深圳市实验学校人教版七年级上册数学期末试卷

合集下载

深圳市人教版七年级上册数学期末试卷及答案

深圳市人教版七年级上册数学期末试卷及答案

深圳市人教版七年级上册数学期末试卷及答案一、选择题1.下列判断正确的是( )A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2 C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×1063.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125° 4.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( )A .1B .2C .3D .4 5.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( )A .3B .4C .5D .66.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣1 7.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( )A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=0 8.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 9.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A .向西走3米B .向北走3米C .向东走3米D .向南走3米 10.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨.A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱 12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题13.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.14.写出一个比4大的无理数:____________.15.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.16.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.17.如果向东走60m 记为60m +,那么向西走80m 应记为______m.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.19.若a 、b 是互为倒数,则2ab ﹣5=_____.20.化简:2x+1﹣(x+1)=_____.21.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.22.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.23.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.27.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.28.如图,12cmAB=,点C是线段AB上的一点,2BC AC=.动点P从点A出发,以3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动. 设它们同时出发,运动时间为s t. 当点P与点Q 第二次重合时,P Q、两点停止运动.(1)求AC,BC;(2)当t为何值时,AP PQ=;(3)当t为何值时,P与Q第一次相遇;(4)当t为何值时,1cmPQ=.29.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.30.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+;(2)当1-≤2x <时,原式()()123x x =+--=;(3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ;(2)化简式子324x x -++.31.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.(1)求A,B 两点之间的距离;(2)若在线段AB 上存在一点C,且AC=2BC,求C 点表示的数;(3)若在原点O 处放一个挡板,一小球甲从点A 处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t 秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t 的代数式表示) ②求甲乙两小球到原点距离相等时经历的时间.32.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB .(1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题解析:C【解析】【分析】根据同类项的定义,单项式和多项式的定义解答.【详解】A .3d 2bc 与bca 2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B .225m n 的系数是25,故本选项错误. C .单项式﹣x 3yz 的次数是5,故本选项正确.D .3x 2﹣y +5xy 5是六次三项式,故本选项错误.故选C .【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】试题分析:384 000=3.84×105.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.解析:B【解析】【分析】根据线段中点的性质,可得AC的长.【详解】解:由线段中点的性质,得AC=12AB=2.故选B.【点睛】本题考查了两点间的距离,利用了线段中点的性质.5.C解析:C【解析】【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解.【详解】解:∵﹣2xy n+2与 3x3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1,∴|n﹣4m|=|-1-4|=5,故选C.【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键. 6.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.7.A解析:A根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A .8.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b ,两边同时加上c ,可得 a+c<b+c ,故A 选项错误,不符合题意;B. 由a<b ,两边同时减去c ,得a-c<b-c ,故B 选项正确,符合题意;C. 由a<b ,当c>0时,ac<bc ,当c<0时,ac<bc ,当c=0时,ac=bc ,故C 选项错误,不符合题意;D.由 a<b ,当a>0,c ≠0时,a b c c <,当a<0时,a b c c>,故D 选项错误, 故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 9.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.10.D解析:D【解析】【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1.【详解】150万=1500000=61.510⨯,故选:D.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.解析:A【解析】设一件的进件为x元,另一件的进价为y元,则x(1+25%)=200,解得,x=160,y(1-20%)=200,解得,y=250,∴(200-160)+(200-250)=-10(元),∴这家商店这次交易亏了10元.故选A.12.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A.【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题13.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.14.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.15.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.16.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB ,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.17.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.18.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b 是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a 、b 是互为倒数,∴ab =1,∴2ab ﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.20.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.21.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.22.5【解析】【分析】把方程的解代入方程即可得出的值.【详解】把代入方程,得∴故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.解析:5【解析】【分析】把方程的解代入方程即可得出m 的值.【详解】把1x =代入方程,得141m ⨯-=∴5m =故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.23.11【解析】【分析】对整式变形得,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已解析:11【解析】【分析】对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴423a b -+=2(2)324311a b -+=⨯+=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a ※b =a ﹣b+2ab ,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果. 【详解】∵a ※b =a ﹣b+2ab ,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、压轴题25.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21,解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.探究三:16,6;结论:n²,;应用:625,300. 【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个; 应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.27.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)103或4(4)线段MN的长度不发生变化,都等于11【解析】【分析】(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8-4t.故答案为-14,8-4t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC-BC=AB,∴4x-2x=22, 解得:x=11,∴点P 运动11秒时追上点Q ;(3) ①点P 、Q 相遇之前,4t+2+2t =22,t=103, ②点P 、Q 相遇之后,4t+2t -2=22,t=4, 故答案为103或4 (4)线段MN 的长度不发生变化,都等于11;理由如下: ①当点P 在点A 、B 两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP )=12AB=12×22=11 ②当点P 运动到点B 的左侧时:MN=MP ﹣NP=12AP ﹣12BP=12(AP ﹣BP )=12AB=11 ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.28.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=.所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=. 所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.29.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.30.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.31.2+t 6-2t 或2t-6【解析】分析:(1)、先根据非负数的性质求出a 、b 的值,再根据两点间的距离公式即可求得A 、B 两点之间的距离;(2)、设BC 的长为x ,则AC=2x ,根据AB 的长度得出x 的值,从而得出点C 所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA 的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B 处开始向左运动,一直到原点O ,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.详解:(1)、由题意知a=-2,b=6,故AB=8.(2)、设BC的长为x,则AC=2x, ∵BC+AC=AB,∴x+2x=8,解得x=83,∴C点表示的数为6-8 3=103.(3)①2+t;6-2t或2t-6.②当2+t=6-2t时,解得t=43,当2+t=2t-6时,解得t=8.∴t=43或8.点睛:本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.32.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°.【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON﹣∠PAO﹣∠PBO;②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,证明:延长AP交ON于点D,∵∠ADB是△AOD的外角,∴∠ADB=∠PAO+∠AOD,∵∠AP B是△PDB的外角,∴∠APB=∠PDB+∠PBO,。

深圳实验学校国际部人教版七年级上册数学期末试卷及答案

深圳实验学校国际部人教版七年级上册数学期末试卷及答案

深圳实验学校国际部人教版七年级上册数学期末试卷及答案.doc一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线3.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .124.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 5.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)36.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .47.下列说法中正确的有( ) A .连接两点的线段叫做两点间的距离 B .过一点有且只有一条直线与已知直线垂直 C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线 8.计算32a a ⋅的结果是( ) A .5a ;B .4a ;C .6a ;D .8a .9.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2B .8C .6D .010.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④11.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

