最新初中数学6 利用三角函数测高1

合集下载

九下第一章直角三角形的边角关系6利用三角函数测高作业新版北师大版

九下第一章直角三角形的边角关系6利用三角函数测高作业新版北师大版

解:在Rt△AOC中,∵∠AOC=90°,∠ACO=30°,AC=8 km,∴AO= AC= ×8=4(km).
10. 【2023·长沙】2023年5月30日9时31分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把景海鹏、桂海潮、朱杨柱三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面O处发射,当飞船到达A点时,从位于地面C处的雷达站测得AC的距离是8 km,仰角为30°;10 s后飞 船到达B处,此时测得仰角为45°. (2)求飞船从A处到B处的平均速度.(结果精确到0.1 km/s,参考数据: ≈1.73)
课题
测量“永泰寺塔”
成员
组长:×××;组员:×××,×××,×××
工具
测倾器、皮尺等
设计方案
方案一
说明:线段AB表示“永泰寺塔”,线段CD表示测倾器,CD的高度为1.2 m,点E在AB上,点A,B,C,D,E在同一平面内,需要测量的数据有BC的长度,∠ADE的度数
设计方案
方案二
说明:线段AB表示“永泰寺塔”,线段CD,FG表示测倾器,CD,FG的高度为1.2 m,点E在AB上,点A,B,C,D,E,F,G在同一平面内,需要测量的数据有CF的长度,∠ADE,∠AGE的度数
10. 【2023·长沙】2023年5月30日9时31分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把景海鹏、桂海潮、朱杨柱三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面O处发射,当飞船到达A点时,从位于地面C处的雷达站测得AC的距离是8 km,仰角为30°;10 s后飞 船到达B处,此时测得仰角为45°. (1)求点A离地面的高度AO;
实施方案
方案二 的测量 数据
∠ADE的平均值

1.6 利用三角函数测高(第1课时)演示文稿2

1.6 利用三角函数测高(第1课时)演示文稿2

ME ME DE 在Rt△MED中,由 tan 得, tan DE tan tan ME ME 所以b= ,则 ME b tan tan tan tan
所以物体高度为MN=a+ b tan tan
tan tan
活动二:问题解决
3 3
DM AM tan DAM
30º
D
即 17.3 所以,CD=17.3+1.4=18.7米 A
DM 30
答:学校主楼的高度是18.7米。A
M
B
C
活动二:问题解决 例题2,河对岸的高层建筑AB,为测量其高,在C 处由D点用测量仪测得顶端A的仰角为30º,向高层 建筑物前进50m到达C´处,由D´测得顶端A的仰角 为45º,已知测量仪CD=C´D´=1.2m,求建筑物AB= 的高(精确到0.1米)。 A 解:延长DD´,交AB于点E。 AE ' 在Rt△AD´E中由 tan 45 ' 得, D E AE DE 在Rt△ADE中,由 D´ D E
第一章 直角三角形的边角关系
1.6 利用三角函数测高 (第1课时)
活动一:测量物体高度的原理
1、回忆所学测量物体高的方法 2、如何根据“三角函数”测高
类型一:物体底部可到达
类型二:物体底部不可到达
类型一:物体底部可到达
(1)测量以下数值: ∠MCE= ,AN= l , AC =a, (2)根据三角函数正切值的原理: 在Rt△MEC中,由
tan
所以,物体高度MN=a+ l tan
ME ME l tan CE
得,

类型二:物体底部不可到达
MEC

利用三角函数测高

利用三角函数测高

3. 如图所示,某数学活动小组要测量山坡上的电线杆PQ 的高度.他们采取的方法是:先在地面上的点A处测 得电线杆顶端点P的仰角是45°,再向前走到B点,测 得电线杆顶端点P和电线杆底端点Q的仰角分别是60° 和30°,这时只需要测出AB的长度就能通过计算求出 电线杆PQ的高度.若测出AB的长度为1 m, 3+ 3 则电线杆PQ的高度是___6____m_.
解:若选择条件①,由题意得CCDE=BACB,∴11..28=A9B, 解得 AB=13.5 m,∴旗杆 AB 的高度为 13.5 m. 若选择条件②,如图,过点 D 作 DF⊥AB,垂足为 F, 则易得四边形 BCDF 是矩形,∴BF=CD=1.8 m,DF=BC=9 m, 在 Rt△ADF 中,∠ADF=52.46°, ∴AF=DF·tan 52.46°≈9×1.30=11.7(m), ∴AB=AF+BF≈11.7+1.8=13.5(m), ∴旗杆 AB 的高度约为 13.5 m.
(参考数据:sin 67.38°≈1123,cos 67.38°≈153,tABC 中,
∵∠ABC=90°,∠ACB=67.38°,∴BC=tan∠ABACB≈1x2=152x(米), 5
∴BD=BC+CD≈152x+11米.由题意得 AD∥EF, 则∠FED=∠ADB,∴tan∠FED=tan∠ADB,即DDEF=BADB, ∴21..48≈152x+x 11,解得 x≈12,经检验,符合题意.
变式3 [2024西安高新一中模拟]如图,小明想测量 城墙AB的高度,他在围栏点C处测量城墙顶 点A的仰角为67.38°,在阳光的照射下,他 发现城墙上点A的影子落在了他身后11米的 点D处,于是他站在D点发现他的影子落在 地上的点E处,测量得ED长为2.4米,小明身 高为1.8米,E,D,C,B在一条直线上,且 FD⊥ED,AB⊥BE,请你根据以上数据帮助 小明算出城墙AB的高.

