掺铜ZnS纳米材料的制备及光学性质

合集下载

zns纳米材料的可控合成及光电性能研究

zns纳米材料的可控合成及光电性能研究

ZnS纳米材料的可控合成及光电性能的研究ZnS纳米材料的可控合成及光电性能研究一、实验目的(1)了解ZnS纳米晶的结构特点、性能及用途;(2)了解并掌握缓释合成ZnS纳米晶的原理和方法;(3)掌握纳米ZnS光电性能研究的方法(4)练习称量,溶解,离心,干燥,定容等基本操作(5)熟悉酸度计,粒度测定仪,分光光度计的使用方法(6)了解利用光催化处理印染废水的原理和方法。

二、实验原理传统的直接沉淀法制备ZnS粒子的反应过程可用以下方程式进行描述:Zn2+ + S2- → ZnS对于由Zn2+和S2-直接生成ZnS的快速沉淀过程,ZnS的生成可瞬间完成,其成核速率与生长速率很快,这种方法合成的ZnS会因为初始阶段混合的不均匀性而使产物粒子尺寸分布较宽。

为了避免上述现象,本实验通过液相法,首先将锌离子与络合剂EDTA生成络合物前躯体,可实现反应物反应前分子尺度的均匀混合。

以硫代乙酰胺(TAA)为硫源,利用均匀沉淀法来制备ZnS纳米粒子。

具体设计的反应式如下:CH3CSNH2 → CH3CN + 2H+ + S2-S2- + M2+ (M=Zn, Cd, Cu) → MS从上述反应过程可以看出,均匀沉淀法原理是在一定条件下制得含有所需反应物的稳定前体溶液,通过迅速改变溶液的酸度和温度来促使颗粒大量生成,由于在这个过程中反应物可以实现分子尺寸的均匀混合;同时TAA释放硫源是缓慢进行的,使得反应过程变得可控,从而避免了由于沉淀剂的加入造成沉淀剂瞬时局部过浓现象,克服了传统也想直接沉淀法制备纳米材料的不足。

如果能找到一个合适的络合物,它能够与溶液中的Zn2+络合形成相对稳定的络合物前驱体,由于该络合物前驱体具有适当的稳定性,就可以实现反应物反应前贩子尺度的均匀混合。

同时,通过改变外界条件,来实现Zn2+的缓慢释放,以达到TAA做硫源的相同效果。

乙二胺四乙酸(EDTA)分子中具有六个可以与金属离子形成配位键的原子,它的两个氨基氮和四个羧基氧原子都有孤对电子,能与金属离子形成配位键,因此EDTA能与许多金属离子形成稳定的络合物。

_ZnS纳米粒子的制备及其光致发光和拉曼特性

_ZnS纳米粒子的制备及其光致发光和拉曼特性
! Editorial office of Acta Physico-Chimica Sinica Nhomakorabea 1986
Acta Phys. -Chim. Sin., 2007
Vol.23
近年来, 已有一些研究者采用不同方法制备了 不 同 形 貌 的 硫 化 锌 纳 米 材 料. 如 Xu 等[11]以 多 孔 阳 极氧化铝膜(AAM)为模板, 采用电化学沉积法制备 了 直 径 约 40 nm 的 ZnS 纳 米 线 阵 列; Wang 等[12]以 金薄膜为催化剂, 采用物理气相沉积法制得直径约 30- 60 nm 的 六 方 相 ZnS 纳 米 线; Fang 等[13]报 道 了 通过控制生长基片在蓝宝石管炉中的不同位置, 利 用 物 理 气 相 沉 积 法 实 现 了 从 ZnS 纳 米 棒 到 纳 米 线 、纳 米 带 、纳 米 薄 片 的 可 控 生 长 ; Dloczik 等 [14]报 道 了 以 ZnO 为 模 板, 经 过 硫 化 得 到 片 层 状 ZnS 结 构 ; Yan 等 [15] 通 过 湿 化 学 法 ( 水 热 合 成 法 ) 制 备 了 ZnS 纳米管; Gong 等[16]采用化学气相沉积法, 以 Zn 和硫单质作为反应物制备出了 ZnS 三足状结构.
本文报道了在乙二醇体系中, 以高分子聚乙烯 吡咯烷酮(PVP)为表面修饰剂, 采用湿化学法, 在154 ℃的低温下通过 Zn 单质前驱物硫化法制备了高温 相 α-ZnS 球 形 纳 米 粒 子 . 并 研 究 了 α-ZnS 纳 米 粒 子的光致发光和拉曼特性.
1 实验部分
1.1 试剂和仪器 实验用试剂全部从美国 Acros 公司购买, 均为
Ab st r act : Nanoscaled α-ZnS spheres about 35 nm in diameter were synthesized by a chemical solution way. XRD and TEM results showed that the nanoscaled ZnS spheres were made up of secondary nanoparticles with diameters about 6 nm. Two emission bands were observed in the photoluminescence (PL) spectrum of ZnS nanocrystals, one centered at 430 nm while the other at 360 nm. The former was attributed to the surface trapped emission, while the latter was assigned to the near band-edge emission. The Raman spectra characterization showed that no photodecomposition was observed under the strong laser irradiation, which indicated that the as-prepared ZnS nanocrystals were of high chemical stability.

