量子物理基础--习题资料讲解
第六部分量子物理基础习题

第六部分 量子物理基础 习题:1.从普朗克公式推导斯特藩玻尔兹曼定律。
(提示:15143π=-⎰∞dx e xx)解:λλπλλλd e hc d T M T M T k hc⎰⎰∞-∞-==52000112),()(令x Tk hc =λ,则dx kTxhc d 2-=λ,所以442545034234025252015212)(11)(2112)(TTch kdxexTc h k dxkTxhc e hckTx hc d e hc T M xxT k hcσπππλλπλ=⋅⋅=-=--=-=⎰⎰⎰∞∞∞-证毕。
2.实验测得太阳辐射波谱中峰值波长nm m 490=λ,试估算太阳的表面温度。
解:由维恩位移定律b T m =λ得到K bT m3931091.51049010897.2⨯⨯⨯==--=λ3.波长为450nm 的单色光射到纯钠的表面上(钠的逸出功A =2.29eV ),求: (1)这种光的光子能量和动量; (2)光电子逸出钠表面时的动能。
解:(1) 2.76eV J 1042.4104501031063.6199834==--⨯⨯⨯⨯⨯===-λhchv Es m /kg 1047.1104501063.6hp 27934⋅⨯⨯⨯---===λ(2)由爱因斯坦光电效应方程,得光电子的初动能为eV A hv E k 47.029.276.2=-=-=4.铝的逸出功是4.2eV ,现用波长nm 200=λ的紫外光照射铝表面。
试求: (1)发射的光电子的最大动能; (2)截止电压; (3)铝的红限频率。
解:(1)由光电效应方程得光电子的最大动能为J 102.3106.12.4102001031063.619199834----=⨯⨯⨯-⨯⨯⨯⨯=-=-=A hcA hv E k λ(2)截止电压V 0.2106.1102.319190=--⨯⨯==eE V k(3)红限频率Hz 1001.11063.6106.12.41534190⨯=⨯⨯⨯==--hA v5.在一次康普顿散射中,传递给电子的最大能量为MeV E 045.0=∆,试求入射光子的波长。
量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
chapter1 量子力学基础知识习题解答

= 9.403×10-11m
(3) λ = h = h p 2meV
=
6.626 ×10−34 J ⋅ s
2× 9.109 ×10−31kg ×1.602×10−19 C × 300V
= 7.08×10−11m
4
乐山师范学院 化学与生命科学学院
【1.5】用透射电子显微镜摄取某化合物的选区电子衍射图,加速电压为 200kV,计算电子 加速后运动时的波长。
图 1.2 金属的 Ek ~ ν 图
3
乐山师范学院 化学与生命科学学院
h = Ek = ∆Ek ν −ν 0 ∆ν
即 Planck 常数等于 Ek − v 图的斜率。选取两合适点,将 Ek 和 v 值带入上式,即可求出 h 。
例如:
h
=
(2.7 −1.05) ×10−19 J (8.50 − 6.00) ×1014 s−1
乐山师范学院 化学与生命科学学院
01.量子力学基础知识
本章主要知识点
一、微观粒子的运动特征
1.
波粒二象性: E
= hν , p =
h λ
2. 测不准原理: ∆x∆px ≥ h, ∆y∆py ≥ h, ∆z∆pz ≥ h, ∆t, ∆E ≥ h
3. 能量量子化
二、量子力学基本假设
1. 假设 1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ (x, y, z,t) 来
相反的两个电子。或者说:对于多电子体系,波函数对于交换任意两个电子是反
对称的。
三、箱中粒子的 Schrödinger 方程及其解
1. 一维无限势阱的 Schrödinger 方程:
− 2 d2ψ 2m dx2
= Eψ
其解为:ψ n (x) =
大学物理 第16章量子力学基本原理-例题及练习题

∴ n = 2,6,10...... 时概率密度最大
nhπ 6 × 10 = =1时 (3) n=1时: E = =1 2mL L
2 2 2 2 2 −38
A 例题3 例题3 设粒子沿 x 方向运动,其波函数为 ψ ( x ) = 方向运动, 1 + ix
( n = 1,2,3,...)