北师大版数学九年级下册《6 利用三角函数测高》教案

北师大版数学九年级下册《6 利用三角函数测高》教案

北师大版数学九年级下册《6 利用三角函数测高》教案一. 教材分析北师大版数学九年级下册《6 利用三角函数测高》这一节主要让学生了解利用三角函数测量物体高度的方法,理解三角函数在实际生活中的应用。

通过这一节的学习,学生能够掌握用三角板和皮尺测量物体高度的基本方法,培养学生的实际操作能力和解决实际问题的能力。

二. 学情分析九年级的学生已经学习了三角函数的基本知识,对三角板和皮尺等测量工具也有一定的了解。

但是,学生可能对如何将理论运用到实际问题中还有一定的困难,因此,在教学过程中,教师需要引导学生将所学的知识与实际问题相结合,提高学生的实践能力。

三. 教学目标1.知识与技能:让学生掌握利用三角函数测量物体高度的基本方法。

2.过程与方法:通过实际操作,培养学生解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:让学生掌握利用三角函数测量物体高度的方法。

2.难点:如何将所学的三角函数知识运用到实际问题中。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过实际案例引导学生思考,激发学生的学习兴趣;以小组合作的形式,让学生在实际操作中解决问题,培养学生的实践能力。

六. 教学准备1.准备三角板、皮尺等测量工具。

2.准备相关案例材料。

七. 教学过程1.导入(5分钟)利用一个生活中的实例引入课题,如:如何测量旗杆的高度。

让学生思考如何解决这个问题,引发学生对利用三角函数测高的兴趣。

2.呈现(10分钟)呈现旗杆高度测量案例,引导学生分析问题,提出解决方案。

让学生尝试用所学的三角函数知识解决问题,教师给予指导。

3.操练(10分钟)学生分组进行实际操作,用三角板和皮尺测量旗杆的高度。

教师巡回指导,纠正学生在操作过程中可能出现的问题。

4.巩固(10分钟)让学生总结在测量过程中所用的方法和技巧,教师点评并总结。

让学生复述所学的知识点,加深对利用三角函数测高的理解。

1.6 利用三角函数测高(教案)-北师大版数九年级下册

1.6 利用三角函数测高(教案)-北师大版数九年级下册

第6节利用三角函数测高1.经历设计活动方案、自制仪器或运用仪器进行实地测量以及撰写活动报告的过程.2.能够对得到的数据进行分析,能够对仪器进行调整和对测量的结果进行矫正,进而得出所要求的结果.3.能够综合运用直角三角形边角关系的知识解决实际问题.让学生经历设计活动方案、自制仪器的过程,通过综合运用直角三角形边角关系的知识,利用数形结合思想解决实际问题,提高学生解决实际问题的能力.通过积极参与数学活动过程,培养学生不怕困难的品质,发展合作意识和科学精神.【重点】综合运用直角三角形边角关系的知识解决实际问题.【难点】设计活动方案、运用仪器的过程及学生学习品质的培养.【教师准备】测倾器、皮尺等测量工具;多媒体课件.【学生准备】复习三角函数的概念和解直角三角形的相关知识.导入一:一天课外活动课,数学兴趣小组的同学想去操场上测量学校旗杆的高度(如图所示).以下是两位同学设计的测量方案:方案1:用皮尺和标杆能测出旗杆的高度.方案2:用皮尺和小平面镜能测出旗杆的高度.【问题】你认为这两位同学提出的方案可行吗?如果是阴天没有太阳光怎么办?[设计意图]通过生活中的实际问题引入课题,使学生认识到数学源于生活,增加学生学习数学的兴趣,并让学生带着问题走进今天的学习.导入二:如图所示展示的是山东省青岛市电视塔夜晚的美丽景色,青岛电视塔坐落于市中心榉林公园内116m高的太平山上.由上海同济大学马人乐先生设计.由于其创意新、选点好、功能布局合理、色调协调及综合规模宏大等,1995年被国务院发展研究中心选入《中华之最大荣誉》,认为是“中国第一钢塔”.某数学兴趣小组的同学想测量该电视塔的高度.【问题】测量电视塔的高度和测量旗杆的高度的方法一样吗?两者有什么区别?[设计意图]通过青岛市电视塔的介绍,既让学生增长了课外知识,又引出了新的疑问——测量方法的区别,激发了学生的学习兴趣,为新知的探究奠定了良好的基础.课件出示:(一)测倾器的认识:如图所示的是一个测倾器的外观图,它是测量倾斜角的仪器.简单的测倾器由度盘、铅锤和支杆组成.【教师活动】制作测倾器时应注意什么?【学生活动】学生观察、交流后得出:支杆的中心线、铅垂线、0°刻度线要重合,否则测出的角度不准确.度盘的顶线PQ与支杆的中心线、铅垂线、0°刻度线要互相垂直,并且度盘有一个旋转中心是铅垂线与PQ的交点.当度盘转动时,铅垂线始终垂直向下.(二)测倾器的使用方法和步骤:【教师活动】用测倾器如何测仰角?【师生活动】学生思考后,师生共同总结:使用测倾器测量倾斜角的步骤如下:1.把支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ 在水平位置.2.转动度盘,使度盘的直径对准目标M,记下此时铅垂线所指的度数.(三)测倾器的运用:课件出示:【做一做】根据刚才测量的数据,你能求出目标M的仰角或俯角吗?说说你的理由.【师生活动】根据操作步骤:当度盘的直径对准目标M时,铅垂线指向一个度数,即∠BOA的度数.根据图形我们不难发现:∵∠BOA+∠NOA=90°,∠MON+∠NOA=90°,∴∠BOA=∠MON.因此读出∠BOA的度数也就读出了仰角∠MON的度数.∴测倾器上铅垂线所示的度数就是物体仰角的度数.【思考】根据上面的做法,如何用测倾器测量一个低处物体的俯角呢?【学生活动】生类比操作:和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.[设计意图]了解测倾器的构造,学习其使用方法.目的是在测量时能正确地使用,特别注意测量【教师提示】所谓“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体的底部之间的距离.师引导学生观察并思考下面的问题:1.如图所示,要测量物体MN的高度,需测量哪些数据?2.请说出测量物体MN的高度的一般步骤,需要测得的数据用字母表示.【学生活动】学生思考后与同伴交流,统一答案:1.测量A点到物体底部N点的距离AN、测倾器的高度AC的长以及测量仰角∠MCE的度数.2.测量底部可以到达的物体的高度的步骤:(1)在测点A处安置测倾器,测得M的仰角∠MCE=α.(2)量出测点A到物体底部N的水平距离AN=l.