均质核壳结构ZnS的一步法合成及光催化性能

均质核壳结构ZnS的一步法合成及光催化性能

均质核壳结构ZnS的一步法合成及光催化性能霍海玲;吕丽云;王虹【摘要】以硝酸锌和硫脲为原料,十二烷基硫酸钠为保护剂,通过一步水热合成反应,制备了具有核壳结构的微米级ZnS半导体材料,该ZnS材料的核、壳成分相同,晶体构造一致,均为立方闪锌矿结构;调节反应时间,可以方便地控制壳层构造的生长与闭合程度;优化反应条件得到整体尺寸约为3 μm、核壳结构特征突出的形貌新颖的ZnS微粒;将ZnS材料用于亚甲基蓝的光降解反应,其对目标降解物的降解效率与形貌特征有紧密联系,壳层闭合程度越高,降解效率越低.在最优条件下,该材料对亚甲基蓝的降解率可达97.3%.【期刊名称】《高等学校化学学报》【年(卷),期】2015(036)005【总页数】6页(P939-944)【关键词】微米ZnS;水热法;均质核壳结构;光催化【作者】霍海玲;吕丽云;王虹【作者单位】天津大学化工学院,天津化学化工协同创新中心,绿色合成与转化教育部重点实验室,天津300072;天津大学化工学院,天津化学化工协同创新中心,绿色合成与转化教育部重点实验室,天津300072;天津大学化工学院,天津化学化工协同创新中心,绿色合成与转化教育部重点实验室,天津300072【正文语种】中文【中图分类】O649;O614目前, 微纳米尺度核壳材料的制备及性能研究引起了广泛的关注[1~7]. 通常该类材料需经以下过程制备: 首先合成核的部分, 并通过反复析出和分散等过程进行纯化; 其次将含有壳生长所用原料引入核的体系中, 制备核壳材料[3]. Debnath等[4]以十八烯为溶剂, 用氧化镉、油酸、砷和三辛基膦合成出CdSe量子点, 再将油酸锌、硫粉与三辛基膦注入其中, 制得CdSe/ZnS核壳结构. Cao等[5]采用类似的方法, 先合成InAs核, 然后高温热解有机金属前驱体, 制得以InP, GaAs, CdSe, ZnSe和ZnS等为壳的一系列半导体核壳纳米晶. 郝彦忠等[8]利用电化学方法在铟锡氧化物导电玻璃基底上制备了ZnO纳米管阵列, 然后在ZnO纳米管阵列上电化学沉积Cu2O颗粒, 获得了Cu2O/ZnO核壳结构. 范晓敏等[9]用柠檬酸钠还原氯金酸法制得金溶胶, 再以正硅酸乙酯为硅源, 制得了Au/SiO2的核壳纳米粒子. 由此可见, 该类核壳材料的制备不但需要多个过程才能完成, 而且还必须经历不同体系及环境间的互相转换, 故而材料消耗大, 制备步骤冗长. 另外, 该方法一般只能用于制备核、壳成分不同的材料, 对于用相同材料构建的均质[10]核壳复合体系, 尚未见报道.近年来, 微纳米尺度ZnS材料在催化、光电和传感等领域具有广阔的应用前景, 制备该种材料, 控制其粒度与构造, 探索其尺度与形貌特征对其性能及应用的影响, 已成为当前的研究热点[11~17]. 鉴于此, 本文选择ZnS为模型物, 采用简单的一步水热合成, 以硝酸锌及硫脲为反应物, 通过对反应温度和时间等的优化与选择, 获得了形貌新颖的核壳结构ZnS材料, 实现了对产物的尺寸与形貌进行控制的目标, 并将其用于模拟有机污染物亚甲基蓝的催化降解过程, 获得了预期的效果.1.1 试剂与仪器六水合硝酸锌[Zn(NO3)2·6H2O]和亚甲基蓝(C16H18ClN3S)购于阿拉丁试剂有限公司; 硫脲(CN2H4S)、十二烷基硫酸钠(C12H25SO4Na, SDS)和无水乙醇均购于天津光复精细化工有限公司. 