E n=4
p2 E = 2m p= nπh nh 2 mE = = a 2a
n=3 n=2 n=1
h 2a λ= = p n
二者是一致的。 二者是一致的。
( n = 1, 2, 3,...)
o a
x
例题2 粒子质量为m, 在宽度为L的一维无限 的一维无限深势 例题2 P516例1:粒子质量为m, 在宽度为 的一维无限深势 中运动,试求( 粒子在0 阱中运动,试求(1)粒子在0≤x≤L/4区间出现的概率。并 ≤ / 区间出现的概率。 求粒子处于n=1 状态的概率。 在哪些量子态上, 求粒子处于 1和n=∞状态的概率。(2)在哪些量子态上, 状态的概率 (2)在哪些量子态上 L/4处的概率密度最大?(3)求n=1时粒子的能量 补充 。 /4处的概率密度最大 (3)求 =1时粒子的能量(补充 处的概率密度最大? =1时粒子的能量 补充)。 2 nπ x 由题得: 解:(1) 由题得: 概率密度 |ψ | = sin
2 2 2 2 0
2
2
2
2
0
0
k
0
2
2
2 k
0
k
k
k
0
h ∴λ = = p
hc 2E m c + E
2 k 0
大学物理-量子力学基础习题思考题及答案

习题22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。
解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式,222240E c p m c=+ 可得p ===h p λ==834-=131.210m -=⨯(2)对于质子,利用德布罗意波的计算公式即可得出:3415h 9.110m p λ--====⨯22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。
解:(1)用非相对论公式:mmeU h mE h 123193134108.71025106.1101.921063.622p h ----⨯=⨯⨯⨯⨯⨯⨯⨯====λ(2)用相对论公式:420222c m c p +=EeU E E k ==-20c mm eU eU c m hmE h 12220107.722p h -⨯=+===)(λ22-3.一中子束通过晶体发生衍射。
已知晶面间距nm 1032.72-⨯=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角.解:先利用德布罗意波的计算公式即可得出波长:3411h 1.410m λ--====⨯再利用晶体衍射的公式,可得出:2sin d k ϕλ= 0,1,2k =…11111.410sin 0.095k λϕ--⨯=== , 5.48ϕ= 22-4.以速度m/s 1063⨯=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长A 1=λ,电子在此场中应该飞行多长的距离?解:3410h 110p m λ--====⨯ 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。
22-5.设电子的位置不确定度为A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。
量子物理基础习题解

量⼦物理基础习题解量⼦物理基础17.1 夜间地⾯降温主要是由于地⾯的热辐射。
如果晴天夜⾥地⾯温度为-5°C ,按⿊体辐射计算,每平⽅⽶地⾯失去热量的速率多⼤?解:每平⽅⽶地⾯失去热量的速率即地⾯的辐射出射度2484W /m2922681067.5=??==-TM σ17.2 在地球表⾯,太阳光的强度是1.0?103W/m 2。
地球轨道半径以1.5?108km 计,太阳半径以7.0?108 m 计,并视太阳为⿊体,试估算太阳表⾯的温度。
解:42244TR I R M SE σππ==K103.51067.5)107.6(100.1)105.1(348283211422==S E R I R T 17.3宇宙⼤爆炸遗留在宇宙空间的均匀背景辐射相当于3K ⿊体辐射.求:(1)此辐射的单⾊辐射强度在什么波长下有极⼤值?(2)地球表⾯接收此辐射的功率是多少?[解答](1)根据公式λm T = b ,可得辐射的极值波长为λm = b/T = 2.897×10-3/3 = 9.66×10-4(m).(2)地球的半径约为R = 6.371×106m ,表⾯积为 S = 4πR 2.根据公式:⿊体表⾯在单位时间,单位⾯积上辐射的能量为 M = σT 4,因此地球表⾯接收此辐射的功率是 P = MS = 5.67×10-8×34×4π(6.371×106)2= 2.34×109(W).17.4 铝的逸出功是eV 2.4,今有波长nm 200=λ的光照射铝表⾯,求:(1)光电⼦的最⼤动能;(2)截⽌电压;(3)铝的红限波长。
解:(1) A chA h E k -=-=λνeV 0.22.4106.1102001031063.6199834=-=---(2)V 0.21/0.2/===e E U k c (3)Ahc c==0νλnm6.12.41031063.6719834=?==---17.5 康普顿散射中⼊射X 射线的波长是λ = 0.70×10-10m ,散射的X 射线与⼊射的X 射线垂直.求:(1)反冲电⼦的动能E K ;(2)散射X 射线的波长;(3)反冲电⼦的运动⽅向与⼊射X 射线间的夹⾓θ.[解答](1)(2)根据康普顿散射公式得波长变化为21222sin2 2.42610sin24πλΛ-?==??= 2.426×10-12(m),散射线的波长为λ` = λ + Δλ = 0.72426×10-10(m).反冲电⼦的动能为`k hchcE λλ=810106.63103106.63103100.7100.7242610----=-= 9.52×10-17(J).(3)由于/`tan /`hc hc λλθλλ==,0.70.96650.72426==,所以夹⾓为θ = 44°1`.17.6 求波长分别为71100.7-?=λm 的红光和波长1021025.0-?=λm 的X 射线光⼦的能量、动量和质量。
量子物理基础习题