广东省深圳市实验中学七年级上册期末数学试卷与答案

广东省深圳市实验中学七年级上册期末数学试卷与答案

广东省深圳市实验中学七年级上册期末数学试卷一.选择题(共12小题,满分36分)1.(3分)如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤02.(3分)数轴上与表示﹣1的点距离10个单位的数是()A.10B.±10C.9D.9或﹣113.(3分)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1054.(3分)已知4个数:(﹣1)2018,|﹣2|,﹣(﹣1.5),﹣32,其中正数的个数有()A.1B.2C.3D.45.(3分)下列变形中:①由方程=2去分母,得x﹣12=10;②由方程x =两边同除以,得x=1;③由方程6x﹣4=x+4移项,得7x=0;④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是()个.A.4B.3C.2D.16.(3分)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C .+2=D .﹣2=7.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A .B .C .D .8.(3分)下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率9.(3分)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是( )A .①②B .①④C .①②④D .①②③④10.(3分)下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×2211.(3分)已知x ﹣y =4,|x |+|y |=7,那么x +y 的值是( ) A .±B .±C .±7D .±112.(3分)如图,小明将一个正方形纸剪出一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为( )A .16cm 2B .20cm 2C .80cm 2D .160cm 2二.填空题(共10小题,满分20分,每小题2分)13.(2分)关于x 的方程bx ﹣3=x 有解,则b的取值范围是 .14.(2分)轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距 千米.15.(2分)已知单项式x a y 3与﹣4xy 4﹣b是同类项,那么a ﹣b 的值是 .16.(2分)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 .17.(2分)阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l 和直线l 外一点P ,用直尺和圆规作直线PQ ,使PQ ⊥l 于点Q .” 小艾的作法如下:(1)在直线l 上任取点A ,以A 为圆心,AP 长为半径画弧. (2)在直线l 上任取点B ,以B 为圆心,BP 长为半径画弧. (3)两弧分别交于点P 和点M(4)连接PM ,与直线l 交于点Q ,直线PQ 即为所求. 老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是 .18.(2分)如图,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC = cm .19.(2分)现在的时间是9时20分,此时钟面上时针与分针夹角的度数是 度.20.(2分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).21.(2分)一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,则该名同学行走的路程为米.22.(2分)我们可以用符号f(a)表示代数式.当a是正整数时,我们规定如果a为偶数,f(a)=0.5a;如果a为奇数,f(a)=5a+1.例如:f(20)=10,f(5)=26.设a1=6,a2=f(a1),a3=f(a2)…;依此规律进行下去,得到一列数:a1,a2,a3,a4…(n为正整数),则2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=.三.解答题(共7小题,满分46分)23.(4分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.24.(6分)在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y任意取值代入时,结果总是同一个定值,为什么?25.(8分)解方程:(1)x﹣7=10﹣4(x+0.5)(2)﹣=1.26.(6分)某汽车交易市场为了解二手轿车的交易情况,将本市场去年成交的二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为A、B、C、D、E五类,并根据这些数据由甲,乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)该汽车交易市场去年共交易二手轿车辆.(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为度.27.(7分)已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?28.(6分)某城市按以下规定收取每月的水费:用水量如果不超过6吨,按每吨1.2元收费;如果超过6吨,未超过的部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?29.(9分)如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?广东省深圳市实验中学七年级上册期末数学试卷答案一.选择题(共12小题,满分36分)1.解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.2.解:设该数是x,则|x﹣(﹣1)|=10,解得x=9或x=﹣11.故选:D.3.解:将数据2180000用科学记数法表示为2.18×106.故选:A.4.解:(﹣1)2018=1、|﹣2|=2,﹣(﹣1.5)=1.5,﹣32=﹣9,所以正数有3个,故选:C.5.解:①方程=2去分母,两边同时乘以5,得x﹣12=10,正确,故不符合题意;②方程x =,两边同除以,得x =;要注意除以一个数等于乘以这个数的倒数,故符合题意;③方程6x﹣4=x+4移项,得5x=8;要注意移项要变号,故符合题意;④方程2﹣两边同乘以6,得12﹣(x﹣5)=3(x+3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故符合题意.故②③④变形错误,符合题意.故选:B.6.解:设有x辆车,则可列方程:3(x﹣2)=2x+9.故选:A.7.解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.故选:A.8.解:A、人数众多,应用抽样调查,故此选项错误;B、人数不多,应用全面调查,故此选项正确;C、数量众多,使用抽样调查,破坏性较强,故此选项错误;D、范围太大,应用抽样调查,故此选项错误;故选:B.9.解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.故选:B.10.解:A、﹣22=﹣4,(﹣2)2=4,不相等;B、23=8,32=9,不相等;C、﹣33=(﹣3)3=﹣27,相等;D、(﹣3×2)2=36,﹣32×22=﹣36,不相等,故选:C.11.解:方法1:由x﹣y=4,得:x=y+4,代入|x|+|y|=7,∴|y+4|+|y|=7,①当y≥0时,原式可化为:2y+4=7,解得:y =,②当y≤﹣4时,原式可化为:﹣y﹣4﹣y=7,解得:y =,③当﹣4<y<0时,原式可化为:y+4﹣y=7,故此时无解;所以当y =时,x =,x+y=7,当y =时,x =,x+y=﹣7,综上:x+y=±7.方法2:∵|x|+|y|=7,∴x+y=7,x﹣y=7,﹣x+y=7,﹣x﹣y=7,∵x﹣y=4,∴x+y=±7.故选:C.12.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x﹣4cm,宽是5cm,则4x=5(x﹣4),去括号,可得:4x=5x﹣20,移项,可得:5x﹣4x=20,解得x=204x=4×20=80(cm2)所以每一个长条面积为80cm2.故选:C.二.填空题(共10小题,满分20分,每小题2分)13.解:bx﹣3=x,bx﹣x=3,(b﹣1)x=3,∵方程bx﹣3=x有解,∴b﹣1≠0,即b≠1,故答案为:b≠1.14.解:设A港和B港相距x千米.根据题意,得,解之得x=504.故填504.15.解:∵单项式x a y3与﹣4xy4﹣b是同类项,∴a=1,3=4﹣b,则b=1,∴a﹣b=1﹣1=0,故答案为:0.16.解:当3x﹣2=127时,x=43,当3x﹣2=43时,x=15,当3x﹣2=15时,x =,不是整数;所以输入的最小正整数为15,故答案为:15.17.解:∵AP=AM,BP=BM,AB=AB,∴△ABP≌△ABM,∴∠BAP=∠BAM,∵AP=AM,∴AQ⊥PM.故答案为:到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss或全等三角形对应角相等或等腰三角形的三线合一18.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.19.解:∵“4”至“9”的夹角为30°×5=150°,时针偏离“9”的度数为30°×=10°,∴时针与分针的夹角应为150°+10°=160°.20.解:,故答案为:.21.解:∵人和队伍同向而行,队尾一名同学用1分钟从队尾走到队头,队伍1分钟走60米,∴队尾一名同学用1分钟从队尾走到队头,该名同学行走的路程为(a+60)米,故答案为(a+60).22.解:观察,发现规律:a1=6,a2=f(a1)=3,a3=f(a2)=16,a4=f(a3)=8,a5=f(a4)=4,a6=f (a5)=2,a7=f(a6)=1,a8=f(a7)=6,…,∴数列a1,a2,a3,a4…(n为正整数)每7个数一循环,∴a1﹣a2+a3﹣a4+…+a13﹣a14=0,∵2015=2016﹣1=144×14﹣1,∴2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=a1+a2016+(a1﹣a2+a3﹣a4+a5﹣a6+…+a2015﹣a2016)=a1+a7=6+1=7.故答案为:7.三.解答题(共7小题,满分46分)23.解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.24.解:(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]=x2y+5xy2+5﹣(3x2y2+x2y﹣3x2y2+5xy2+2)=x2y+5xy2+5﹣3x2y2﹣x2y+3x2y2﹣5xy2﹣2=(x2y ﹣x2y)+(5xy2﹣5xy2)+(﹣3x2y2+3x2y2)+(5﹣2)=3,∴结果是定值,与x、y取值无关.25.解:(1)去括号,得x﹣7=10﹣4x﹣2,移项,得x+4x=10+7﹣2,合并同类项,得5x=15,解得x=3,(2)去分母,得2(5x+1)﹣(2x﹣1)=6,去括号,得10x+2﹣2x+1=6,移项,合并同类项,得8x=3,系数化为1,得x =.26.解:(1)该汽车交易市场去年共交易二手轿车1080÷36%=3000辆,故答案为:3000;(2)C类别车辆人数为3000×25%=750辆,补全条形统计图如下:(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为360°×=54°,故答案为:54.27.解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.28.解:设该用户5月份用水x吨,则1.2×6+(x﹣6)×2=1.4x,7.2+2x﹣12=1.4x,0.6x=4.8,x=8,∴1.4×8=11.2(元),答:该用户5月份应交水费11.2元.29.解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:(2)设x秒时原点恰好在A、B的中间,由题意,得3+x=12﹣4x,解得:x=1.8.∴A、B运动1.8秒时,原点就在点A、点B的中间;(3)由题意,得B追上A的时间为:15÷(4﹣1)=5,∴C行驶的路程为:5×20=100单位长度.。

深圳市实验学校人教版七年级上册数学期末试卷

深圳市实验学校人教版七年级上册数学期末试卷

深圳市实验学校人教版七年级上册数学期末试卷一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是()A.30°B.40°C.50°D.90°2.当x取2时,代数式(1)2x x-的值是()A.0 B.1 C.2 D.33.如图,将线段AB延长至点C,使12BC AB=,D为线段AC的中点,若BD=2,则线段AB的长为()A.4 B.6 C.8 D.124.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是()A.B.C.D.5.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是()A.B.C.D.6.96.已知a<0,-1<b<0,则a,ab,ab2之间的大小关系是()A.a>ab>ab2 B.ab>ab2>a C.ab>a>ab2 D.ab<a<ab27.互不相等的三个有理数a,b,c在数轴上对应的点分别为A,B,C。