实验所用试剂均为分析纯, 所用超纯水由Milli-Q纯化制得.S4800型场发射扫描电子显微镜(SEM, 日本日立公司), 加速电压5 kV; JEM-2100F型透射电子显微镜(TEM, 日本电子公司), 加速电压200 kV; D8-Focus型X 射线衍射仪(XRD, 德国Bruker公司), 测试条件: 铜靶(λ=0.15406 nm), 扫描速率3°/min, 2θ扫描范围20°~80°; UV-2550型紫外-可见分光光度计(日本岛津公司); TriSar 3000型物理吸附仪(美国麦克公司); 带有紫外滤光片的氙灯(PLS-SXE300C, 北京泊菲莱公司).1.2 样品的合成在室温下将0.90 mmol Zn(NO3)2·6H2O溶于15 mL去离子水中, 加入0.36 mmol SDS, 磁力搅拌30 min, 再加入0.90 mmol硫脲, 继续搅拌30 min后移入25 mL衬有聚四氟乙烯的水热合成釜中, 于160 ℃烘箱中恒温8 h. 反应结束后, 自然冷却至室温, 所得产物用水和无水乙醇离心洗涤3~4次, 在60 ℃下烘干12 h即得合成样品.1.3 光催化实验以λ<400 nm的紫外光为光源, 以亚甲基蓝为目标降解物, 利用紫外-可见分光光度计检测溶液中中亚甲基蓝的含量(以亚甲基蓝的紫外吸收值反映溶液中亚甲基蓝的浓度), 考察样品的光催化活性. 称取0.08 g ZnS试样加入到100 mL 10 mg/L的亚甲基蓝溶液中, 在黑暗条件下磁力搅拌30 min, 使得亚甲基蓝在催化剂固体表面达到吸附脱附平衡后, 打开光源, 引发催化降解反应. 每30 min取样1次, 离心除去固体催化剂ZnS颗粒, 测定上清液中亚甲基蓝的紫外吸收峰值. 亚甲基蓝的降解程度可用c/c0表示(c0和c分别为黑暗条件下体系吸附脱附平衡时和光催化反应中某一时刻亚甲基蓝在664 nm处的吸收值), 其值越小说明亚甲基蓝的降解程度越大.2.1 定性分析在最优条件(160 ℃反应8 h)下, 样品的扫描电镜照片如图1(A)所示. 可见, 产物为球形颗粒状物, 且为复合结构, 由球形内核和半球形外壳组成, 属于典型的核壳结构, 并且粒度大小较为均一, 整体尺寸在3 μm左右.单个颗粒的透射电镜(TEM)照片如图1(B)所示. 其中的箭头所指方向的能谱(EDS)线扫描结果如图1(C)所示. 图1(C)中曲线a和b分别代表Zn和S原子组成的空间分布. 可以看出, 从所选微粒的底端开始扫描到其开口位置, 2条曲线在扫描方向上的各个位置均吻合良好, 表明整个试样颗粒中的Zn与S原子配比基本相同, 证明核壳结构微粒是一种均质的ZnS材料.核壳结构ZnS材料的XRD结果如图1(D)所示. 可以看出, 材料分别在2θ为28.7°, 48.0°和56.8°处出现3个较强的衍射峰. 与标准PDF卡片(JCPDS No. 05-0566)对照后可知, 这3个峰分别代表了立方相ZnS的(111), (220)和(311)晶面, 证明产物确为立方相的ZnS. 同时, 所得ZnS的XRD谱没有杂峰, 表明其为单一的立方闪锌矿结构, 不含其它杂质.2.2 形貌表征2.2.1 反应温度对形貌的影响在水热合成反应中, 温度对产物的最终形貌有很大影响. 本文在反应物组成、原料配比与反应时间(8 h)等实验参数一定的条件下, 分别研究了在130, 140, 160和180 ℃时, 产物的粒度与形貌特征. SEM结果如图2所示.由图2(A)可以看出, 当体系的温度为130 ℃时, 经8 h的水热反应后, 除了大部分尺寸及形貌特征并不明显的碎片状产物外, 仅有少量的类球形小颗粒生成[图2(A)插图], 且其大多零星分布于众多块状碎片产物之间; 当温度升高至140 ℃后[图2(B)], 出现大量相互黏连、团聚且粒度分布在一定尺度区间的类颗粒状物; 当体系温度至160 ℃[图2(C)]时, 产物粒度及形貌特征发生了根本改变, 形成了大量形貌均一、分散性良好的复合构造颗粒, 其典型特征为半壳包裹内核的新颖核壳结构, 大部分颗粒的粒度尺寸约为3 μm. 