17-1 在加热黑体过程中,其单色辐出度的峰值波长是由μm 69.0变化到μm 50.0,求总辐出度改变为原来的多少倍?解:由 4)(T T M B σ=,b T m =λ 得 63.3)5.069.0()()()(442112===m m B B T M T M λλ17-2解:(1)m 10898.21010898.21073--⨯=⨯==T b m λ (2)J 1086.610898.21031063.61610834---⨯=⨯⨯⨯⨯===λνch h E 17-3解:(1)4)(T T M B σ=,K 17001067.5001.0/6.473)(484=⨯==-σT M T B(2)m 1070.1170010898.263--⨯=⨯==T b m λ (3)162)()()(441212===T T T M T M B B ,2612W/m 10578.7001.06.47316)(16)(⨯=⨯==T M T M B B17-4 钾的光电效应红限波长为μm 62.00=λ。
求:(1)钾的逸出功;(2)在波长nm 330=λ的紫外光照射下,钾的截止电压。
解:(1)eV 2J 1021.31062.01031063.61968340=⨯=⨯⨯⨯⨯===---λνch h A (2)A h mv eU a -==ν221 V 76.11060.11021.3103301031063.619199834=⨯⨯-⨯⨯⨯⨯=-=-=----eA ch eA h U a λν17-5 铝的逸出功为eV 2.4。
今用波长为nm 200的紫外光照射到铝表面上,发射的光电子的最大初动能为多少?截止电压为多大?铝的红限波长是多大?解:(1)eV 2J 1023.3106.12.4102001031063.621191998342≈⨯=⨯⨯-⨯⨯⨯⨯=-=-=----A c h A h mv λν (2)221mv eU a =,V 2eV2==eU a (3)Hz 10014.11063.6106.12.41534190⨯=⨯⨯⨯==--h A νnm 296m 1096.210014.1103715800=⨯=⨯⨯==-νλc17-6 在光电效应实验中,对某金属,当入射光频率为Hz 102.215⨯时,截止电压为V 6.6,入射光频率为Hz 106.415⨯时,截止电压为V 5.16。
量子物理习习题解答

精心整理量子物理习题解答习题17—1用频率为1ν的单色光照射某一金属时,测得光电子的最大初动能为E k 1;用频率为2ν的单色光照射另一种金属时,测得光电子的最大初动能为E k 2。
那么[ ](A)1ν一定大于2ν。
(B)1ν一定小于2ν。
(C)1ν一定等于2ν。
(D)1ν可能大于也可能小于2ν。
解:根据光电效应方程,光电子的最大初动能为由此式可以看出,E k 不仅与入射光的频率ν有关,而且与金属的逸出功A 有关,因此我们无法判习题 所以L (A)。
习题所以习题(A)1/4。
(B)1/8。
(C)1/16。
(D)1/32。
解:根据玻尔的理论,氢原子中电子的动能、角动量和轨道半径分别为mP E k 22= ; n P r L n == ;12r n r n = 所以电子的动能与量子数n 2成反比,因此,题给的两种情况下电子的动能之比12/42=1/16,所以我们选择答案(C)。
习题17—5在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E k 之比k E ε为[ ](A)2。
(B)3。
(C)4。
(D)5。
解:由康普顿效应的能量守恒公式可得所以,应该选择答案(D)。
习题17—6设氢原子的动能等于温度为T 的热平衡状态时的平均动能,氢原子的质量为m ,那么此氢原子的德布罗意波长为[ ](A)mkT h 3=λ。
(B)mkT h 5=λ。
(C)h mkT 3=λ。
(D)h mkT 5=λ。
把此式代入德布罗意公式有所以因此,应该选择答案(D)。
习题17—10氩(Z =18)原子基态的电子组态是:[ ] (A)1S 22S 83P 8(B)1S 22S 22P 63d 8 (C)1S 22S 22P 63S 23P 6(D)1S 22S 22P 63S 23P 43d 2解:对(A)示组态,既违反泡利不相容原理,也违反能量最小原理,是一个不可能的组态;对(B)示组态和(D)示组态均违反能量最小原理,也都是不可能组态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子物理基础--习题习题十五15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳: K 103.51055.010897.236311⨯=⨯⨯==--mbT λ 对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ 对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--mbT λ 15-2 用辐射高温计测得炉壁小孔的辐射出射度(总辐射本领)为22.8W ·cm -2,求炉内温度.解:炉壁小孔视为绝对黑体,其辐出度 242m W 108.22cm W 8.22)(--⋅⨯=⋅=T M B按斯特藩-玻尔兹曼定律:=)(T M B 4T σ41844)1067.5108.22()(-⨯⨯==σT M T B K 1042.110)67.58.22(3341⨯=⨯= 15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A据光电效应公式221m mv hv =A + 则光电子最大动能:A hc A h mv E m -=-==λυ2max k 21 eV0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=---- m 2max k 21)2(mv E eU a ==Θ∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U (3)红限频率0υ,∴000,λυυcA h ==又∴截止波长 1983401060.12.41031063.6--⨯⨯⨯⨯⨯==A hc λ m 0.296m 1096.27μ=⨯=-15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到达眼睛的功率为多大?解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcnnh E 功率 W 1099.118-⨯==tE15-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少?