(3)量出测倾器的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).【做一做】根据上面测量的数据,你能求出物体MN的高度吗?说说你的理由.【学生活动】生独立解答后,代表展示:解:在Rt△MCE中,ME=EC·tanα=AN·tanα=l·tanα,∴MN=ME+EN=ME+AC=l·tanα+a.[设计意图]通过小组合作设计方案,培养学生科学的思维方式及归纳总结的能力,并积累“做数学”经验.【活动三】测量底部不可以到达的物体的高度【教师提示】所谓“底部不可以到达”,就是在地面上不能直接测得测点与被测物体的底部之间的距离.师引导学生观察,小组交流,思考下面的问题:1.要测量物体MN的高度,使用测倾器测一次仰角够吗?2.如图所示,你能类比活动二的方法得出测量底部不可以到达的物体的高度的一般步骤吗?需要测得的数据用字母表示.【师生活动】学生交流后代表发言,师生共同订正:1.要测量物体MN的高度,测一次仰角是不够的.2.测量底部不可以到达的物体的高度的步骤:(1)在测点A处安置测倾器,测得此时M的仰角∠MCE=α.(2)在测点A与物体之间的B处安置测倾器(A,B与N都在同一条直线上),测得此时M的仰角∠MDE=β.(3)量出测倾器的高度AC=BD=a,以及测点A,B之间的距离AB=b.【做一做】根据刚才测量的数据,你能求出物体MN的高度吗?说说你的理由.【学生活动】生独立解答后,代表展示:解:∵在Rt△MDE中,ED=,在Rt△MCE中,EC=,∴EC-ED=b,∴=b,∴ME=,∴MN=+a.【议一议】同学们知道了底部不可以到达的物体高度的测量方案,利用这种方案你们可以测量哪些物体的高度?【学生活动】生发挥想象力,并分组讨论这些高度的测量方案和计算方法.【议一议】问题(1):到目前为止,有哪些测量物体高度的方法?【师生小结】测量物体的高度的方法:(1)利用三角函数;(2)利用三角形相似;(3)利用全等三角形.问题(2):如果一个物体的高度已知或容易测量,那么如何测量某测点到该物体的水平距离?【师生小结】以活动三中的图为例,可以测得M的仰角∠MCE=α,以及测倾器的高AC=a,然后根据AN=EC即可求出测点A到物体MN的水平距离AN.[设计意图]引导学生设计测量底部不可以到达的物体的高度,在交流、展示自己设计的方案的过程中完善方案,判断其可行性,为下面的实际操作做准备,同时培养学生科学、严谨的做事态度.【活动四】设计测量方案,撰写活动报告你能根据我们学过的测量物体高度的方法完成下面的问题吗?课件出示:某校学生去春游,在风景区看到一棵汉柏树,不知这棵汉柏树有多高,下面是两位同学的一段对话:小明:我站在此处看树顶仰角为45°.小华:我站在此处看树顶仰角为30°.小明:我们的身高都是1.6m.小华:我们相距20m.请你根据这两位同学的对话,计算这棵汉柏树的高度.(参考数据:≈1.414,≈1.732,结果保留三个有效数字)【教师活动】引导学生判断是测量底部可以到达的物体的高度还是测量底部不可以到达的物体的高度,然后从两名学生的对话中分析得到的信息:∠ABE=30°,∠ACE=45°,ED=1.6m,BC=20m.【师生活动】生独立解答后,同伴交流.代表展示,师生共同订正.解:如图所示,延长BC交DA于E.设AE的长为x m.在Rt△ACE中,∠ACE=45°,∠AEB=90°,则∠CAE=45°,∴CE=AE=x.在Rt△ABE中,∠B=30°,AE=x,tan B=,即tan30°=,∴BE=x.∵BE-CE=BC,BC=20m,∴x-x=20,解得x=10+10,∴AD=AE+DE=10+10+1.6≈28.9(m).答:这棵汉柏树的高度约为28.9m.【学生活动】撰写活动报告.[设计意图]在解决问题的过程中再一次验证测量方案的可行性,巩固新知的同时,利用生活情境设计问题,培养学生的应用意识,提高分析问题、解决问题的能力.1.利用三角函数的知识可以测量物体的高度:(1)测量倾斜角的方法.(2)测量底部可以到达的物体的高度的方法和步骤.(3)测量底部不可以到达的物体的高度的方法和步骤.2.测量物体的高度的方法:(1)利用三角函数;(2)利用三角形相似;(3)利用全等三角形.1.(2015·长沙中考)如图所示,为测量一棵与地面垂直的树OA的高度,在距离树的底端30m的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.mB.30sinαmC.30tanαmD.30cosαm解析:在Rt△ABO中,∵BO=30m,∠ABO为α,∴AO=BO tanα=30tanα(m).故选C.2.某市进行城区规划,工程师需测某楼AB的高度,工程师在D点用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,则楼AB的高为.解析:在Rt△AFG中,∠AFG=60°,∠AGC=90°,tan∠AFG=,∴FG==.在Rt△ACG中,∠ACG=30°,tan ∠ACG=,∴CG==AG.∵CG-FG=30m,∴AG-=30,解得AG=15,∴AB=(15+2)m.故填(15+2)m.3.在一次综合实践活动中,小明要测某地一座古塔AE的高度,如图所示,已知塔基AB的高为4m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5m到达D点,又测得塔顶E的仰角为50°.(人的身高忽略不计)(1)求AC的距离;(结果保留根号)(2)求塔高AE.(结果保留整数)解:(1)在Rt△ABC中,∠ACB=30°,AB=4,tan∠ACB=,∴AC===4(m).答:AC的距离为4m.(2)在Rt△ADE中,∠ADE=50°,AD=5+4,tan∠ADE=,∴AE=AD·tan∠ADE=(5+4)×tan50°≈14(m).答:塔高AE约为14m.6利用三角函数测高1.利用三角函数的知识可以测量物体的高度:(1)测量倾斜角的方法.(2)测量底部可以到达的物体的高度的方法和步骤.(3)测量底部不可以到达的物体的高度的方法和步骤.2.利用三角形相似的知识可以测量物体的高度.3.利用全等三角形的知识也可以测量物体的高度.一、教材作业【必做题】教材第23页习题1.7第1,2题.【选做题】教材第23页习题1.7第3题.二、课后作业【基础巩固】1.已知A,B两点,如果A对B的俯角为α,那么B对A的仰角为()A.αB.90°-αC.90°+αD.180°-α2.