此后, 继续升高体系的反应温度至180 ℃[图2(D)], 核壳结构特征消失, 产物多呈球形外貌, 且大小不一. 因此, 在一定的条件下, 选择适宜的反应温度, 即可获得具有一定尺度分布范围的核壳结构ZnS颗粒, 其最佳的合成温度为160 ℃.2.2.2 反应时间对形貌的影响在确定反应物组成与配比、控制温度为160 ℃的条件下, 考察了不同反应时间对产物形貌特征的影响, SEM照片如图3所示.由图3(A)可以看出, 反应1 h后的产物为堆积在一起的颗粒状物, 外观近球形, 其平均粒径约为300 nm; 延长反应时间至2 h[图3(B)], 核壳结构开始出现, 约有一半完整度的薄层外壳包裹着相对完整的球形内核, 颗粒的整体尺寸约为450 nm, 而外面呈包覆状存在着的外壳厚度约为70 nm; 延长反应时间至8 h[图3(C)], 核壳结构特征变得突出, 颗粒的整体尺寸增大至约2700 nm, 外壳对内核的包裹程度逐渐增大, 暴露在外的内核部分明显减小, 与反应2 h的结果相比, 壳层厚度已由原来的70 nm增至约700 nm, 增长了近10倍. 继续延长反应时间至22 h[图3(D)]可以发现, 位于中心位置的内核除了少部分仍暴露在外, 大多已被不断增长、增厚的外壳包覆, 核、壳构造的界面变得不再清晰、分明, 壳层厚度增至约850 nm, 部分颗粒的外貌已接近完整的球形, 颗粒的平均粒径变到3200 nm左右. 反应时间为48 h时[图3(E)], 视野中的颗粒绝大部分已呈球形外貌, 颗粒的平均粒径增大到3350 nm. 鉴于以上分析, 本文选8 h为核壳结构ZnS颗粒的最优合成时间.由以上观察可以推测, 反应初始阶段, 主要是成核过程, 分布在一定粒度范围的ZnS 小颗粒开始大量出现[图3(A)]; 待成核阶段完成后, 这些小颗粒间按照其粒度分布特点, 以粒度较大的颗粒为中心, 开启自组织过程, 粒度较小的颗粒逐渐聚集在大颗粒周围, 形成初步的包覆外层[图3(B)]; 随着聚集颗粒的逐渐增多, 以及伴随着的奥斯特瓦尔德熟化过程, 致密且具有一定厚度、但尚不完整的外壳已经形成, 明显的核壳结构开始出现[图3(C)]. 延长反应时间, 壳层厚度不但越来越大, 而且闭合程度也越来越高[图3(D)], 直至最后, 壳层完全闭合, 核壳结构消失, 产物呈现最终的球形外貌[图3(E)].与以往报道不同, 本文通过时间参数的选择, 不但可以调节壳的厚度, 还实现了对壳层生长完整度的控制, 合成出外壳具有一定开启程度的核壳结构ZnS材料, 为研究特定外壳构造与其对应性质间的关系奠定了基础.2.3 光催化活性ZnS颗粒通过吸收带隙以上紫外光, 在导带生成电子, 价带形成空穴, 生成的电子、空穴分别向ZnS材料表面扩散, 起到光催化作用. 目前, 将其用作光催化剂解决水污染问题已成为研究热点[18~22]. 本文选择印染废水中最具代表性的有机污染物之一的亚甲基蓝为目标降解物, 研究了核壳结构ZnS颗粒对亚甲基蓝的光催化降解效果.图4为在核壳结构ZnS颗粒存在和紫外光照射条件下, 每隔30 min取样的亚甲基蓝的紫外可见吸收光谱图.可以看出, 随着光照时间的延长, 亚甲基蓝的吸收峰值呈逐渐降低的趋势. 在光照60 min后, 吸收峰值降至起始峰值的一半以下. 150 min后, 吸收峰几乎消失, 吸收曲线近似水平, 表明溶液中亚甲基蓝几乎被全降解. 