解:一个光子能量 λυhch E ==1秒钟落到2m 1地面上的光子数为21198347m s 1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hc E n λ 每秒进入人眼的光子数为11462192s 1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==d nN π15-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--h c m υ ο12A 02.0m 104271.2=⨯==-υλc122831020122s m kg 1073.21031011.9s m kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m cc m c E p cpE hp 或λ15-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同?答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.15-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少?解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h c m mc E kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc 2.110=υυ则52.0112.110==-=-υυυ 15-9 波长ο0A 708.0=λ的X 射线在石腊上受到康普顿散射,求在2π和π方向上所散射的X 射线波长各是多大?解:在2πϕ=方向上:ο1283134200A0243.0m 1043.24sin 1031011.91063.622sin 2Δ=⨯=⨯⨯⨯⨯⨯==-=---πϕλλλc m h 散射波长ο0A 732.00248.0708.0Δ=+=+=λλλ 在πϕ=方向上ο120200A 0486.0m 1086.422sin 2Δ=⨯===-=-cm h c m h ϕλλλ散射波长 ο0A 756.00486.0708.0Δ=+=+=λλλ15-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有00,ελλεhchc=∴=经散射后 000020.1020.0λλλλ∆λλ=+=+=此时能量为 002.112.1ελλε===hc hc反冲电子能量 MeV 10.060.0)2.111(0=⨯-=-=εεE 15-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角.解:反冲电子的能量增量为202022020225.06.01c m c m c m c m mc E =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量, 故有 20025.0c m hchc=-λλ散射光子波长ο1210831341034000A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h 由康普顿散射公式2sin 0243.022sin 22200ϕϕλλλ∆⨯==-=c m h 可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ15-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV6.13eV 85.0eV 75.12eV 6.13n-=-=+- 解得 4=n或者 )111(22n Rhc E -=∆ 75.12)11.(1362=-=n解出4=n题15-12图题15-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.15-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV5.12能量后,最高能激发到第n个能级,则]11[6.135.12,eV6.13],111[2221nRhcnRhcEEn-==-=-即得5.3=n,只能取整数,∴最高激发到3=n,当然也能激发到2=n的能级.于是ο322ο222ο771221A6563536,3653121~:23A121634,432111~:12A1026m10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-RRRnRRRnRRRnλυλυλυ从从从可以发出以上三条谱线.题15-14图15-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hc E E hc E E hch VE V E V E a mn m n βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λυhcE E h =-=14Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--h E E υ 15-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解: eV 09.12]11[6.1321=-=-nE E n 26.1309.126.13n=-51.16.1309.12.1366.132=-=n , 3=n 12r n r n =,92=n ,19r r n =轨道半径增加到9倍.15-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.15-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压?解: oo A1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏15-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mv E k φ 它的速度为31191011.9106.14.122--⨯⨯⨯⨯==m E v k -15s m 100.7⋅⨯= 其德布罗意波长为:o 953134A 10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mv h λ 15-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少? 