如图所示,为了测量电线杆AB的高度,小明将测倾器放在与电线杆的水平距离为9m的D处.若测倾器CD的高度为1.5m,在C处测得电线杆顶端A的仰角为36°,则电线杆AB的高度约为m(精确到0.1m).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)3.如图所示,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m.(结果不作近似计算)4.(2014·云南中考)如图所示,小明在M处用高1m(DM=1m)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10m到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度.(取≈1.73,结果保留整数)【能力提升】5.(2015·衡阳中考)如图所示,为了测得电视塔的高度AB,在D处用高为1m的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100m达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:m)为()A.50B.51C.50+1D.1016.在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图(1)所示):(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;(2)量出测点A到旗杆底部N的水平距离AN=m;(3)量出测倾器的高度AC=h.根据上述测量数据,即可求出旗杆的高度MN.如果测量工具不变,请仿照上述过程,设计一个测量某小山(如图(2)所示)高度的方案:(1)在图(2)中,画出你测量小山高度MN的示意图(标上适当的字母);(2)写出你的设计方案.【拓展探究】7.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3m,台阶AC的坡度为1∶(即AB∶BC=1∶),且B,C,E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).【答案与解析】1.A2.8.1(解析:在Rt△ACE中,AE=CE·tan36°=BD·tan36°=9×tan36°≈6.57,∴AB=AE+EB=AE+CD ≈6.57+1.5≈8.1(m).故填8.1.)3.12(解析:首先过点D作DE⊥AB于点E,可得四边形BCDE是矩形,然后分别在Rt△ABC与Rt△ADE 中,利用正切函数的知识,求得AB与AE的长,进而可求得答案.)4.解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°-∠BDE=30°=∠BDE,∴BC=CD=10m,在Rt△BCE中,sin 60°=,即=,∴BE=5,AB=BE+AE=5+1≈10(m).答:旗杆AB的高度大约是10m.5.C(解析:设AG=x,在Rt△AEG中,∵tan∠AEG=,∴EG==x.在Rt△ACG中,∵tan∠ACG=,∴CG==x,∵CG-EG=100,∴x-x=100,解得x=50,则AB=50+1(m).故选C.)6.解:(1)画出示意图如图所示.(2)①在测点A处安置测倾器,测得此时M的仰角∠MCE=α.②在测点B处安置测倾器(A,B与N在同一条直线上),测得此时山顶M的仰角∠MDE=β.③量出测倾器的高度AC=BD=h,以及测点A,B之间的距离AB=m.根据上述测量数据,即可求出小山的高度MN.7.解:如图所示,过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3.设DE=x,在Rt△CDE 中,∠DCE=60°,∴CE==x.在Rt△ABC中,∵=,AB=3,∴BC=3.在Rt△AFD中,DF=DE-EF=x-3,∠DAF=30°,∴AF==(x-3).∵AF=BE=BC+CE,∴(x-3)=3+x,解得x=9.∴DE=9m.答:树的高度为9m.这节课采用了学生分组活动与全班交流研讨相结合的方法探究测量物体高度的方案,并利用探索出的方案解决生活问题.本节课给了学生足够多的活动空间,通过师生互动、生生互动等活动,让学生积极参与到活动中来,激发学生学习的兴趣,让学生自主探究利用三角函数测高的步骤和方法,并会对测量物体的高度的方案进行设计.让学生用已有的知识解决生活实际问题,体验数学来源于生活,应用于生活,进一步掌握从实际问题到解直角三角形的建模过程.另外,通过小组合作交流形式,让学生积极参与数学活动,对数学产生好奇心,培养学生独立思考问题的习惯,并在数学活动中获得成功的体验,建立自信心.在探究时给学生充分的自主讨论交流时间,导致后面的当堂检测题处理得比较仓促,部分学生接受起来可能有些困难.针对每种测量方案都给出具体的事例让学生去实践,以检验自己所设计方案的可行性.复习题(教材第24页)1.解:(1).(2)0.(3).2.解:(1)0.7841.(2)0.0374.(3)0.7566.3.解:(1)∠A=45°.(2)a=4,∠A=60°.(3)a=b=4.4.sin A=,tan A=.5.(1)∠A≈42°27'15″.(2)∠B≈85°28'29″.(3)∠C≈88°23'28″.6.解:(1)==1.(2)原式=+2×+1-+=++1-+=2.(3)原式=-tan60°=tan60°-1-tan60°=-1.7.解:AC=2,BC=2,sin A=,cos A=.9.解:(1)tan∠ABC=tan∠ADC.(2)tan∠ABC=tan∠ADC.(3)tan∠ABC=·tan∠ADC.10.CD≈5.82m[提示:CD=BD-BC=20tan56°-20tan50°≈5.82(m).]11.船与观测者之间的水平距离约为173.2m.[提示:水平距离=≈173.2(m).]12.解:(1)如图所示,由两直线平行,内错角相等得∠ABD=60°.∵∠CBE=30°,∴∠ABC=90°.∵AB=BC=10km,∴AC==10≈14.1(km).(2)∵AB=BC,∴∠CAB=∠C=45°,∴C港在A港北偏东60°-45°=15°的方向上.13.解:依题意知PQ=180m,∠PTQ=50°,∴∠PQT=40°.∵tan∠PQT=,∴PT=PQ·tan40°≈180×0.839≈151(m).14.