随着光照时间的延长, 吸收峰值降低的同时, 吸收峰位出现了蓝移, 这是由于亚甲基蓝是分步进行降解的, 其中间产物的生成导致了该吸收峰蓝移[23].为探究核壳结构对ZnS颗粒光催化活性的影响, 考察了反应时间分别为8, 22和48 h[图3(C), (D), (E)]所得的具有不同壳层完整度及粒度分布均在3 μm左右的ZnS颗粒对亚甲基蓝的光催化降解情况, 结果如图5所示. 由图5可见, 3种不同粒度及结构特征的ZnS颗粒对亚甲基蓝均有明显的光催化降解活性. 随着光照时间的增加, 亚甲基蓝的相对浓度逐渐减小, 被降解的亚甲基蓝逐渐增多; 光照150 min后, 3条曲线显示的光催化降解率分别达到了97.3%, 44.6%和38.1%. 由氮气吸附分析测试所得3种ZnS颗粒的比表面积分别为25.2, 8.4和7.5 m2/g. 可以看出, 最优核壳结构ZnS颗粒[图3(C)]的比表面积大大高于其它2种ZnS颗粒的比表面积, 较大的比表面积对光催化活性贡献较大. 由此可见, 最优核壳结构ZnS颗粒的光催化活性高于其它2种ZnS颗粒. 但与文献[24]相比, 3种ZnS颗粒的比表面积值较小, 因此对于导致最优核壳结构ZnS颗粒具有较好光催化活性的其它可能因素分析如下: 根据图5(A)中a, b, c 3条曲线所示ZnS颗粒对亚甲基蓝的降解情况, 结合图3显示的3种ZnS颗粒的形貌和尺寸特征, 可以发现从谱线a到c, 随着壳层完整度的逐步提高, 核壳结构特征逐渐消失, ZnS颗粒粒径逐渐增大, 其对亚甲基蓝的降解能力也随之下降. 综合分析可以认为, 核壳结构中壳层部分的闭合程度及ZnS颗粒的粒径大小与其最终的光催化活性表现出明显对应关系. 鉴于三者粒径大小均呈一定的分布, 且均在3 μm左右, 壳层闭合程度的影响可能更为关键, 初步推断ZnS 颗粒壳层闭合程度的不同导致其对光的吸收能力不同.对3种不同结构的ZnS颗粒在同等条件下进行了紫外漫反射吸收光谱分析, 结果见图5(B). 可以看出, a, b和c 3条曲线在320 nm处均有1个较大的吸收峰, 但其吸收峰值明显不同, 谱线a的吸收峰值约为1.70, 谱线b和c的吸收峰值分别为1.15和0.80, 即谱线a所示样品对紫外光的吸收强度分别为谱线b和c所示样品的1.5倍和2.1倍. 由此表明不同的结构导致样品对光的吸收能力不同, 进而导致其光催化活性存在差异.采用水热合成法, 通过一步反应, 构建了一种形貌特征新颖的核壳结构ZnS材料. 该材料的尺度大小位于微米区间, 核、壳两部分的成分完全相同, 晶型一致. 调节反应时间即可以控制壳层的厚薄、完整程度和整体颗粒的粒径大小. 核壳结构ZnS颗粒对亚甲基蓝具有良好的降解效果; 光催化降解活性与颗粒的壳层闭合程度密切关联. 本文提出的制备均质核壳型ZnS材料的方法, 过程简单、反应条件易于实现, 对微纳米尺度金属硫属半导体材料的合成具有借鉴作用.† Supported by the National Natural Science Foundation ofChina(No.50673075).