若:||||||a b b c a c-+-=-,则点B()A.在点 A, C 右边B.在点 A, C 左边C.在点 A, C 之间D.以上都有可能8.已知单项式2x3y1+2m与3x n+1y3的和是单项式,则m﹣n的值是()A.3 B.﹣3 C.1 D.﹣19.若a<b,则下列式子一定成立的是( )A.a+c>b+c B.a-c<b-c C.ac<bc D.a b c c <10.若代数式3x﹣9的值与﹣3互为相反数,则x的值为()A.2 B.4 C.﹣2 D.﹣4 11.已知a﹣b=﹣1,则3b﹣3a﹣(a﹣b)3的值是()A .﹣4B .﹣2C .4D .212.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题13.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.14.若3750'A ∠=︒,则A ∠的补角的度数为__________.15.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.16.如果向东走60m 记为60m +,那么向西走80m 应记为______m.17.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.18.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.19.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.20.计算7a 2b ﹣5ba 2=_____.21.用“>”或“<”填空:13_____35;223-_____﹣3. 22.当12点20分时,钟表上时针和分针所成的角度是___________.23.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.24.若523m x y +与2n x y 的和仍为单项式,则n m =__________.三、解答题25.如图,在平面内有,,A B C 三点.(1)请按要求作图:画直线AC ,射线BA ,线段BC ,取BC 的中点D ,过点D 作DE AC ⊥于点E .(2)在完成第(1)小题的作图后,图中以,,,,A B C D E 这些点为端点的线段共有 条.26.已知,,,A B C D 四点如图所示,请按要求画图.(1)画直线AB ;(2)若所画直线AB 表示一条河流,点,C D 分别表示河流两旁的两块稻田,要在河岸边某一位置开渠引水灌溉稻田,请在河流AB 上确定点P ,使得在点P 处开渠到两块稻田,C D 的距离之和最短,并说明理由.27.O 为数轴的原点,点A 、B 在数轴上表示的数分别为a 、b ,且满足(a ﹣20)2+|b+10|=0.(1)写出a、b的值;(2)P是A右侧数轴上的一点,M是AP的中点.设P表示的数为x,求点M、B之间的距离;(3)若点C从原点出发以3个单位/秒的速度向点A运动,同时点D从原点出发以2个单位/秒的速度向点B运动,当到达A点或B点后立即以原来的速度向相反的方向运动,直到C点到达B点或D点到达A点时运动停止,求几秒后C、D两点相距5个单位长度?28.计算:﹣0.52+14﹣|22﹣4|29.直线AB,CD交于点O,将一个三角板的直角顶点放置于点O处,使其两条直角边OE,OF,分别位于OC的两侧.若OC平分∠BOF,OE平分∠COB.(1)求∠BOE的度数;(2)写出图中∠BOE的补角,并说明理由.30.如图,在数轴上有A 、B 、C 、D 四个点,分别对应的数为a ,b ,c ,d ,且满足a ,b 是方程| x+7|=1的两个解(a <b),且(c -12)2 与| d -16 |互为相反数.(1)填空:a =、b =、c =、d =;(2)若线段AB 以3 个单位/ 秒的速度向右匀速运动,同时线段CD 以1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C ,D 两个端点重合),若BD=2AC ,求t 的值;(3)在(2)的条件下,线段AB ,线段CD 继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使BC=3AD ?若存在,求t 的值;若不存在,说明理由.四、压轴题31.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.32.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.33.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点. (知识运用)如图②,M 、N 为数轴上两点,点M 所表示的数为﹣2,点N 所表示的数为4.(1)数 所表示的点是(M ,N )的优点;(2)如图③,A 、B 为数轴上两点,点A 所表示的数为﹣20,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以4个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P 、A 和B 中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B .【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.3.C解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =,则可列出:()223x x +⨯=解得:4x =,12BC AB =, 28AB x ∴==.故答案为:C.【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.4.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o ;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.5.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A. 点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.6.B解析:B【解析】先根据同号得正的原则判断出ab 的符号,再根据不等式的基本性质判断出ab 2及a 的符号及大小即可.解:∵a <0,b <0,∴ab >0,又∵-1<b <0,ab >0,∴ab 2<0.∵-1<b <0,∴0<b 2<1,∴ab 2>a ,∴a <ab 2<ab .故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.7.C解析:C【解析】【分析】 根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解.【详解】∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离b c -表示b 到c 的距离a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨∴B 在A 和C 之间故选:C【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.8.D解析:D【解析】【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.9.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b ,两边同时加上c ,可得 a+c<b+c ,故A 选项错误,不符合题意;B. 由a<b ,两边同时减去c ,得a-c<b-c ,故B 选项正确,符合题意;C. 由a<b ,当c>0时,ac<bc ,当c<0时,ac<bc ,当c=0时,ac=bc ,故C 选项错误,不符合题意;D.由 a<b ,当a>0,c ≠0时,a b c c <,当a<0时,a b c c>,故D 选项错误, 故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 10.B解析:B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:3x ﹣9﹣3=0,解得:x =4,故选:B .【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.11.C解析:C【解析】【分析】由题意可知3b-3a-(a-b )3=3(b-a )-(a-b )3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b )3=3(b-a )-(a-b )3=-3(a-b )-(a-b )3=3-(-1)=4;故选C .【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.12.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题13.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.14.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.15.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.16.-80【解析】 【分析】 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.17.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2+2【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C 表示的数为1+1+2=2+2,故答案为【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元. 19.36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等 ∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面20.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a 2b【解析】【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.21.< >【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:<;>﹣3.故答解析:<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:13<35;223>﹣3.故答案为:<、>.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.22.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.23.4【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.24.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.三、解答题25.(1)见解析;(2)8.【解析】【分析】(1)根据直线是向两方无限延伸的,线段有两个端点,射线是向一方无限延伸的画出直线AC 、射线BA 、线段BC ,根据中点的定义找出BC 中点D ,利用网格的特点连接小正方形对角线并延长交AC 于E 即可得DE AC ⊥.【详解】(1)答案如图所示:(2)图中以A 、B 、C 、D 、E 为端点的线段有:AB 、AE 、AC 、EC 、BD 、BC 、DC 、DE ,共8条,故答案为:8【点睛】本题考查了基本作图,直线、射线、线段的定义,是基础题,主要训练了同学们把几何文字语言转化为几何图形语言的能力.26.(1)作图见解析;(2)作图见解析,理由:两点之间,线段最短.【解析】【分析】(1)根据直线的意义,画出直线AB 即可.(2)根据两点之间线段最短,连接CD,与直线AB 的交点即为所求.【详解】(1)直线AB 为所求.(2)画线段CD 交直线AB 于点P ,则点P 为所求.理由:两点之间,线段最短.【点睛】本题考查了直线的画法和线段公理即两点之间线段最短,解决本题的关键是正确理解题意,熟练掌握线段公理.27.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间(3)当0≤t≤203时,点C表示的数为3t,当203<t≤503时,点C表示的数为20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t,当5<t≤20时,点D表示的数为﹣10+2(t﹣5)=2t﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD=5可得出关于x的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a﹣20)2+|b+10|=0,∴a﹣20=0,b+10=0,∴a=20,b=﹣10.(2)∵设P表示的数为x,点A表示的数为20,M是AP的中点.∴点M表示的数为202x+.又∵点B表示的数为﹣10,∴BM=202x+﹣(﹣10)=20+2x.(3)当0≤t≤203时,点C表示的数为3t;当203<t≤503时,点C表示的数为:20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t;当5<t≤20时,点D表示的数为:﹣10+2(t﹣5)=2t﹣20.当0≤t≤5时,CD=3t﹣(﹣2t)=5,解得:t=1;当5<t≤203时,CD=3t﹣(2t﹣20)=5,解得:t=﹣15(舍去);当203<t≤503时,CD=|40﹣3t﹣(2t﹣20)|=5,即60﹣5t=5或60﹣5t=﹣5,解得:t=11或t=13.答:1秒、11秒或13秒后,C、D两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,b的值;(2)根据各点之间的关系,用含x的代数式表示出BM的长;(3)找准等量关系,正确列出一元一次方程.28.【解析】先算乘方,后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【详解】2210.5244-+-- 10.25444=-+-- 10.2504=-+- =0.【点睛】本题考查了有理数的混合运算,掌握有理数的混合运算是解题的关键.29.(1)30°;(2)∠BOE 的补角有∠AOE 和∠DOE .【解析】【分析】(1)根据OC 平分∠BOF ,OE 平分∠COB .可得∠BOE =∠EOC =12∠BOC ,∠BOC =∠COF ,进而得出,∠EOF =3∠BOE =90°,求出∠BOE ;(2)根据平角和互补的意义,通过图形中可得∠BOE +∠AOE =180°,再根据等量代换得出∠BOE +∠DOE =180°,进而得出∠BOE 的补角.【详解】解:(1)∵OC 平分∠BOF ,OE 平分∠COB .∴∠BOE =∠EOC =12∠BOC ,∠BOC =∠COF , ∴∠COF =2∠BOE ,∴∠EOF =3∠BOE =90°,∴∠BOE =30°,(2)∵∠BOE +∠AOE =180°∴∠BOE 的补角为∠AOE ;∵∠EOC +∠DOE =180°,∠BOE =∠EOC ,∴∠BOE +∠DOE =180°,∴∠BOE 的补角为∠DOE ;答:∠BOE 的补角有∠AOE 和∠DOE ;【点睛】考查角平分线的意义、互补、邻补角的意义等知识,等量代换和列方程是解决问题常用的方法.30.(1)a = -8 , b = -6,c = 12 , d = 16;(2)316t =;(3)t =274 或t = 458时, BC = 3AD【分析】(1)根据绝对值的含义a a ±=(a 为正数) 及平方和绝对值的非负性20,0a a ≥≥ 即可求解;(2)AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点C 对应的数为:12 - t , 点 D 对应的数为: 16 - t ,根据题意列出关于t 的等式求解即可;(3)根据题意求出t 的取值范围,用含t 的式子表示出BC 和AD ,再根据BC =3AD 即可求出t 值.【详解】(1) | x + 7 |= 1,∴ x = -8 或-6∴ a = -8 , b = -6,(c -12)2 + | d -16 |= 0 ,∴ c = 12 , d = 16(2) AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点C 对应的数为:12 - t , 点 D 对应的数为: 16 - t ,∴ BD =|16 - t - (-6 + 3t ) |=| 22 - 4t |AC =|12 - t - (-8 + 3t ) |=| 20 - 4t |BD = 2 AC ,∴ 22 - 4t = ±2(20 - 4t )解得: 92t =或316t = 当92t =时,此时点 B 对应的数为152,点C 对应的数为152,此时不满足题意, 故316t =(3)当点 B 运动到点 D 的右侧时, 此时-6 + 3t > 16 - t112t ∴>,BC =|12 - t - (-6 + 3t ) |=|18 - 4t | ,AD =|16 - t - (-8 + 3t ) |=| 24 - 4t | ,BC = 3AD ,∴|18 - 4t |= 3 | 24 - 4t | ,解得: t =274 或t = 458经验证,t =274 或t = 458, BC = 3AD 【点睛】本题考查了有理数与数轴的综合问题,涉及字母的表示,绝对值的性质,解方程,灵活应用绝对值的性质是解题的关键.四、压轴题31.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,=【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.32.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314. 【解析】【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】(1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,当AD=2,点A 在点D 的左边时,由题意得:16--22AD t t ==,解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下:当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =, ∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.33.(1)2或10;(2)当t 为5秒、10秒或7.5秒时,P 、A 和B 中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x ,根据优点的定义分优点在M 、N 之间和优点在点N 右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P 为(A ,B )的优点;②P 为(B ,A )的优点;③B 为(A ,P )的优点.设点P 表示的数为x ,根据优点的定义列出方程,进而得出t 的值.【详解】解:(1)设所求数为x ,当优点在M 、N 之间时,由题意得x ﹣(﹣2)=2(4﹣x ),解得x=2;当优点在点N 右边时,由题意得x ﹣(﹣2)=2(x ﹣4),解得:x=10;故答案为:2或10;(2)设点P 表示的数为x ,则PA=x+20,PB=40﹣x ,AB=40﹣(﹣20)=60,分三种情况:①P 为(A ,B )的优点.由题意,得PA=2PB ,即x ﹣(﹣20)=2(40﹣x ),解得x=20,∴t=(40﹣20)÷4=5(秒);②P 为(B ,A )的优点.由题意,得PB=2PA ,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.。

