弯(或微 扭)平衡状态。 相应的荷载NE——屈曲荷载、临界荷载、 平衡分岔荷载
此类稳定又可分为两类:
稳定分岔失稳
不稳定分岔失稳
稳定分岔失稳
不稳定分岔失稳
例:求解图示刚性杆体系的临界力
余海群新钢规结构分析和稳定性设计简介

新版《钢结构设计规范》 结构分析与稳定性设计简介
余海群 2017年12月
钢结构稳定
• 结构整体稳定 • 构件稳定 • 板件稳定
中冶京诚
一般钢结构稳定设计方法
结构线性分析
中冶京诚
简化理想单根构件 模型非线性分析
输出构件内力
稳定性设计
采用 计算长度法
通过试验及分析结 果拟合的简化公式
纳入设计规范
单根构件承载力校 核(稳定性设计采
用计算长度法)
计算长度法特点
中冶京诚
• 和计算长度相关
端部支承条件
荷载在结构上的作用
• 计算长度法只是在特定条件下才能给出准 确的结果
• 不适用网壳类空间结构
按《钢规》内力分析设计流程
中冶京诚
根据结构二阶效应 系数θⅡ选择设计
方法
增大结构的侧移刚 度
是
θⅡ>0.25
二阶弹性P-Δ分析和设计流程
二阶P-Δ弹性设计
根据规范确定设计 工况
确定整体初始几何 缺陷模式
中冶京诚
确定整体初始几何 缺陷Δ0
可按最低阶整 体屈曲模态采
用
非线性求解
进行二阶P-Δ分析
稳定性计算时 计算长度系数
可取为1
构件承载力校核
直接分析设计法
中冶京诚
• 直接分析设计法指直接考虑对结构稳定性和强度 性能有显著影响的初始几何缺陷、残余应力、材 料非线性、节点连接刚度等因素,以整个结构体 系为对象进行二阶非线性分析的设计方法。直接
度和侧移 2 塑性铰的曲
率 3 没有塑性铰 的部位,输出
应力比
验证合理性结束
是
增加塑性铰
不满足
构件承载力校 核
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢结构稳定的特点及设计计算原则
【摘要】分析了钢结构稳定的特点及介绍了钢结构稳定设计计算的原则,对从事钢结构工作的设计及施工人员理解钢结构性能提供了有益的参考。
【关键词】钢结构;稳定;设计
钢结构构件的截面纤薄而开阔,故钢结构的稳定问题较其他结构类型更为突出。
虽然有关钢结构稳定研究的最新成果已经反映在我国现行国家标准《钢结构设计规范》(GB50017-2003)及《冷弯薄壁型钢结构技术规范》(GB50018-2002)中,但由于某些工程设计人员及施工人员对钢结构稳定的特点理解不透彻,给钢结构工程带来了发生失稳破坏的隐患。
一、钢结构失稳具有突然性和灾难性
失稳破坏具有突然性,具有典型的脆性破坏特征。
以图1所示的完善的轴心受压构件发生分支点失稳破坏为例,当P < Pcr时,完善轴心受压构件是稳定的;当P =Pcr时,该构件达到失稳破坏的临界状态;当P > Pcr时,该轴心受压构件突然发生侧向挠曲,构件丧失承载能力。
这种丧失承载能力的过程是在没有任何先兆的情况下瞬间发生,具有突然破坏的特性。
二、钢结构稳定具有多样性
钢结构的失稳,在形式上具有多样化的特点。
例如轴心受压构件常见的失稳形式是弯曲失稳,但不是唯一的失稳形式,还有扭转失稳和弯扭失稳。
压弯构件存在弯矩作用平面内的弯曲失稳和弯矩作用平面外的弯扭失稳;刚架表现出无侧移的对称失稳和有侧移的反对称失稳;拱结构也表现出对称形式的失稳和反对称形式的失稳;薄板有受压失稳和剪切失稳;失稳既有局部失稳又有整体失稳等,这些都是稳定问题多样性的表现。
三、钢结构稳定具有整体性
对于结构来说,它是由各个构件组成的一个整体,当一个构件发生失稳变形后,必然牵动和它刚性连接的其他构件。
构件的稳定性不能就某一个构件孤立地去分析,应当考虑其他构件对它的约束作用,这种约束作用是要从结构的整体分析中去确定,这就是结构稳定的整体性。
结构稳定的整体性在刚架稳定分析中表现得十分明显,在分析刚架的稳定时既要考虑同层柱之间的相互影响,又要考虑层与层间柱的相互影响,还要考虑梁柱之间的相互约束作用,表现出整体性分析的特点。
稳定问题的整体性不仅表现在构件之间的相互约束,也表现
在围护结构对承重结构的约束作用,只是这种约束作用目前在设计中被忽略了。
稳定问题的整体性要求稳定分析应该从整体结构着眼。
四、钢结构稳定与强度、刚度计算的关系
强度表示结构中的材料或截面能够承受的最大应力或最大内力;刚度表示抵抗变形的能力;失稳表示结构不再能够以原来的平衡形式继续承受附加的荷载。
强度问题指结构或者单个构件在稳定平衡状态下由荷载所引起的最大应力(或内力)是否超过建筑材料的极限强度,极限强度取决于材料的特性,对混凝土等脆性材料取它的最大强度,对钢材则常取它的屈服点。