解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp 光子的能量eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV 102.63⨯=cp而 eV 100.51MeV 51.0620⨯==c m ∴ cp c m >>2∴ MeV 51.0)()(202202==+=c m c m cp E15-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少?解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能 mp KT E k 2232==德布罗意波长 o A 456.13===mkThp h λ 15-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,xm hv x ∆≥∆ 这粒子最小动能应满足222222min22)(21)(21mL h x m h x m h m v m E x =∆=∆≥∆= 15-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命.解:光子的能量 λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为:λλ∆=∆2hcE 由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c E h t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯= 15-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm 30A 103103000o 962=⨯=====-λ∆λλ∆λ∆∆p h x15-24波函数在空间各点的振幅同时增大D 倍,则粒子在空间分布的概率会发生什么变化? 解:不变.因为波函数是计算粒子t 时刻空间各点出现概率的数学量.概率是相对值.则21、点的概率比值为:22212221φφφφD D =∴ 概率分布不变.15-25 有一宽度为a 的一维无限深势阱,用测不准关系估算其中质量为m 的粒子的零点能.解:位置不确定量为a x =∆,由测不准关系:h p x x ≥∆⋅∆,可得:x h P x ∆≥∆,xhP P x x ∆≥∆≥ ∴222222)(22ma h x m h m P E x x =∆≥=,即零点能为222ma h . 15-26 已知粒子在一维矩形无限深势阱中运动,其波函数为:axax 23cos1)(πψ=︒ )(a x a ≤≤- 那么,粒子在a x 65=处出现的概率密度为多少? 解: 22*)23cos1(ax aπψψψ== aa a a a a aa 21)21(14cos 1)4(cos 145cos 12653cos 122222===+===πππππ15-27 粒子在一维无限深势阱中运动,其波函数为:)sin(2)(ax n a x n πψ=)0(a x <<若粒子处于1=n 的状态,在0~a 41区间发现粒子的概率是多少? 解:x ax a x w d sin 2d d 22πψ== ∴ 在4~0a区间发现粒子的概率为: ⎰⎰⎰===4020244)(d sin 2d sin 2a a ax aa x a a x a x a dw p ππππ091.0)(]2cos 1[2124/0=-=⎰x ad a x a πππ15-28 宽度为a 的一维无限深势阱中粒子的波函数为x an A x πψsin )(=,求:(1)归一化系数A ;(2)在2=n 时何处发现粒子的概率最大? 解:(1)归一化系数⎰⎰==+∞∞-ax x 0221d d ψψ即⎰⎰=aa x an x a n A n a x x a n A 00222)(d sin d sin ππππ ⎰-=a x a n x a n A n a 02)(d )2cos 1(2πππ12222===A an A n a ππ∴ =A a2粒子的波函数 x a n a x πψsin 2)(=(2)当2=n 时, x aa πψ2sin 22= 几率密度]4cos 1[12sin 2222x aa x a a w ππψ-=== 令0d d =x w ,即04sin 4=x a a ππ,即,04sin =x aπ, Λ,2,1,0,4==k k x aππ∴ 4ak x =又因a x <<0,4<k ,∴当4a x =和a x 43=时w 有极大值,当2ax =时,0=w .∴极大值的地方为4a ,a 43处 15-29 原子内电子的量子态由s l m m l n ,,,四个量子数表征.当l m l n ,,一定时,不同的量子态数目是多少?当l n ,一定时,不同的量子态数目是多少?当n 一定时,不同的量子态数目是多少?解:(1)2 )21(±=s m Θ(2))12(2+l ,每个l 有12+l 个l m ,每个l m 可容纳21±=s m 的2个量子态. (3)22n15-30求出能够占据一个d 分壳层的最大电子数,并写出这些电子的s l m m ,值.解:d 分壳层的量子数2=l ,可容纳最大电子数为10)122(2)12(2=+⨯=+=l Z l 个,这些电子的:0=l m ,1±,2±,21±=s m 15-31 试描绘:原子中4=l 时,电子角动量L 在磁场中空间量子化的示意图,并写出L 在磁场方向分量z L 的各种可能的值. 解:ηηη20)14(4)1(=+=+=l l L题15-31图磁场为Z 方向,ηl Z m L =,0=l m ,1±,2±,3±,4±. ∴ )4,3,2,1,0,1,2,3,4(----=Z L η15-32写出以下各电子态的角动量的大小:(1)s 1态;(2)p 2态;(3)d 3态;(4)f 4态. 解: (1)0=L (2)1=l , ηη2)11(1=+=L(3)2=l ηη6)12(2=+=L(4)3=l ηη12)13(3=+=L15-33 在元素周期表中为什么n 较小的壳层尚未填满而n 较大的壳层上就开始有电子填入?对这个问题我国科学工作者总结出怎样的规律?按照这个规律说明s 4态应比d 3态先填入电子.解:由于原子能级不仅与n 有关,还与l 有关,所以有些情况虽n 较大,但l 较小的壳层能级较低,所以先填入电子.我国科学工作者总结的规律:对于原子的外层电子,能级高低以)7.0(l n +确定,数值大的能级较高.s 4(即0,4==l n ),代入4)07.04()7.0(=⨯+=+l n)2,3(3==l n d ,代入4.4)27.03(=⨯+s 4低于d 3能级,所以先填入s 4壳层.。