2022-2023学年深圳实验学校数学七年级第一学期期末经典试题含解析

2022-2023学年深圳实验学校数学七年级第一学期期末经典试题含解析

2022-2023学年七上数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程变形正确的是( )A .由35x +=得53x =+B .由74x =-得74x =-C .由3y 08=得3-8y = D .由32x =-得23x =+ 2.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30° B .40° C .50° D .90°3.下列是轴对称图形的是( )A .B .C .D .4.下列变形中,不正确的是( )A .由a b =得到22a b -=-B .由351a a =+得到531a a -=C .由26a b =得到3a b =D .由23x y =得到32x y = 5.下列说法正确的是( )A .直线一定比射线长B .过一点能作已知直线的一条垂线C .射线AB 的端点是A 和BD .角的两边越长,角度越大 6.在代数式2π,15x +,221x x --,33x -中,分式有( ) A .1个 B .2个 C .3个 D .4个7.如果方程6x -2a=2与方程3x+5=11的解相同,那么a =( )A .4B .3C .5D .6 8.解方程123123x x +--=,去分母后,结果正确的是( ) A .3(1)12(23)x x +-=- B .3(1)62(23)x x +-=-C .33643x x +-=-D .3(1)32(23)x x +-=-9.下列调查中,最适合采用抽样调查的是( )A .调查一批防疫口罩的质量B .调查某校初一一班同学的视力C .为保证某种新研发的大型客机试飞成功,对其零部件进行检查D .对乘坐某班次飞机的乘客进行安检10.已用点A 、B 、C 、D 、E 的位置如图所示,下列结论中正确的是( )A .∠AOB =130° B .∠AOB =∠DOEC .∠DOC 与∠BOE 互补D .∠AOB 与∠COD 互余11.下列运算中,正确的是( )A .5a +3b =8abB .4a 3+2a 2=6a 5C .8b 2﹣7b 2=1D .6ab 2﹣6b 2a =0 12.3倒数等于( )A .3B .13C .-3D .13- 二、填空题(每题4分,满分20分,将答案填在答题纸上)13.计算2(2)1--的结果是_________.14.如图,是一个数表,现用一个矩形在数表中任意框出4个数,则当32a b c d +++=时,a =______.15.单项式:3256x yz π-的系数是_____________,次数是___________. 16.已知1x =-是方程(2)2a x a -+=的解,则a 的值是_______.17.若多项式x 4﹣ax 3﹣x +3与多项式x 3﹣bx ﹣1之和不含x 3和x 项,则b a =_____.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)先化简,再求值:13(9x 2﹣3y )﹣2(x 2+y ﹣1),其中x =﹣2,y =﹣13. 19.(5分)如图,已知A 、O 、B 三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.20.(8分)微信运动和腾讯公益推出了一个爱心公益活动:一天中走路步数达到10000步及以上可通过微信运动和腾讯基金会向公益活动捐款,如果步数在10000步及以上,每步可捐....0.0002元;若步数在10000步以下,则不能参与捐款.(1)老赵某天的步数为13000步,则他当日可捐多少钱?(2)已知甲、乙、丙三人某天通过步数共捐了8.4元,且甲的步数=乙的步数=丙步数的3倍,则丙走了多少步?21.(10分)(列方程解答)2000多年前的《九章算术》一书中曾记载这样一个故事:今有共买鸡,人出九,盈十八;人出六,不足十二.问人数、物价各几何?大意是:有若干人一起买鸡,如果每人出9文钱,就多出18文钱;如果每人出6文钱,还差12文钱.问买鸡的人数、鸡的价钱各是多少?22.(10分)如图所示,已知OB,OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.(1)若∠BOC=25°,∠MOB=15°,∠NOD=10°,求∠AOD的大小;(2)若∠AOD=75°,∠MON=55°,求∠BOC的大小;(3)若∠AOD=α,∠MON=β,求∠BOC的大小(用含α,β的式子表示).23.(12分)由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、D【分析】根据等式的性质即可得出答案.【详解】A :由35x +=可得53x =-,故A 错误;B :由74x =-可得47x =-,故B 错误; C :由3y 08=可得y=0,故C 错误; D :由32x =-可得x=2+3,故D 正确;故答案选择D.【点睛】本题考查的是等式的性质,比较简单,需要熟练掌握等式的基本性质.2、B【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B .【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.3、B【解析】根据轴对称图形的概念判断即可.【详解】解:A、C、D中图形都不是轴对称图形,B中图形是轴对称图形;故选:B.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、B【分析】根据等式的性质依次判断.【详解】A.正确;B.5a-3a=-1,故该项错误;C.正确;D.正确;故选:B.【点睛】此题考查等式的性质,熟记性质定理并运用解题是关键.5、B【解析】根据基本概念和公理,利用排除法求解.【详解】解:A、直线和射线长都没有长度,故本选项错误;B、过一点能作已知直线的一条垂线,正确;C、射线AB的端点是A,故本选项错误;D、角的角度与其两边的长无关,错误;故选:B.【点睛】本题考查了直线、射线和线段.相关概念:直线:是点在空间内沿相同或相反方向运动的轨迹.向两个方向无限延伸.过两点有且只有一条直线.射线:直线上的一点和它一旁的部分所组成的图形称为射线,可向一方无限延伸.6、B【分析】根据分式的定义逐个判断即可得.【详解】常数2π是单项式,1 5x+是多项式,221x x --和33x -都是分式, 综上,分式有2个,故选:B .【点睛】本题考查了分式的定义,掌握理解分式的定义是解题关键.7、C【分析】先通过方程3x+5=11求得x 的值,因为方程6x -2a=2与方程3x+5=11的解相同,把x 的值代入方程6x -2a=2,即可求得a 的值.【详解】解:3x+5=11,移项,得3x=11-5,合并同类项,得3x=6,系数化为1,得x=2;把x=2代入6x -2a=2中,得6222a ⨯-=,解得:5a =;故选:C .【点睛】本题考查了解一元一次方程.解题的关键是掌握解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号.因为两方程解相同,把求得x 的值代入方程,即可求得常数项的值.8、B【分析】两边都乘以6,去掉分母即可. 【详解】123123x x +--=, 两边都乘以6,得3(1)62(23)x x +-=-.故选B .【点睛】本题考查了一元一次方程的解法,熟练掌握一元一次方程的解题步骤是解答本题的关键.去括号时,一是注意不要漏乘括号内的项,二是明确括号前的符号;去分母时,一是注意不要漏乘没有分母的项,二是去掉分母后把分子加括号. 9、A【分析】直接利用全面调查和抽样调查的意义分别分析得出答案.