解:在Rt△ABC中,AC=6.3,BC=9.8,∴tan B==.∴∠B≈32°44'7″.因此射线与皮肤的夹角为32°44'7″.15.解:(1)在Rt△ACB中,∵AB=4m,∠ABC=60°,cos∠ABC=,∴BC=AB·cos60°=4×=2(m).(2)在Rt △DCE中,∵CD=2.3m,ED=4m,∴sin∠DEC===0.575,∴∠DEC≈35°5'58.68″.16.解:如图所示,在Rt△ACB中,∵AC=30m,∠BAC=30°,tan∠BAC=,∴BC=AC·tan30°=30×=10≈17.3(m).∵CE=AD=40m,∴BE=BC+CE=17.3+40≈57(m),∴乙楼高约57m.17.解:在Rt△BED 中,tan∠BDE =.在Rt△ACB 中,tan∠BAC =.∵∠BDE =30°,∠BAC =60°,DE =AC ,EC =AD =30m ,∴tan 30°=,即BC -30=AC ·tan 30°.又tan 60°=,即BC =AC ·tan 60°,∴AC -30=AC ,∴AC =30,∴AC ==15≈25.98(m ),∴BC ≈25.98×≈45.00(m ).18.解:设渔船到海岛A 的最近距离为x n mile ,由题意得(x -12)=x ,解得x =6>8,所以渔船没有触礁的危险.19.解:过点C 作CF ⊥AB 于F ,则△ADE ∽△ACF ,∴=,即=,∴CF =2.7m .∵BC =2.8m ,∴sin α==≈0.9643,∴α≈74°38'39.14″.20.解:如图所示,连接BD ,过点B 作BE ⊥CD 于E ,过点D 作DF ⊥AB 于F ,在Rt△BEC 中,sin C =,∴BE =BC ·sin 60°=20×=10(m ).在Rt△AFD 中,sin A =,∴DF =AD ·sin 60°=30×=15(m ),∴S 四边形ABCD =S △ABD +S △CBD =AB ·DF +CD ·BE =×50×15+×50×10=625≈1082.53(m 2).21.解:(1)如图所示,过A 作AG ⊥CD 于G ,过E 作EF ⊥CD 于F ,依题意知AB =5m ,BC =30m ,∠DEF =30°,EB =1.4m .在Rt△DFE 中,∵tan∠DEF =,∴DF =BC ·tan30°=30×=10(m ),∴DC =DF +FC =DF +EB =10+1.4≈18.72(m ).(2)∵GC =AB =5m ,∴DG =DC -GC ≈18.72-5=13.72(m ).∵AG =BC =30m ,∴AD =≈≈32.99(m ).22.提示:各边长约为0.34m ,0.34m ,0.66m .23.解:(1)由勾股定理可知OA 1=,OA 2=,OA 3=,…,OA n =.∵tan∠A 0OA 1==,∴∠A 0OA 1=45°.∵tan∠A 1OA 2==,∴∠A 1OA 2≈35°15'51.8″.∵tan ∠A 2OA 3==,∴∠A 2OA 3=30°.(2)∵tan 20°≈0.3640,tan∠A n -1OA n ==<tan 20°,∴>≈2.7473,∴n >7.5477,∴n 的值为8.本节课探究学习的主要任务是掌握利用测倾器测倾斜角和测量物体高度的方法,所以前提条件是要对测倾器有足够的了解,学生在课前可以自己制作一个简单的测倾器,这样就会非常熟悉其操作原理,对于活动一,测量倾斜角就会感觉非常容易;对于活动二、三的探究,分组讨论和全班的交流讨论就显得尤为重要,要积极投身其中,区分测量底部可以到达的物体的高度和底部不可以到达的物体的高度的方法,熟练掌握各种方案的步骤,并利用所学知识解决实际问题,达到学以致用.测量物体的高度时容易漏掉测倾器的高度.李明带领小组成员做了测量电线杆高度的活动,在离电线杆21m 的D 点,用高1.2m 的测角仪CD 测得电线杆顶端A 的仰角α=30°,则电线杆AB 的高为m .【错解】7【错解分析】在利用三角函数计算出AE 的长度后,忽略测倾器的高度,漏加CD ,造成错误.【正解】7+1.2【正解分析】CE =DB =21m ,BE =CD =1.2m .在Rt△ACE 中,∠α=30°,CE =21m ,∴AE =CE ·tan 30°=7(m ),∴AB =AE +BE =(7+1.2)m .(2014·绍兴中考)九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图(1)所示,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图(2)所示,第二小组用皮尺量得EF为16m(E为护墙上的端点),EF的中点离地面FB的高度为1.9m,请你求出E点离地面FB的高度.(3)如图(3)所示,第三小组利用第一、第二小组的结果来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4m到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1 m).备用数据:tan60°≈1.732,tan30°≈0.577,≈1.732,≈1.414.〔解析〕(1)根据∠α=2∠CDB即可得出答案.(2)设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,如图所示,根据EH=2MN即可求出E点离地面FB的高度.(3)延长AE,交PB的延长线于点C,设AE=x,则AC=x+3.8,CQ=x-0.2,根据=得出=,求出x即可.解:(1)∵BD=BC,∴∠CDB=∠DCB,∴∠α=2∠CDB=2×38°=76°.(2)设EF的中点为M,如图所示,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,∵MN∥EH,MN=1.9,∴EH=2MN=3.8(m),∴E点离地面FB的高度是3.8m.(3)延长AE,交PB于点C,如图所示,设AE=x,则AC=x+3.8,∵∠APB=45°,∴PC=AC=x+3.8.∵PQ=4,∴CQ=x+3.8-4=x-0.2,∴tan∠AQC==tan60°=,∴=,解得x=≈5.7,∴AE≈5.7m.答:旗杆的高度约是5.7m.[解题策略]此题考查了解直角三角形的应用,用到的知识点是仰角的定义,能作出辅助线并借助仰角构造直角三角形是解本题的关键.。

