(整理)-5概率统计B卷及答案.
概率论与数理统计试题库及答案(考试必做)

<概率论>试题库(许丙胜编)一、填空题1.设A、B、C 是三个随机事件。
试用A、B、C 分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C 不多于一个发生2.设A、B 为随机事件,P (A)=0.5,P(B)=0.6,P(B A )=0.8。
则P(B )A =3.若事件A 和事件B 相互独立,P()=,A αP(B)=0.3,P(A B)=0.7, 则α=4.将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5.甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________7.已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________b =________8.设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <=_________9.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥=12.用(,X Y )的联合分布函数F(x,y)表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F(x,y)表示P{X a,b}Y <<=14.设平面区域D 由y =x ,y =0和x =2所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y)关于X 的边缘概率密度在x =1处的值为。
2023年高考理科数学B卷真题及答案详解

2023年高考理科数学B卷真题及答案详解2023 年高考已经落下帷幕,对于理科考生来说,数学试卷的难度和题型一直是大家关注的焦点。
下面我们就来详细分析一下 2023 年高考理科数学 B 卷的真题及答案。
首先来看选择题部分。
第 1 题考查了集合的基本运算。
题目给出了两个集合,要求求出它们的交集。
这道题属于基础知识的考查,只要掌握了集合交集的定义,就能轻松得出答案。
第 2 题是关于复数的计算。
需要将复数进行化简,然后判断其所在的象限。
对于这道题,需要熟练掌握复数的四则运算以及复数在复平面内的表示。
第 3 题考查了函数的性质。
给出一个函数表达式,判断其奇偶性。
通过对函数表达式进行变形,然后根据奇偶性的定义来判断。
第 4 题是一道三角函数的题目。
涉及到三角函数的诱导公式以及特殊角的三角函数值。
第 5 题考查了向量的运算。
需要根据已知条件计算向量的数量积。
选择题的后几道题难度逐渐增加,对知识点的综合运用能力要求较高。
接下来是填空题部分。
第 11 题考查了数列的通项公式。
需要根据给出的数列前几项,找出规律,推导出通项公式。
第 12 题是关于立体几何的。
给出一个几何体,要求计算其体积或表面积。
第 13 题考查了线性规划。
需要画出可行域,然后求出目标函数的最值。
第14 题是一道概率统计的题目。
需要根据题目中的条件计算概率。
填空题部分注重对基础知识的灵活运用和对数学思维的考察。
再看解答题部分。
第 17 题通常是数列题。
要求证明数列的通项公式或者求和。
这道题需要掌握数列的基本方法,如等差数列和等比数列的通项公式和求和公式。
第 18 题是三角函数的综合应用。
可能涉及到解三角形、三角函数的图像和性质等知识点。
第 19 题往往是立体几何题。
需要证明线面平行、垂直关系,或者计算空间角和距离。
第 20 题一般是概率统计题。
可能会要求根据样本数据进行分析、计算期望和方差等。
第 21 题通常是解析几何题。
涉及到直线与圆锥曲线的位置关系,计算弦长、中点坐标等。
《概率统计》练习题及参考答案

习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。
2. 记三事件为C B A ,,。
试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。
3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。
4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。
5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。
6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。
7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。
8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。
9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。
10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。
概率统计B卷答案

14-15学年第2学期概率统计B 卷参考答案及评分标准一、选择题〔每题3分,共计21分〕1~8 BDCD CAA二、填空题〔每题3分,共计21分〕8. 0.5;9. 0.4;10. 0.5;11. 0.42;12. 1/9;13. 8/15;14. 23。