【详解】解:A、调查一批防疫口罩的质量,适合抽样调查,符合题意;B、调查某校初一一班同学的视力,适合全面调查,不合题意;C、为保证某种新研发的大型客机试飞成功,对其零部件进行检查,必须全面调查,不合题意;D、对乘坐某班次飞机的乘客进行安检,必须全面调查,不合题意;故选:A.【点睛】此题主要考查了全面调查和抽样调查的意义,正确理解抽样调查的意义是解题关键.10、C【解析】由题意得出∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,得出∠DOC+∠BOE=180°即可.【详解】解:∵∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,∴∠DOC+∠BOE=180°;故选:C.【点睛】本题考查了余角和补角;根据题意得出各个角的度数是关键.11、D【分析】根据同类项的定义与合并同类项法则逐一计算可得.【详解】解:A.5a与3b不是同类项,不能合并,此选项错误;B.4a3与2a2不是同类项,不能合并,此选项错误;C.8b2﹣7b2=b2,此选项错误;D.6ab2﹣6b2a=0,此选项正确;故选:D.【点睛】本题主要考查合并同类项,解题的关键是掌握合并同类项法则和同类项的定义.12、B【分析】根据倒数的定义即可得到结果;【详解】3的倒数是13.故答案选B.【点睛】本题主要考查了倒数的性质,准确理解是解题的关键.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、3【分析】根据有理数运算法则即可求解.【详解】2(2)1--=41-=3【点睛】本题难度较低,主要考查有理数混合运算,掌握混合运算顺序是解题关键,先乘方,再乘除,后加减.14、1【分析】根据已知条件列一元一次方程求解即可.【详解】解:∵a+b+c+d=32,∴a+a+1+a+1+a+6=32,解得:a=1.故答案为:1.【点睛】本题考查了一元一次方程的应用,解题的关键是结合图表弄清题意.15、56π- 6 【分析】根据单项式系数、次数的定义求解. 【详解】解:单项式3256x yz π-的系数是:56π-,次数是:6, 故答案为:56π-,6. 【点睛】本题考查了单项式的系数和次数,单项式的系数指单项式中的数字因数,次数指单项式中所有字母的指数和 16、12【分析】将1x =-代入方程(2)2a x a -+=求出a 的值即可.【详解】∵1x =-是方程(2)2a x a -+=的解,∴(12)2a a --+=, 解得:12a =, 故答案为:12.【点睛】本题主要考查了方程的解,熟练掌握相关方法是解题关键.17、-1.【分析】根据题意列出关系式,由结果不含x 3和x 项求出a 与b 的值,代入原式计算即可求出值.【详解】解:根据题意得:原式()()4334331112x ax x x bx x a x b x =++++++----=--- , 由结果不含x 3和x 项,得到10a +-= ,10b --= ,解得:11a b =,=- ,则原式1=- ,故答案为:﹣1【点睛】本题考查了多项式的加减运算,根据结果不含x 3和x 项求出a 与b 的值是解题的关键.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、x 2﹣3y +2,1.【分析】根据去括号法则、合并同类项法则把原式化简,代入计算得到答案. 【详解】解:13(9x 2﹣3y )﹣2(x 2+y ﹣1) =3x 2﹣y ﹣2x 2﹣2y +2=x 2﹣3y +2,当x =﹣2,y =﹣13时,原式=(﹣2)2﹣3×(﹣13)+2=1. 【点睛】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给多项式化简.本题主要利用去括号合并同类项的知识,注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.19、(1)∠BOD =138°;(2)∠COE=21°. 【分析】(1)根据平角的定义即可得到结论;(2)根据余角的性质得到∠COD=48°,根据角平分线的定义即可得到结论.【详解】(1)∵A 、O 、B 三点共线,∠AOD=42°, ∴∠BOD=180°﹣∠AOD=138°; (2)∵∠COB=90°,∴∠AOC=90°, ∵∠AOD=42°,∴∠COD=48°, ∵OE 平分∠BOD ,∴∠DOE=12∠BOD=69°, ∴∠COE=69°﹣48°=21°. 【点睛】本题考查了余角和补角的知识,属于基础题,互余的两角之和为90°,互补的两角之和为180°是需要同学们熟练掌握的内容.20、(1)2.6元;(2)7000步.【分析】(1)用步数×每步捐的钱数0.0002元即可;(2)设丙走了x 步,则甲走了3x 步,乙走了3x 步,分两种情况讨论即可.【详解】(1)13000×0.0002=2.6元, ∴他当日可捐了2.6元钱;(2)设丙走了x 步,则甲走了3x 步,乙走了3x 步,由题意得若丙参与了捐款,则有0.0002(3x +3x +x )=8.4,解之得:x =6000,不合题意,舍去;若丙没参与捐款,则有0.0002(3x +3x )=8.4,解之得:x =7000,符合题意,∴丙走了7000步.【点睛】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.本题也考查了分类讨论的数学思想.21、买鸡的人数为10人,鸡的价钱为72文.【分析】设买鸡的人数为x 人,先根据两种方式所出的总钱数都等于鸡的价钱建立方程,解方程求出x 的值,由此即可得出答案.【详解】解:设买鸡的人数为x 人,由题意得:918612x x -=+,解得10x =,符合题意,则鸡的价钱为9189101872x -=⨯-=(文),答:买鸡的人数为10人,鸡的价钱为72文.【点睛】本题考查了一元一次方程的实际应用,依据题意,正确建立方程是解题关键.22、(1)∠AOD= 75°;(2)∠BOC=35°;(3)2BOC βα∠=-.【分析】(1)利用角平分线的定义可得∠AOB=2∠MOB=30°,∠COD=2∠NOD=20°,然后利用∠AOD=∠AOB+∠BOC+∠COD ,可得结果;(2)由角的加减可得∠AOM+∠DON 的度数,从而求得∠BOM+∠CON ,再利用∠BOC=∠MON-(∠BOM+∠CON )可得结果;(3)由OM 与ON 分别为角平分线,利用角平分线的定义得到两对角相等,根据∠BOC=∠MON-∠BOM-∠CON ,等量代换即可表示出∠BOC 的大小.【详解】解:(1)∵OM 平分∠AOB ,ON 平分∠COD∴∠AOB=2∠MOB=30°,∠COD=2∠NOD=20°∴∠AOD=∠AOB+∠BOC+∠COD=30°+25°+20°=75° (2)∵∠AOD=75°,∠MON=55°,∴∠AOM+∠DON=∠AOD-∠MON=20°,∵∠BOM+∠CON=∠AOM+∠DON=20°,∴∠BOC=∠MON-(∠BOM+∠CON )=55°-20°=35°,(3)∵OM 平分∠AOB ,ON 平分∠COD ,∴∠AOM=∠BOM=12∠AOB ,∠CON=∠DON=12∠COD , ∵∠BOC=∠MON-∠BOM-∠CON=∠MON-12∠AOB-12∠COD=∠MON-12(∠AOB+∠COD ) =∠MON-12(∠AOD-∠BOC ) =β-12(α-∠BOC ) =β-12α+12∠BOC , ∴∠BOC=2β-α.【点睛】此题考查了角的计算,以及角平分线定义,利用了等量代换的思想,熟练掌握角平分线定义是解本题的关键.23、【分析】从上面看可以得到3列正方形的个数一次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示【点睛】本题主要考查作三视图,需要注意我们从物体的正面、左面和上面看所得到的图形的不同,每个观察面所对应的最大数需要注意.。