《第一章6利用三角函数测高》作业设计方案-初中数学北师大版12九年级下册

《第一章6利用三角函数测高》作业设计方案-初中数学北师大版12九年级下册

《利用三角函数测高》作业设计方案(第一课时)一、作业目标1. 使学生能够理解并掌握三角函数的基本概念及意义。

2. 通过实践活动,让学生学会利用三角函数解决实际问题,特别是测高问题。

3. 培养学生的观察能力、实践能力和问题解决能力。

二、作业内容本节课的作业内容主要围绕三角函数测高的实际应用展开。

具体内容如下:(一)基本理论学习学生需认真阅读教材,掌握三角函数的基本概念、正弦、余弦和正切的定义及其在直角三角形中的应用。

理解角度与边长的关系,并能够用三角函数表示这些关系。

(二)实践活动1. 实地测量:学生需在安全的环境下,选择合适的参照物(如建筑物、树木等),利用直角三角尺和角度计测量目标的高度。

记录测量数据,并绘制出简单的测量示意图。

2. 数据分析:学生需根据测量的数据,运用三角函数知识,计算出目标的高度。

并分析误差产生的原因,思考如何提高测量的准确性。

3. 实验报告:学生需将上述过程以书面形式进行记录和整理,包括测量的地点、目标物、使用的工具、测量步骤和计算结果等,同时需写出自己对测量过程和结果的反思与感悟。

(三)理论应用练习完成一组与三角函数测高相关的练习题,加深对理论知识的理解和应用能力。

三、作业要求1. 学生在进行实地测量时,需注意安全,遵循老师的指导。

2. 实验报告需字迹清晰、内容完整,体现出学生的思考和总结。

3. 练习题需独立完成,不得抄袭他人答案。

4. 作业需在规定时间内提交,并按时参加课堂讲解和讨论。

四、作业评价1. 老师将根据学生的实验报告内容、格式、字迹等方面进行评价。

2. 对于实地测量和理论应用练习部分,老师将根据学生的正确性、准确性和解题思路进行评价。

3. 鼓励学生相互评价和讨论,取长补短,共同进步。

五、作业反馈1. 老师将对每位学生的作业进行详细批改,指出存在的问题和不足。

2. 在课堂上进行作业讲解和讨论,针对学生的疑惑进行解答和指导。

3. 根据作业情况,对学生的学习情况进行总结和分析,为后续教学提供参考和依据。

6 利用三角函数测高

6 利用三角函数测高

解:过点E作EH⊥AC于点H,则EH=FC=12 m, 在Rt△AEH中,AH=EH·tan∠AEH≈12×1.28=15.36(m). ∵∠BEH=45°, ∴BH=EH=12 m. ∴AB=AH-BH=3.36≈3.4 m. 答:旗杆AB的高度约为3.4 m.
知识点2 测量底部不可以到达的物体的高度
A.asinα+asinβ B.acosα+acosβ C.atanα+atanβ D.taanα+taanβ
2.如图,王师傅在楼顶上A点处测得楼前一棵树CD的顶端C的俯角为 60°.若水平距离BD=10 m,楼高AB=24 m,则树CD高约为( C )
A.5 m C.7 m
B.6 m D.8 m
(1)求古树BH的高; (2)求教学楼CG的高.(参考数据: 2≈1.4, 3≈1.7)
解:(1)在Rt△EFH中,∠HEF=90°,∠HFE=45°, ∴HE=EF=10. ∴BH=BE+HE=1.5+10=11.5. 答:古树的高为11.5米.
(2)在Rt△EDG中,∠GED=60°, ∴DG=DE·tan60°= 3DE. 设DE=x米,则DG= 3x米, 在Rt△GFD中,∠GDF=90°,∠GFD=45°, ∴GD=DF=EF+DE. ∴ 3x=10+x. 解得x=5 3+5. ∴CG=DG+DC= 3x+1.5= 3(5 3+5)+1.5=16.5+5 3≈25. 答:教学楼CG的高约为25米.
课题 成员 测量工具
测量 示意图
测量旗杆的高度 组长:××× 组员:×××,×××,×××
测量角度的仪器,皮尺等 说明:线段GH表示学校旗杆,测量角度的仪器 的高度AC=BD=1.5 m,测点A,B与H在同一 条水平直线上,A,B之间的距离可以直接测 得,且点G,H,A,B,C,D都在同一竖直平 面内,点C,D,E在同一条直线上,点E在GH 上.