三.计算题〔每题6分,共12分〕21.设A ,B 为随机事件,且P 〔A 〕=0.7,P (A -B )=0.3,求P 〔AB 〕.【解】 P 〔AB 〕=1-P 〔AB 〕…..2分=1-[P (A )-P (A -B )] …..2分=1-[0.7-0.3]=0.6…..2分22.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求:〔1〕 X 的分布律;〔2〕 X 的分布函数;【解】〔1〕X0 1 2 P 2235 1235 135〔2〕 当x <0时,F 〔x 〕=P 〔X ≤x 〕=0当0≤x <1时,F 〔x 〕=P 〔X ≤x 〕=P (X =0)= 2235当1≤x <2时,F 〔x 〕=P 〔X ≤x 〕=P (X =0)+P (X =1)=3435 当x ≥2时,F 〔x 〕=P 〔X ≤x 〕=1故X 的分布函数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩…..4分四.综合题〔每题8分,共16分〕23.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.【解】X 和Y 的联合分布律如表:1 2 3 1 0 131113C 2228⨯⨯= 23111C 3/8222⨯⨯= 0 X Y24.设随机变量X 的分布律为求E 〔X 〕,【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯=…..3分 (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯= …..3分 D 〔X 〕=1…..2分五.综合题〔此题12分〕25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:〔1〕考试及格的学生有多大可能是不努力学习的人?〔2〕考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},那么A ={被调查学生是不努力学习的}.由题意知P 〔A 〕=0.8,P 〔A 〕=0.2,又设B ={被调查学生考试及格}.由题意知P 〔B |A 〕=0.9,P 〔B |A 〕=0.9,…..2分 故由贝叶斯公式知 〔1〕()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+…..2分 0.20.110.027020.80.90.20.137⨯===⨯+⨯…..2分 即考试及格的学生中不努力学习的学生仅占2.702%(2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+…..2分 0.80.140.30770.80.10.20.913⨯===⨯+⨯…..2分 即考试不及格的学生中努力学习的学生占30.77%.…..2分。
线性代数与概率统计B卷

秋交通运输专升本《线性代数与概率统计》B 卷姓名: 成绩:一、填空题(20分,每空2分)1. 一个含有零向量的向量组必线性 。
2.设A 为n 阶方阵,且2A =,则1A -= ;2A = ;3.设2011A ⎛⎫= ⎪-⎝⎭,则1A -= 。
4.若A 为正交矩阵,则1A -= 。
5.已知B A ,两个事件满足条件()()B A P AB P =,且()p A P =,则()=B P _________。
6.3个人独立破译一份密码,他们能单独译出的概率分别为111,,543,则此密码被破译出的概率是 。
7.设两个随机变量X 和Y 相互独立,且同分布:()()1112P X P Y =-==-=,()()1112P X P Y ====,则()P X Y == 。
8.设随机变量X 的分布函数为:()0,0sin ,021,2x F x A x x x ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩,则=A 。
9.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()n i i X μσ=-∑服从__________分布。
二、计算题(80分)1.(10分)已知1111121113A -⎛⎫⎪= ⎪ ⎪⎝⎭,求1A -及()1A -*。
2.(10分)已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=114011b a a A 与⎪⎪⎪⎭⎫ ⎝⎛-=100030003B 相似,求,a b 的值.3.(10分)计算行列式aa a a ++++43214321432143214.(10分)设三阶方阵A 有三个不同的特征值123,,λλλ,其对应的特征向量分别为123,,ααα,令123βααα=++,证明向量组β,A β, 2A β线性无关。
5.(10分)盒中放有10个乒乓球,其中有8个是新的。
第一次比赛从中任取2个来用,比赛后仍放回盒中。
第二次比赛时再从盒中取2个,求第二次取出的球都是新球的概率。
6.(10分)设随机变量X 和Y 独立同分布,且X 的分布律为:()()121,233P X P X ==== 求Y X Z +=的分布律。
整理后的概率论与数理统计考试试题答卷与参考答案

概率论与数理统计试题练习一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p ,=)B -A (p ,)(B A P ⋅= , =)B A (p 。
2、一个袋子中有大小相同的红球6只、黑球4只。