2022-2023学年广东省深圳实验学校七年级(上)期末数学试卷-学生版

2022-2023学年广东省深圳实验学校七年级(上)期末数学试卷-学生版

2022-2023学年广东省深圳实验学校七年级(上)期末数学试卷一.选择题(共10小题,每题3分,共30分)1.(3分)2022的相反数是()A.2022B.﹣2022C.D.±20222.(3分)下列几何体中,圆柱体是()A.B.C.D.3.(3分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1064.(3分)一个正方体的平面展开图如图所示,则原正方体中与“勤”字所在面相对的面上的汉字是()A.手B.戴C.口D.罩5.(3分)下列说法正确的是()A.的系数是﹣2B.ab3的次数是3C.22+x﹣1的常数项为1D.是多项式6.(3分)如果2x3n y m+1与﹣3x12y4是同类项,那么m,n的值分别是()A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=4 7.(3分)下列调查中,适合的是()A.《新闻联播》电视栏目的收视率,采用全面调查方式B.为了精确调查你所在班级的同学的身高,采用抽样调查方式C.习主席视察长江水域建设情况,环保部门为调查长江某段水域的水质情况,采用抽样调查方式D.调查一个乡镇学生家庭的收入情况,采用全面调查方式8.(3分)2022年,口罩成了人们出行的”标配”,某口罩生产车间有36名工人,每人每天可以生产800个口罩面或1000根口罩带,1个口罩面需要配2根口罩带,为了使每天生产口罩面和口罩带刚好配套,设安排x名工人生产口罩面,则下面所列方程正确的事()A.1000(36﹣x)=2×800x B.1000(18﹣x)=800xC.2×1000(36﹣x)=800x D.1000(36﹣x)=800x9.(3分)有理数a、b在数轴上的位置如图所示,则|a+b|﹣2|b﹣a|化简后为()A.2a+b B.﹣2a﹣b C.﹣3a+b D.﹣3a﹣b10.(3分)已知3x2+4x﹣6=0,则多项式6x4+11x3﹣14x2﹣14x+15的值是()A.1B.2C.3D.4二.填空题(共5小题,每题3分,共15分)11.(3分)如果零上2℃记作+2℃,那么零下5℃记作℃.12.(3分)如图所示的几何体,如果从左面观察它,得到的平面图形是.13.(3分)如图,C是线段AB上任意一点,M,N分别是AC,BC的中点,如果AB=12cm,那么MN的长为cm.14.(3分)如图,将一张纸条折叠,若∠1=62°,则∠2的度数为.15.(3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则的值为.三.解答题(共7题,共55分)16.(12分)计算:(1)(﹣12)﹣5÷(﹣14)﹣(﹣39);(2)﹣12022×(﹣7)+|4﹣9|﹣27÷(﹣3)2;(3)先化简,再求值:x2﹣(2x2﹣4)+2(x2﹣y),其中x=﹣1,.17.(6分)解方程:(1)2(x﹣1)﹣2=4x.(2)﹣1=.18.(5分)为了解龙华区某校七年级学生对A《最强大脑》、B《朗读者》、C《中国诗词大会》、D《极限挑战》四个电视节目的喜爱情况,随机抽取了m位学生进行调查统计(要求每位学生选出并且只能选一个自己最喜爱的节目).并将调查结果绘制成如图两幅不完整的统计图.根据统计图提供的信息,回答下列问题:(1)m=,n=.(2)在图1中,喜爱《极限挑战》节目所对应的扇形的圆心角度数是度;(3)请根据以上信息补全图2的条形统计图;(4)已知该校七年级共有500位学生,那么他们最喜欢《最强大脑》这个节目的学生约有人.19.(8分)如图,已知∠BOC=2∠AOB,OD平分∠AOC.(1)若∠AOB=50°,求∠COD的度数;(2)若∠BOD=20°,求∠AOB的度数.20.(8分)“广交会”是中国历史最长的综合性国际贸易盛会,在“广交会”中,某到会采购商计划从厂家购进甲、乙两种商品.已知甲种商品的每件进价比乙种商品的每件进价少20元.若购进甲种商品3件,乙种商品2件,共需要440元.(1)求甲、乙两种商品的每件进价分别是多少元?(2)该采购商从厂家购进了甲种商品5万件、乙种商品2万件.在销售时,甲种商品的每件售价为100元,要使得这7万件商品所获利润率为20%,求每件乙种商品的售价是多少元?21.(6分)材料阅读:传说夏禹治水时,在黄河支流洛水中浮现出一只大乌龟,背上有一个很奇轻的图案,这个图案被后人本为“洛书”,即现在的三阶幻方,三阶幻方又叫九宫格,它是由九个数字组成的一个三行三列的矩阵.其每行、每列、每条对角线上的三个数字之和均相等.(1)图1中,c=,b a=;(2)由图1,计算:15x2﹣10y+2022的值;(3)图2所示是“整式和幻方”,其每行、每列、每条对角线上的三个整式之和均相等,则k=.22.(10分)已知(a+12)2+|b﹣13|=0,c=|﹣7|,且a、b、c分别是点A、B、C在数轴上对应的数.(1)a=,c=;(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒2个单位长度,设运动的时间为t秒(t>0),①用含t的式子表示:t秒后,点P表示的数为,点Q表示的数为;②当PQ=6时,求t的值.(3)在(2)的条件下,P、Q出发的同时,动点M从点C出发沿数轴正方向运动,速度为每秒5个单位长度,点M追上点Q后立即返回沿数轴负方向运动.求点M追上点Q 后再经过几秒,MQ=2MP?。