利用三角函数测高优秀教案

利用三角函数测高优秀教案

利用三角函数测高优秀教案课题名称:利用三角函数测高教学目标:1.理解正弦、余弦和正切的概念及其在三角函数测高中的应用;2.掌握使用正弦定理和余弦定理测量不可直接测量的高度;3.能够灵活运用三角函数测高的方法解决实际问题。

教学重点:1.正弦、余弦和正切的概念及其在三角函数测高中的应用;2.正弦定理和余弦定理的应用。

教学难点:教学准备:教具:直尺、测量工具、投影仪;课件:包含三角函数和其应用的相关知识点。

教学过程:一、导入(5分钟)1.引入三角函数的概念,复习正弦、余弦和正切的定义和计算方法。

2.提问学生:在实际生活中,我们如何使用三角函数来测量高度?二、讲解(15分钟)1.三角函数测高的原理:利用正弦、余弦和正切的性质通过测量已知边长和角度的方式求解未知高度。

2.正弦定理的应用:利用三角形中任意两边的长度和它们夹角的正弦比,求解不可直接测量的高度。

3.余弦定理的应用:利用三角形中三边的长度和它们之间的夹角余弦,求解不可直接测量的高度。

三、示范(15分钟)1.示范测量不可直接测量的高度的步骤,例如使用正弦定理:a.给出一个实际问题,如:如何测量一栋建筑物的高度?b.画出相应的示意图,标注已知边长和角度。

c.利用正弦定理的公式,求解未知的高度。

d.明确解题思路和计算步骤,进行计算。

2.呈现示范的解题过程,详细讲解每一步骤的计算方法和答案。

四、练习(20分钟)1.分发练习题,让学生独立完成。

2.讲解练习题答案,帮助学生纠正错误,巩固和理解三角函数测高的方法。

五、应用(15分钟)1.提供一些实际问题,要求学生运用三角函数测高的方法解决。

2.分组讨论并呈现解决方案,交流思路和讨论结果。

六、总结(10分钟)1.对本节课的要点进行总结,强调正弦、余弦和正切的应用。

2.核对课程目标,评估学生的学习情况。

七、作业(5分钟)布置作业:完成课后练习题,巩固三角函数测高的知识。

教学延伸:可以引导学生使用三角函数测高解决其他实际问题,并探究其他测高方法的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备课时间: 上课时间:
课型:新授课 课时:1课时
§1.6 测量物体的高度
本节课为活动课,活动一:测量倾斜角;活动二:测量底部可以到达的物体的高度;活动三:测量底部不可以到达的物体的高度.因此本节课采用活动的形式,先在课堂上讨论、设计方案,然后进行室外的实际测量,活动结束时,要求学生写出活动报告.重点是让学生经历设计活动方案、自制仪器或运用仪器进行实地测量以及撰写活动报告的过程.能够对所得到的数据进行分析,能够对仪器进行调整和对测量的结果进行矫正,从而得出符合实际的结果.综合运用直角三角形的边角关系的知识.解决实际问题,培养学生不怕困难的品质,发展学生的合作意识和科学精神.
学习中,关注的是学生是否积极地投入到数学活动中去.在活动中是否能积极想办法,克服困难,团结合作等.
教学目标
知识与技能目标
能够设计方案、步骤,能够说明测量的理由,能够综合运用直角三角形边角关系的知识解决实际问题.
过程与方法目标
经历活动设计方案,自制仪器过程;通过综合运用直角三角形边角关系的知识,利用数形结合的思想解决实际问题,提高解决问题的能力。