(1)从中不放回地任取2只,则345X Z =6、=<<-}42{X P 0.815 , (~,12N Y X Y 则+= , )。
7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y相互独立,则:=-)2(Y X E ,=-)2(Y X D 。
8、设2),(125===Y X Cov Y D X D ,)(,)(,则=+)(Y X D9、设261,,X X 是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。
则:~X N (8 , ),~16252S ,~52/8s X - 。
10三、(≤≤10,y 四、(五、(4,75==S X 5.27)15(,26.6)15(,1315.2)15(597.0502.0597.0===x x t 求u 的置信度为0.95的置信区间和2σ 的置信度为0.95的置信区间。
六 、 (10分)设某工厂生产工件的直径服从正态分布,要求它们的均值25.0,82≤=σu ,现检验了一组由16只工件,计算得样本均值、样本方差分别49.0,65.72==s x ,试在显着水平05.0=α下,对该厂生产的工件的均值和方差进行检验,看它们是否符合标准。
此题中,,5.27)15(,25)15(,13.2)15(,76.1)15(2025.0205.0025.05.0====χχt tXX 大学(本科)试卷( B 卷)2005 -2006 学年第一学期一. 填空题(每小题2分,共计60分)1. 设随机试验E 对应的样本空间为S 。
概率论与数理统计试卷试题及答案5

概率论与数理统计试卷一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)1. 设A 、B 满足1)(=A B P ,则 . 【 】(a )A 是必然事件;(b )0)(=A B P ;(c )B A ⊃;(d ))()(B P A P ≤.2. 设X ~N (μ,σ2),则概率P (X ≤1+μ)=( ) 【 】 A ) 随μ的增大而增大 ; B ) 随μ的增加而减小; C ) 随σ的增加而增加; D ) 随σ的增加而减小.3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个简单随机样本,则下列表达式中不是统计量的是 . 【 】 (a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4. 在假设检验中, 0H 表示原假设, 1H 表示备择假设, 则成为犯第二类错误 的是 . 【 】 (a )1H 不真, 接受1H ; (b )0H 不真, 接受1H ; (c )0H 不真, 接受0H ; (d )0H 为真, 接受1H .5.设n 21X ,,X ,X Λ为来自于正态总体),(N ~X 2σμ的简单随机样本,X 是样本均值,记2n1i i21)X X(1n 1S --=∑=,2n1i i22)X X(n1S -=∑= ,2n1i i23)X(1n 1S μ--=∑=,2n1i i24)X(n1S μ-=∑=,则服从自由度为1-n 的t 分布的随机变量是 . 【】 (a )1n S X T 1-μ-=;(b )1n S X T 2-μ-=;(c )nS X T 3μ-=;(d )nS X T 4μ-=.………………………………… 装 ……………………………… 订 ……………………………… 线 …………………………………二、填空题(将答案写在该题横线上。
概率统计试题及答案(本科完整版)

填空题(每题2分,共20分)A1、记三事件为A ,B,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 .A3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时,06505P(A B )_.__,P(B |A )_.__⋃==。
A4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。
A5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对a c b <<以及任意的正数0e >,必有概率{}P c x c e <<+ =⎧+<⎪⎪-⎨-⎪+>⎪-⎩e,c e b b a b c ,c e b b aA6、设X 服从正态分布2(,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) .A7、设1128363X B EX DX ~n,p ),n __,p __==(且=,=,则 A8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中的最大号码。
则X 的数学期望=)(X E 4.5 。
A9、设随机变量(,)X Y 的分布律为则条件概率 ===}2|3{Y X P 2/5 .A10、设121,,X X 来自正态总体)1 ,0(N , 2129285241⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∑∑∑===i i i i i i X X X Y ,当常数k =1/4 时,kY 服从2χ分布。