广东省深圳实验学校 七年级(上)期末数学试卷

广东省深圳实验学校 七年级(上)期末数学试卷

七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.在2,,-8,-2,0中,互为相反数的是()A. 0与2B. 与C. 2与D. 0与2.在x2y,-,-8x+4y,ab四个代数式中,单项式有()A. 1个B. 2个C. 3个D. 4个3.如图所示的几何体是由一些小正方体组成的,那么从左边看它的图形是()A. B. C. D.4.地球与月球的距离大约为380000千米,用科学记数法可表示为()千米.A. B. C. D.5.下列各数中,正确的角度互化是()A. B.C. D.6.下列说法中正确的是()A. 两点之间的所有连线中,线段最短B. 射线就是直线C. 两条射线组成的图形叫做角D. 小于平角的角可分为锐角和钝角两类7.如图所示,有理数a、b在数轴上的位置,化简|1+a|+|1-b|的值为()A. B. C. D.8.如果关于x的方程3x-5m=3与方程2x+10=2的解相同,那么m=()A. B. C. 3 D. 19.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A. 8B. 9C. 12D. 1010.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A. B. C. D.11.一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则设销售员出售此商品最低可打x折,由题意列方程,得()A. B.C. D.12.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=-1,-1的差倒数为.现已知x1=-,是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2019的值为()A. B. C. D. 4二、填空题(本大题共4小题,共12.0分)13.代数式-xy的系数是______.14.若m2-2m=1,则2m2-4m+2017的值是______.15.如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是______.16.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为______.三、计算题(本大题共3小题,共18.0分)17.(1)计算:①②(-2)2×15-(-5)2÷5-5(2)解方程:①2x+18=-3x-2②=118.先化简,再求值:2(a2-ab)-3(a2-ab),其中,a=-2,b=3.19.已知:A-2B=7a2-7ab,且B=-4a2+6ab+7(1)求A等于多少?(2)若3x2a y b+1与-x2y a+3是同类项,求A的值.四、解答题(本大题共4小题,共32.0分)20.某文艺团体为“希望工程”募捐组织了一场义演,共售出2000张票,筹得票款13600元.已知学生票5元/张,成人票8元/张,问成人票与学生票各售出多少张?21.某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A、B、C、D四个等级,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题:(1)抽取了______名学生成绩;(2)请把频数分布直方图补充完整;(3)扇形统计图中A等级所在的扇形的圆心角度数是______;(4)若A、B、C三个等级为合格,该校初二年级有900名学生,估计全年级生物合格的学生人数.22.如图,∠AOB是平角,∠DOE=90°,OC平分∠DOB.(1)若∠AOE=32°,求∠BOC的度数;(2)若OD是∠AOC的角平分线,求∠AOE的度数.23.已知a是最大的负整数,b、c满足(b-3)2+|c+4|=0,且a、b、c分别是点A、B、C在数轴上对应的数.(1)点A表示的数为______,点B表示的数为______,点C表示的数为______;(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到点B为5个单位长度?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于13,请写出所有点M对应的数,并写出求解过程.答案和解析1.【答案】C【解析】解:2与-2互为相反数.故选:C.根据相反数的定义,只有符号不同的两个数是互为相反数解答.本题主要考查了相反数的定义,是基础题,比较简单,熟记相反数的定义是解题的关键.2.【答案】C【解析】解:在x2y,-,-8x+4y,ab四个代数式中,单项式有:x2y,-,ab共3个.故选:C.直接利用单项式的定义分析得出答案.此题主要考查了单项式,正确把握单项式的定义是解题关键.3.【答案】A【解析】解:该几何体从左面看是三个正方形,从左往右有二列,分别有2个和1个小正方形,所以从左面看到的形状图是A选项中的图形.故选:A.左视图是从左面看所得到的图形,从左往右有二列,分别有2个和1个小正方形,据此判断即可.本题主要考查了简单组合体的三视图,确定物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.4.【答案】B【解析】解:380000=3.8×105,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】D【解析】解:A、63.5°=63°30′≠63°50′,故A不符合题意;B、23.48°=23°28′48″≠23°12′36″,故B不符合题意;C、18.33°=18°19′48″≠18°18′18″,故C不符合题意;D、22.25°=22°15′,故D正确,故选:D.根据大单位化小单位乘以进率,小单位化单位除以进率,可得答案.本题考查了度分秒的换算,利用大单位化小单位乘以进率,小单位化单位除以进率是解题关键.6.【答案】A【解析】解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.根据线段、射线和角的概念,对选项一一分析,选择正确答案.考查线段、射线和角的概念.解题的关键是熟练运用这些概念.7.【答案】A【解析】解:由图可得,-1<a<0<1<b,则|1+a|+|1-b|=a+1-1+b=a+b.故选:A.根据a、b在数轴上的位置,进行绝对值的化简,然后合并.本题考查了数轴,绝对值,解答本题的关键是掌握绝对值的化简以及同类项的合并.8.【答案】B【解析】解:方程2x+10=2的解为x=-4,∵方程3x-5m=3与方程2x+10=2的解相同,∴方程3x-5m=3的解为x=-4当x=-4时,-12-5m=3解得m=-3故选:B.先求出方程2x+10=2的解,再把方程的解代入方程3x-5m=3中,求出m.本题考查了一元一次方程的解法及方程的同解的含义.理解同解方程是解决本题的关键.9.【答案】D【解析】解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.画出图形,直线上有5个点,每两个点作为线段的端点,即任取其中的两点即可得到一条线段,可以得出共有10条.本题的实质是考查线段的表示方法,是最基本的知识,比较简单.10.【答案】B【解析】解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.根据线段中点的定义,结合选项一一分析,排除答案.显然A、C、D都可以确定点C是线段AB中点.根据线段的中点能够写出正确的表达式.反过来,也要会根据线段的表达式来判断是否为线段的中点.11.【答案】D【解析】解:设销售员出售此商品最低可打x折,根据题意得:3000×=2000(1+5%),故选:D.当利润率是5%时,售价最低,根据利润率的概念即可求出售价,进而就可以求出打几折.本题考查了由实际问题抽象出一元一次方程的知识,理解什么情况下售价最低,并且理解打折的含义,是解决本题的关键.12.【答案】D【解析】解:由已知可得,x1=-,x2=,x3==4,x4=,可知每三个一个循环,2019÷3=673,故x2019=4.故选:D.根据已知条件可以先计算出几个x的值,从而可以发现其中的规律,求出x2019的值.本题考查数字的规律问题,解题的关键是发现其中的规律,求出相应的x的值.13.【答案】-【解析】解:代数式-xy的系数是:-.故答案为:-.直接利用单项式的系数确定方法分析得出答案.此题主要考查了单项式,正确掌握单项式的系数确定方法是解题关键.14.【答案】2019【解析】解:当m2-2m=1时,2m2-4m+2017=2(m2-2m)+2017=2×1+2017=2+2017=2019故答案为:2019.首先把2m2-4m+2017化为2(m2-2m)+2017;然后把m2-2m=1代入化简后的算式,求出算式的值是多少即可.此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.15.【答案】-1【解析】解:由一元一次方程的特点得,解得m=-1.故填:-1.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.据此可得出关于m的方程,继而可求出m的值.本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.【答案】301【解析】解:观察可知:3a=21,解得:a=7,∴b=14,∴x=21×14+7=301.故答案为:301.首先根据图示,可得第n个表格的左上角的数等于n,左下角的数等于2n;右上角的数分别为3,6,9,…3n,由此求出n;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x的值是多少即可.此题主要考查了探寻数字规律问题,注意观察总结出规律,并能正确的应用规律.17.【答案】解:(1)①原式=4×(-)+4-2=-2+4-2=0;②原式=4×15-25÷5-5=60-5-5=50;(2)①2x+3x=-2-18,5x=-20,x=-4;②2(2x-3)-(2x+1)=10,4x-6-2x-1=10,4x-2x=10+6+1,2x=17,x=.【解析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)依据解一元一次方程的步骤依次计算可得.本题主要考查实数运算与解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.18.【答案】解:原式=2a2-2ab-3a2+3ab=-a2+ab,当a=-2,b=3时,原式=-(-2)2+(-2)×3=-4-6=-10.【解析】先去括号,再合并同类项化简原式,再将a,b的值代入计算可得.本题主要考查整式的加减-化简求值,解题的关键是掌握整式的加减的本质即为去括号、合并同类项.19.【答案】解:(1)∵B=-4a2+6ab+7,∴A=2B+(7a2-7ab)=2(-4a2+6ab+7)+(7a2-7ab)=-8a2+12ab+14+7a2-7ab=-a2+5ab+14;(2)由题意可知:2a=2,b+1=a+3,即a=1,b=3,当a=1,b=3时,原式=-1+5×1×3+14=28.【解析】(1)根据整式的运算法则即可求出答案.(2)根据同类项的定义即可求出a与b的值,然后代入原式即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【答案】解:设成人票售出x张,则学生票售出(2000-x)张,根据题意可得:8x+5(2000-x)=13600,解得:x=1200,2000-x=2000-1200=800(张),答:成人票售出1200张,学生票售出800张.【解析】设成人票售出x张,则学生票售出(2000-x)张,根据“票款13600元”列出方程并解答.此题主要考查了一元一次方程的应用,理清题里蕴含的数量关系:①成人票张数+学生票张数=2000张,②成人票票款+学生票票款=13600是解题关键.21.【答案】50 72°【解析】解:(1)抽取的学生总数为:23÷46%=50(名),故答案为:50;(2)D等级的学生有50-(10+23+12)=5(名),补频数分布全直方图,如图所示:(3)A等级所在的扇形的圆心角度数=×360°=72°,故答案为:72°;(4)根据题意得:900×(1-)=810(人),答:全年级生物合格的学生共约810人.(1)根据B等级的人数除以所占的百分比,确定抽取的学生总数即可;(2)求出D等级的人数,补全频数分布直方图即可;(3)根据A等级的百分比乘以360°,即可得到结果;(4)由学生总数900乘以A、B、C三个等级所占的百分比,即可得到全年级生物合格的学生人数.此题考查了频数分布直方图,扇形统计图,以及用样本估计总体的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,弄清题中的数据是解本题的关键.22.【答案】解:(1)∠AOD=∠DOE-∠AOE=90°-32°=58°∠BOD=∠AOB-∠AOD=180°-58°=122°又OC平分∠BOD所以:∠BOC=∠BOD=×122°=61°(2)因为OC平分∠BOD,OD平分∠AOC所以∠BOC=∠DOC=∠AOD又∠BOC+∠DOC+∠AOD=180°所以∠AOD=×180°=60°所以∠AOE=∠DOE-∠AOD=90°-60°=30°【解析】(1)根据互余和角平分线的定义解答即可;(2)根据角平分线的定义和平角的定义解答即可.本题考查角度计算,解题的关键是熟练利用角分线的性质,本题属于基础题型.23.【答案】-1 3 -4【解析】解:(1)∵a是最大的负整数∴a=-1∵(b-3)2≥0,|c+4|≥0,而(b-3)2+|c+4|=0∴b=3,c=-4故答案为:-1;3;-4.(2)设点P运动t秒时到点B为5个单位长度,分以下两种情况:①点P在点B左边距离点B5个单位,则有:2t+5=3-(-4)解得t=1②点P在点B右边距离点B5个单位,则有:2t-5=3-(-4)解得t=6故当点P运动1秒或6秒后,点P到点B为5个单位长度.(3)点B与点C之间的任何一点时到A、B、C三点的距离之和都小于13,因此点M的位置只有以下两种情况,设点M所表示的数为m,则:①点M在点C左边时,可得:-4-m-1-m+3-m=13 解得m=-5②点M在点B右边时,可得:m+4+m+1+m-3=13 解得m=故点M对应的数为-5或.(1)由题目中的条件可直接得出点A对应的数,根据平方与绝对值的非负性可得出B与C对应的数;(2)由点P到点B为5个单位长度,可两种情况,点P在点B左边及点P在点B右边,分别列方程即可求得;(3)分情况讨论,当点M在点C左边及当点M在点B右边,分别列方程可求得;而当点M在点C及点B之间时不符合题意.本题考察非负数的性质及数轴上与动点有关的计算,较为基础,在做题时注意考虑到所有情况进行讨论.。