稳定问题则与强度问题不同,它主要是找出外荷载与结构内部抵抗力间的不稳定平衡状态,即变形开始急剧增长的状态,从而设法避免进入该状态,它是一个变形问题。
显然,轴压强度不是柱子破坏的主要原因。
由于稳定问题是要找出作用与结构内部抵抗力之间的不稳定平衡状态,即变形开始急剧增长的状态,从而设法避免进入该状态,它是一个变形问题。
在临界状态,如果构件上的荷载哪怕有微小的增加,平衡的性质就会发生转变,即失稳,甚至平衡的形状都会发生变化,即屈曲。
强度代表了截面的极限状态,即截面的刚度达到了零,表现为内力不增加,变形可以增加很大。
失稳也代表了结构或构件的极限状态,即结构不再具有继续承受荷载、抵抗进一步变形的能力,所以稳定是一个刚度问题。
实际上,结构是分层次的,刚度也是分层次的,每一层次结构都会发生失稳现象。
在材料层次上,应力—应变曲线上切线模量为零的点表示金属内部晶体结构不再能够保持原状,通过滑移达到新的状态,这代表微观状态的失稳,所以材料层次的失稳是强度问题。
结构或构件层次上的失稳表示结构或构件不再能够承受附加的荷载,代表了结构或构件的刚度为零。
五、钢结构稳定计算的特点
(1)稳定问题采用二阶分析。
针对未变形的结构来分析它的平衡,不考虑变形对作用效应的影响称为一阶分析;针对已变形的结构来分析它的平衡,则是二阶分析。
由于稳定问题是针对变形后的结构进行分析,所以采用二阶分析。
(2)稳定问题不能用叠加原理。
普遍应用于应力问题的叠加原理不能应用于稳定计算。
应用叠加原理有两个条件:一是材料符合虎克定律,即应力与应变成正比;二是结构处于小变形状态,可以用一阶分析来计算。
也就是说,运用叠加原理既不存在物理的非线性,也不存在几何的非线性。
弹性稳定问题不满足第二个条件,所以稳定不能用叠加原理;非弹性稳定计算则两个条件均不满足。
叠加原理不适用于稳定问题,但是,稳定计算公式的构形往往使稳定问题的这一特点被忽略,或不容易被理解、被接受。
(3)稳定问题不必区分静定和超静定结构。
对应力问题,静定和超静定结
构内力分析方法不同,静定结构的内力分析只用静力平衡条件即可;超静定结构内力分析则还需增加变形协调条件。
在稳定计算中,无论何种结构都要针对变形后的位形分析。
既然总要涉及变形,区分静定与超静定就失去意义。
所以稳定问题不必区分静定和超静定结构。
六、钢结构稳定的设计原则
(1)结构整体布置必须考虑整个体系以及组成部分的稳定性要求。
目前结构大多数是按照平面体系来设计,保证这些平面结构不致出平面失稳,需要从结构整体布置来解决,亦即设计必要的支撑构件。
这就是说,平面结构构件的出平面稳定计算必须和结构布置相一致。
(2)结构计算简图和实用计算方法所依据的简图相一致。
目前任设计单层和多层框架结构时,经常不作框架稳定分折而是代之以框架柱的稳定计算。
在采用这种方法时,计算框架柱稳定时用到的柱计算长度系数,自应通过框架整体稳定分析得出,才能使柱稳定计算等效于框架稳定计算。
实际框架多种多样,设计中为了简化计算工作,需要设定一些典型条件。
GB50017-2003规范对单层或多层框架给出的计算长度系数采用了五条基本假定,其中包括:“框架中所有柱子是同时丧失稳定的,即各柱同时达到其临界荷载”。
在实际工程中,框架计算简图和实用方法所依据的简图不一致的情况还可举出以下两种,即附有摇摆拄的框架和横梁受有较大压力的框架。
这两种情况若按规范的系数计算,都会导致不安全的后果。
所以所用的计算方法与前提假设和具体计算对象应该相一致。
(3)设计结构的细部构造和构件的稳定计算必须相互配合,使二者有一致性。
结构计算和构造设计相符合,一直是结构设计中大家都注意的问题。
对要求传递弯矩和不传递弯矩的节点连接,应分别赋与它足够的刚度和柔度,对桁架节点应尽量减少杆件偏心,这些都是设计者处理构造细部时经常考虑到的。
当涉及稳定性能时,构造上时常有不同于强度的要求或特殊考虑。
从事钢结构工作的设计和施工人员只有正确理解钢结构稳定的特点及采用正确的钢结构稳定设计计算原则才能保证钢结构工程较少发生失稳破坏的隐患,因此除了掌握本文提出的内容外,尚需在工作中理论结合实践,进一步理解钢结构稳定的特点,进行性合理的设计和施工。
参考文献
[1]GB50017-2003.钢结构设计规范[S].北京:中国计划出版社,2003
[2]GB50018-2002.冷弯薄壁型钢结构技术规范[S].北京:中国计划出版社,2002
[3]陈骥.钢结构稳定理论与设计(第二版)[M].北京:科学出版社,2003:12~16
[4]陈绍蕃.钢结构稳定设计指南.北京:中国建筑工业出版社,1996
[5]饶芝英,童根树.钢结构稳定性的新诠释[J].建筑结构.2004,32(5):12~14 -全文完-。