A 二、计算题(每小题10分,共70分)A1、三台机器因故障要人看管的概率分别为0.1,0.2,0.15,求: (1)没有一台机器要看管的概率(2)至少有一台机器不要看管的概率 (3)至多一台机器要看管的概率解:以A j 表示“第j 台机器需要人看管”,j =1,2,3,则:P ( A 1 ) = 0.1 , P ( A 2 ) = 0.2 , P ( A 3 ) = 0.15 ,由各台机器间的相互独立性可得()()()()()123123109080850612P A A A P A P A P A ....=⋅⋅=⨯⨯=ABC ABC ABC()()()12312321101020150997P A A A P A A A ....⋃⋃=-=-⨯⨯= ()()()()()()1231231231231231231231233010808509020850908015090808500680153010806120941P A A A A A A A A A A A A P A A A P A A A P A A A P A A A .................=+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=+++=A2、甲袋中有n 只白球、m 只红球;乙袋中有N 只白球、M 只红球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 2007 至 2008 学年 第__2__学期 )课程名称: 概率统计 考试时间: 110 分钟 课程代码: 7100050 试卷总分: 100 分考试形式: 闭卷 学生自带普通计算器: 是一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题共5小题,每小题3分,总计15分)1.假设A 、B 为两个互斥事件,则下列关系中,不一定正确的是( ). A .)()()(B P A P B A P +=+ B .)(1)(B P A P -= C .0)(=AB PD .0)|(=B A P2.设X 服从区间[70,80]上的均匀分布,则)7460(≤<X P 等于( ). A .0.3B .0.4C .0.6D .0.73.设随机变量X 服从指数分布,则随机变量X 的分布函数( ). A .是连续函数; B .恰好有一个间断点; C .是阶梯函数; D .至少有两个间断点. 4.若随机变量),(~2σμN X ,)1,0(~N Z ,则( ). A .σμ-=Z X B .μσ-=Z XC .μσ-=X ZD .σμ-=X Z5. 设),,,(21n X X X 为总体)2,1(2N 的一个样本,X 为样本均值,则下列结论中正确的是( ).A .)(~/21n t n X -; B .)1,(~)1(4112n F X ni i ∑=-;C .)1,0(~/21N nX -; D .)(~)1(41212n X ni i χ∑=-.二、填空题(本大题共5小题,每小题3分,总计15分)1. 一批电子元件共有100个, 次品率为0.05. 连续两次不放回地从中任取一个, 则第二次才取到正品的概率为2.设函数⎩⎨⎧<≥-=-00,)(2x x be a x F x 为连续型随机变量X 的分布函数,则=a =b .3. 设X 为总体)4,3(~N X 中抽取的样本(4321,,,X X X X )的均值, 则)51(<<-X P = .4.设1=DX ,4=DY ,相关系数12=XY ρ, 则=),(Y X COV ______ 5. 设某种保险丝熔化时间),(~2σμN X (单位:秒),取5=n 的样本,得 样本均值和方差分别为02.0,152==S X ,则μ的置信度为90%的置信区间 为 .三、(4分)已知某地区男子寿命超过55岁的概率为84%,超过70岁以上的概率的63%。
试求任一刚过55岁生日的男子将会活到70岁以上的概率为多少?四、(8分)一盒乒乓球有6个新球,4个旧球。
不放回抽取,每次任取一个,共取两次, (1)求:第二次才取到新球的概率;(2)发现其中之一是新球,求:另一个也是新球的概率.五、(6分)已知随机变量X 的分布函数为F(x)=+∞<<∞-+x x ,arctan 121π, 求:(1))31(≤<-X P ; (2)常数C ,使41)(=>C X P .六、(12分).某人在每天上班途中要经过3个设有红绿灯的十字路口。
设每个路口遇到红灯的事件是相互独立的,且红灯持续24秒而绿灯持续36秒。
试求他途中遇到红灯的次数的概率分布及其期望值和方差。
七、(12分)设随机变量(,)X Y 的联合密度函数为⎩⎨⎧<<<=他其0,20),(xy x A y x f 求 (1) 常数A ; (2) 讨论X 与Y 的独立性. ; (3) 讨论X 与Y 的相关性.八、(8分) 根据长期的经验,某工厂生产的特种金属丝的折断力),(~2σμN X(单位:kg ). 已知8=σ kg , 现从该厂生产的一大批特种金属丝中 随机抽取10个样品,测得样本均值2.575=x kg . 问这批特种金属丝的 平均折断力可否认为是570 kg ? (显著性水平%5=α)九、(8分) 已知维尼纶纤度在正常条件下服从正态分布)048.0,(2μN . 某日抽取5个样品,测得其纤度为: 1.31, 1.55, 1.34, 1.40, 1.45 .问 这天的纤度的总体方差是否正常?试用显著性水平%10=α作假设检验.十、(8分) 已知随机变量X 的密度函数为(1)(5)56()(0)x x f x θθθ⎧+-<<=>⎨⎩其他,其中θ均为未知参数,求θ的极大似然估计量.十一、 证明题 (4分)设C B A ,,是不能同时发生但两两独立的随机事件,且ρ===)()()(C P B P A P , 试证:ρ可取的最大值为1/2.附表: 标准正态分布数值表 2χ分布数值表 t 分布数值表6103.0)28.0(=Φ 488.9)4(205.0=χ 1318.2)4(05.0=t975.0)96.1(=Φ 711.0)4(295.0=χ 0150.2)5(05.0=t 9772.0)0.2(=Φ 071.11)5(205.0=χ 5332.1)4(1.0=t 9938.0)5.2(=Φ 145.1)5(295.0=χ 4759.1)5(1.0=t一、(15分)选择题参考答案及评分标准:评分标准:选对一项得3分,不选或选错得0分。