深圳实验学校人教版七年级上册数学期末试卷及答案

深圳实验学校人教版七年级上册数学期末试卷及答案

深圳实验学校人教版七年级上册数学期末试卷及答案一、选择题1.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 2.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .3.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .34.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =15.下列因式分解正确的是() A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)aa a a --=-+6.﹣2020的倒数是( ) A .﹣2020B .﹣12020C .2020D .120207.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×2 8.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米 B .向北走3米 C .向东走3米 D .向南走3米 9.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( )A .2B .4C .﹣2D .﹣410.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+11.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚B .赚了9元C .赚了18元D .赔了18元12.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟二、填空题13.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.14.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 15.已知单项式245225n m xy x y ++与是同类项,则m n =______.16.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 17.﹣30×(1223-+45)=_____. 18.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.19.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________20.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______. 21.将520000用科学记数法表示为_____.22.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.23.当12点20分时,钟表上时针和分针所成的角度是___________. 24.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.27.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳市实验学校人教版七年级上册数学期末试卷一、选择题 1.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b 2.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)33.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3 B .π,2 C .1,4 D .1,3 4.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( )A .3B .4C .5D .65.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1126.当x=3,y=2时,代数式23x y -的值是( ) A .43 B .2C .0D .3 7.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )28.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( )A .300-0.2x =60B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =609.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .10.下列图形中,哪一个是正方体的展开图( )A .B .C .D .11.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-112.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上 D .AD 上二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.14.已知方程22x a ax +=+的解为3x =,则a 的值为__________.15.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.16.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 17.已知单项式245225n m x y x y ++与是同类项,则m n =______.18.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。

19.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.20.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.21.如果向东走60m 记为60m +,那么向西走80m 应记为______m.22.单项式()26a bc -的系数为______,次数为______. 23.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、压轴题25.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.26.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.27.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.28.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.29.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.30.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?31.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数;(3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P和点Q一共相遇了几次.(直接写出答案)32.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.2.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.3.A解析:A【解析】【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】π的系数和次数分别是π,3;解:单项式2r h故选:A.【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.4.C解析:C【解析】【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解.【详解】解:∵﹣2xy n+2与 3x3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1,∴|n﹣4m|=|-1-4|=5,故选C.【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.5.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n 个图中,有2×(2n+1)+n=5n+2(个).∴摆成 第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n .6.A解析:A【解析】【分析】当x=3,y=2时,直接代入代数式即可得到结果.【详解】23x y -=2323⨯-=43, 故选A【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.7.B解析:B【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b -.故选B.8.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x 元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价, 可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.9.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.10.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键. 11.A解析:A【解析】【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.5【解析】【分析】把x =2代入方程求出a 的值即可.【详解】解:∵关于x 的方程5x+a =3(x+3)的解是x =2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x =2代入方程求出a 的值即可.【详解】解:∵关于x 的方程5x +a =3(x +3)的解是x =2,∴10+a =15,∴a =5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.16.y =﹣.【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程①的解为x =2020,∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020,∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】 此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.17.9【解析】【分析】根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可. 18.6【解析】【分析】根据题意设原来乙桶中的油量为,甲桶中的油量为,则可列出方程求出答案.【详解】设原来乙桶中的油量为,甲桶中的油量为第一次:把甲桶中的油倒出一半给乙桶,转移的油量为甲桶剩解析:6【解析】【分析】根据题意设原来乙桶中的油量为1,甲桶中的油量为x,则可列出方程求出答案.【详解】设原来乙桶中的油量为1,甲桶中的油量为x第一次:把甲桶中的油倒出一半给乙桶,转移的油量为1 2 x甲桶剩余油量:1122 x x x -=乙桶剩余油量:11 2x+第二次:把乙桶中的油倒出18给甲桶,转移的油量为1111182168x x⎛⎫+=+⎪⎝⎭甲桶剩余油量:11191 2168168 x x x⎛⎫++=+⎪⎝⎭乙桶剩余油量:11177 12168168x x x⎛⎫⎛⎫+-+=+ ⎪ ⎪⎝⎭⎝⎭此时甲乙桶中油量相等∴9177 168168 x x+=+∴6x=故原来甲桶中的油量是乙桶中的6倍【点睛】本题考查一元一次方程的应用,解题关键在于转移油量之后,要减去,然后联立方程求出倍数关系即可.19.【解析】【分析】根据题意分别表示P,Q的数为-8+2t和10-3t,并分到A前和到A后进行分析求值. 【详解】解:由题意表示P,Q的数为-8+2t()和10-3t(),-8+3(t-6)()解析:12 5【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.20.5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB =5,BC =3,∴AC =5+3解析:5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB =5,BC =3,∴AC =5+3=8;∵点D 是AC 的中点,∴AD =8÷2=4;∵点E 是AB 的中点,∴AE =5÷2=2.5,∴ED =AD ﹣AE =4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.21.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.22.【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式的系数为;次数为2+1+1=4;故答案为;4.【点睛】此 解析:16- 【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式()26a bc-的系数为16-;次数为2+1+1=4;故答案为16 -;4.【点睛】此题主要考查对单项式系数和次数的理解,熟练掌握,即可解题.23.5【解析】【分析】把方程的解代入方程即可得出的值.【详解】把代入方程,得∴故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.解析:5【解析】【分析】把方程的解代入方程即可得出m的值.【详解】把1x=代入方程,得141m⨯-=∴5m=故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解. 【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、压轴题25.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC 即可,把∠AOC 、∠BOC 、∠AOB 相加即可求出射线OA ,OB ,OC 组成的所有小于平角的和;(2)依题意设∠2=x ,列等式,解方程求出即可;(3)依据题意求出∠BOM ,∠COM ,再根据角平分线的性质得出∠MOE ,∠MOF ,即可求出∠EOF .【详解】解:(1)∵∠BOC =30°,∠AOB =45°,∴∠AOC =75°,∴∠AOC +∠BOC +∠AOB =150°;答:由射线OA ,OB ,OC 组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x ,则∠1=3x +30°,∵∠1+∠2=90°,∴x +3x +30°=90°,∴x =15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM =180°﹣45°=135°,∠COM =180°﹣15°=165°,∵OE 为∠BOM 的平分线,OF 为∠COM 的平分线,∴∠MOF =12∠COM =82.5°,∠MOE =12∠MOB =67.5°, ∴∠EOF =∠MOF ﹣∠MOE =15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.26.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.27.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n²,;应用:625,300.【点睛】 本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.28.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s【解析】【分析】(1)根据非负数的性质求得a 、b 、c 的值即可;(2)i )根据3BC-k•AB 求得k 的值即可;ii )当AC=13AB 时,满足条件. 【详解】(1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6,t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.29.(1)图1中∠AOD=60°;图2中∠AOD=10°; (2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+,∴∠AOD=∠BOD ﹣∠AOB=n m 2. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏. 30.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数为10-5t ;故答案为-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.理由如下:①当点P 在点A 、B 两点之间运动时,∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP+NP=AP+BP=(AP+BP )=AB=15;②当点P 运动到点B 的左侧时:∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP-NP=AP-BP=(AP-BP )=AB=15,∴综上所述,线段MN 的长度不发生变化,其值为15.(3)若点P 、Q 同时出发,设点P 运动t 秒时与点Q 距离为4个单位长度.①点P 、Q 相遇之前,由题意得4+5t=30+3t ,解得t=13;②点P 、Q 相遇之后,由题意得5t-4=30+3t ,解得t=17.答:若点P 、Q 同时出发,13或17秒时P 、Q 之间的距离恰好等于4;。

相关文档
最新文档