情感与价值观要求
通过积极参与数学活动过程,培养不怕困难的品质,发展合作意识和科学精神.
教学重点、难点
设计活动方案、自制仪器的过程及学生学习品质的培养。

教具准备
自制测倾器(或经纬仪、测角仪等)、皮尺等测量工具.
教学过程
提出问题,引入新课
现实生活中测量物体的高度,特别像旗杆、高楼大厦、塔等较高的不可到达的物体的高度,需要我们自己去测量,自己去制作仪器,获得数据,然后利用所学的数学知识解决问题.请同学们思考小明在测塔的高
度时,用到了哪些仪器? 有何用途? 如何制作一个测角
仪?它的工作原理是怎样的?
活动一:设计活动方案,自制仪器
首先我们来自制一个测倾器(或测角仪、经纬仪等).一般
的测倾器由底盘、铅锤和支杆组成.下面请同学们以组为
单位,分组制作如图所示的测倾器.
制作测角仪时应注意什么?
支杆的中心线、铅垂线、0刻度线要重合,否则测出的角度就不准确.度盘的顶线PQ 与支杆的中心线、铅垂线、0刻度线要互相垂直,并且度盘有一个旋转中心是铅垂线与PQ 的交点.当度盘转动时,铅垂线始终垂直向下
.
一个组制作测角仪,小组内总结,讨论测角仪的使用步骤)
活动二:测量倾斜角
(1).把测角仪的支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ 在水平位置.
(2).转动度盘,使度盘的直经对准较高目标M ,记下此时铅垂线指的度数.那么这个度数就是较高目标M 的仰角.
问题1、它的工作原理是怎样的?
如图,要测点M 的仰角,我们将支杆竖直插入地面,使
支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘
的顶线PQ 在水平位置.我们转动度盘,使度盘的直径对准目
标M ,此时铅垂线指向一个度数.即∠BCA 的度数.根据图形
我们不难发现∠BCA+∠ECB =90°,而∠MCE+∠ECB=
90°,即∠BCA 、∠MCE 都是∠ECB 的余角,根据同角的余角
相等,得∠BCA =∠MCE.因此读出∠BCA 的度数,也就读出了仰角∠MCE 的度数. 问题2、如何用测角仪测量一个低处物体的俯角呢?
和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角. 活动三:测量底部可以到达的物体的高度.
“底部可以到达”,就是在地面上可以无障碍地
直接测得测点与被测物体底部之间的距离.
要测旗杆MN 的高度,可按下列步骤进行:(如
下图)
1.在测点A 处安置测倾器(即测角仪),测得M 的仰角∠MCE=α.
2.量出测点A 到物体底部N 的水平距离AN =l.
3.量出测倾器(即测角仪)的高度AC =a(即顶线PQ 成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN 的高度.
在Rt △MEC 中,∠MCE=α,AN=EC=l ,所以tan α=EC
ME ,即ME=tana ·EC =l ·tan α.
又因为NE =AC =a ,所以MN =ME+EN =l ·tan α+a.
活动四:测量底部不可以到达的物体的高度.
所为“底部不可以到达”,就是在地面上不能直接测得测点与被测物体的底部之间的距离.例如测量一个山峰的高度.
可按下面的步骤进行(如图所示):
1.在测点A 处安置测角仪,测得此时物体
MN 的顶端M 的仰角∠MCE =α.
2.在测点A 与物体之间的B 处安置测角仪
(A 、B 与N 都在同一条直线上),此时测得M 的
仰角∠MDE=β.
3.量出测角仪的高度AC =BD =a ,以及测点A ,B 之间的距离AB=b
根据测量的AB 的长度,AC 、BD 的高度以及∠MCE 、∠MDE
的大小,根据直角
三角形的边角关系.即可求出MN 的高度。

在Rt △MEC 中,∠MCE =α,则tan α=
EC ME ,EC=a ME tan ; 在Rt △MED 中,∠MDE =β则tan β=ED ME ,ED =β
tan ME ; 根据CD =AB =b ,且CD =EC-ED=b. 所以a ME tan -βtan ME =b, ME=βαtan 1tan 1-b MN=βαtan 1tan 1-b
+a 即为所求物体MN 的高度.
今天,我们分组讨论并制作了测角仪,学会使用了测角仪,并研讨了测量可到达底部和不可以到达底部的物体高度的方案.下一节课就清同学们选择我们学校周围的物体.利用我们这节课设计的方案测量它们的高度,相信同学们收获会更大.
归纳提炼
本节课同学们在各个小组内都能积极地投入到方案的设计活动中,想办法.献计策,用直角三角形的边角关系的知识解释设计方案的可行之处.相信同学们在下节课的具体活动中会更加积极地参与到其中.
课后作业
制作简单的测角仪
活动与探究
如图,山上有一座铁塔,山脚下有一矩形
建筑物ABCD.且建筑物周围没有开阔平整地带.
该建筑物顶端宽度AD 和高度DC 都可以直接测
得。

从A 、D 、C 三点可看到塔顶端H.可供使用
的测员工具有皮尺,测倾器(即测角仪).
(1)请你根据现有条件,充分利用矩形建筑
物.设计一个测量塔顶端到地面高度HG 的方案.
具体要求如下:
①测量数据尽可能少;
②在所给图形上,画出你设计的测量的平面图,
并将应测数据标记在图形上(如果测A 、D 间距
离,用m 表示;如果测D 、C 间距离,用n 表示;
如果测角,用α、β、γ等表示.测倾器高度不
计)
(2)根据你测量的数据,计算塔顶到地面的
高度HG(用字母表示),
I
方案1:(1)如图(a)(测四个数据)
AD =m.CD =n ,∠HDM =α,∠HAM =β
(2)设HG =x ,HM =x-n ,
在Rt △HDM 中,tan αDM HM ,DM=.
tan αn x - 在Rt △HAM 中,tan α
AM HM ,DM=.tan βn x - ∵AM-DM =AD , ∴.tan βn x --.
tan αn x -=m, x=
.tan tan tan tan βαβα-⋅m +n. 方案2:(1)如图(b)(测三个数据) CD =n ,∠HDM =α,∠HCG =γ.
(2)设HG =x ,HM =x-n ,
在Rt △CHG 中,tan γ=
CG HG ,CG=χtan x , 在Rt △HDM 中,tan α
DM HM ,DM=.tan αn x -, ∵CG =DM. ∴χtan x =.tan αn x -,x=.
tan tan tan αχ-y n 参考练习
1.
如图,湖泊中央有一个
建筑物AB ,某人在地
面C 处测得其顶部A
的仰角为60°,然后自C 处沿BC 方向行100 m 至D 点,又测得其顶部A 的仰角为30°,求建筑物AB 的高.(精确到0.01 m 3,≈1.732)
答案:建筑物AB 的高约为86.60 m.
2.今年入夏以来,松花江哈尔滨段水位不断下降,达到历史最低水位.一条船在松花江某水段自西向东沿直线航行,在A 处测得航标C 在北偏东60°方向上.前进100米到达B 处,又测得航标C 在北偏东45°方向上.在以航标C 为圆心,120米长为半径的圆形区域内有浅滩.如果这条航继续前进,是否有被浅滩阻碍的危险?( 3≈1.73)
答案:过C作CD⊥AB,垂足为D,可求得CD=136.5 m. ∵CD=136.5 m>120 m.
∴船继续前进没有浅滩阻碍的危险.。

相关文档
最新文档