参考答案:1.B2.B3.A4.D5.C 二、(15分)填空题参考答案及评分标准:评分标准:对一题得3分。
参考答案:1. 1/22; 2,=a 1 =b 1 ; 3,0.9772; 4, 24; 5,[14.574 ,15.426]; 三、(4分)参考答案及评分标准: 评分标准:条件概率75.04384.063.0===P 四、(8分)参考答案及评分标准:评分标准:本题共2个小题,每小题得4分,不答或答错得0分解: 设 i A ={第i 次取得新球},i=1,2. (1) 设C={第二次才取得新球},有12C A A =12121464()()()(|)10915P C P A A P A P A A ===⨯=,(2) 设事件 D = {发现其中之一是新球},E = {其中之一是新球,另一个也是新球}12121651()()()(|)1093P E D P A A P A P A A ===⨯=121212121121()()()()1()(|)()(|)31644613310910915P D P A A P A A P A A P A P A A P A P A A =++=++=+⨯+⨯=()1/35(|)()13/1513P ED P E D P D ===五、(6分)参考答案及评分标准:评分标准: 1. 32; 2. c= -1六、(12分)评分标准:每小题4分。
参考答案:解:(1) 途中遇到红灯的次数)4.0,3(~B X 。
其概率分布如下表:(2) EX =1.2,(3) DX =0.72七、(12分)评分标准:第一小题2分,第二小题6分,第三小题4分。
参考答案:解:(1) .4/1=A(2)X 的边缘密度为⎪⎩⎪⎨⎧<<===⎰⎰-∞∞-他其0202/)4/1(),()(x x dy dy y x f x f x xX Y 的边缘密度为 ⎪⎩⎪⎨⎧<<-=其他02221)(y y f Y ;),()()(y x f y f x f Y X ≠∴X 与Y 不独立(3) ⎰==202,3/4)2/()(dx x X E⎰⎰==-20,0)4/()(xxdy y dx Y E⎰⎰==-20,0)4/()(xx dy y xdx XY E 0)()()(),c o s (=-=Y E X E XY E Y X 所以X 与Y 不相关.八、(8分)评分标准:第一小题共有4个要点:假设, 查表, 计算,作答,答对一个得2分,答错或未答得0分,…… 参考答案:解: 假设570:,570:10≠=μμH H (2分)检验用的统计量 )1,0(~/0N nX U σμ-=,拒绝域为 96.1)1(025.02==-≥z n z U α. (4分)96.106.21065.010/85702.5750>==-=U ,落在拒绝域内,故拒绝原假设0H ,即不能认为平均折断力为570 kg . [ 96.1632.0102.010/92.5695710<==-=U , 落在拒绝域外, (6分)故接受原假设0H ,即可以认为平均折断力为571 kg . ] (8分)九、(8分)评分标准:第一小题共有4个要点:假设, 查表, 计算,作答,答对一个得2分,答错或未答得0分,…… 参考答案:解:假设为 221220048.0:,048.0:≠=σσH H (2分)[22122079.0:,79.0:≠=σσH H ]拒绝域为 488.9)4()1(205.022==->χχχαn 或711.0)4()1(295.02122==-<-χχχαn (4分) 41.1=x检验用的统计量 )1(~)(222512--=∑=n X Xi iχσχ,488.9739.150023.0/0362.020>==χ, 落在拒绝域内,[711.0086.06241.0/0538.02<==χ,落在拒绝域内,] (6分) 故拒绝原假设0H ,即认为该天的纤度的总体方差不正常 . (8分)十.(8分) 已知随机变量X 的密度函数为(1)(5)56()(0)x x f x θθθ⎧+-<<=>⎨⎩其他,其中θ均为未知参数,求θ的极大似然估计量.评分标准:第一小题共有4个要点,答对一个得2分,答错或未答得0分,……参考答案:解: 似然函数 11()(;)(1)(5)nnni ii i L f x x θθθθ====+-∏∏,故1151ln ()ln(1)ln(5)ln ()ln(5)01ˆ1ln(5)ni i ni i ii L n x d L nx d nXθθθθθθθθ====++-=+-=+=---∑∑∑的极大似然估计量为十一. 证明题 (4分) 参考答案:证明:)()(C A C AB ⋃⊂⋃⇒)()(C A P C AB P ⋃≤⋃⇒ ⇒)()()()()()(AC P C P A P ABC P C P AB P -+≤-+⇒ )()()()()()()(C P A P C P A P C P B P A P -+≤+即 222ρρρρ-≤+ ⇒022≥-ρρ 解此不等式得 ]2/1,0[∈ρ,所以ρ可取的最大值为1/2.。