【相关文献】[1] Hosein I. D., Liddell C. M., Langmuir, 2007, 23(5), 2892—2897[2] Wang H., Chen L., Feng Y., Chen H., Acc. Chem. Res., 2013, 46(7), 1636—1646[3] Reiss P., Protiere M., Li L., Small, 2009, 5(2), 154—168[4] Debnath T., Maity P., Ghosh H. N., Chem. Eur. J., 2014, 20(41), 13305—13313[5] Cao Y., Banin U., J. Am. Chem. Soc., 2000, 122(40), 9692—9702[6] Geng J., Song G. H., J. Mater. Sci., 2013, 48(2), 636—643[7] Sun Z., Yang Z., Zhou J., Yeung M. H., Ni W., Wu H., Wang J., Angew. Chem. Int. Ed., 2009, 48(16), 2881—2885[8] Hao Y. Z., Sun B., Luo C., Fan L. X., Pei J., Li Y. P., Chem. J. Chinese Universities, 2014,35(1), 127—133(郝彦忠, 孙宝, 罗冲, 范龙雪, 裴娟, 李英品. 高等学校化学学报, 2014, 35(1), 127—133)[9] Fan X. M., Zou W. J., Gu R. A., Yao J. L., Chem. J. Chinese Universities, 2008, 29(1), 130—134(范晓敏, 邹文君, 顾仁敖, 姚建林. 高等学校化学学报, 2008, 29(1), 130—134)[10] Liu B., Zeng H. C., Small, 2005, 1(5), 566—571[11] Fang X., Zhai T., Gautam U. K., Li L., Wu L., Bando Y., Golberg D., Prog. Mater Sci., 2011, 56(2), 175—287[12] Chen Z. G., Cheng L., Xu H. Y., Liu J. Z., Zou J., Sekiguchi T., Lu G. Q. M., Cheng H. M., Adv. Mater., 2010, 22(21), 2376—2380[13] Kole A. K., Kumbhakar P., Chatterjee U., Chem. Phys. Lett., 2014, 591, 93—98[14] Biswas S., Kar S., Nanotechnology, 2008, 19(4), 045710[15] Wang Z., Daemen L. L., Zhao Y., Zha C., Downs R. T., Wang X., Wang Z. L., Hemley R. J., Nat. Mater., 2005, 4(12), 922—927[16] Zhang Y. N., Jiang D., He Z., Yu Y. W., Zhang H. B., Jiang Z. H., Chem. Res. Chinese Universities, 2014, 30(1), 176—180[17] Fu Y. Q., Li L. H., Wang P. W., Qu J., Fu Y. P., Wang H., Sun J. R., Chem. Res. Chinese Universities, 2012, 28(4), 672—676[18] Apte S. K., Garaje S. N., Arbuj S. S., Kale B. B., Baeg J. O., Mulik U. P., Naik S. D., Amalnerkar D. P., Gosavi S. W., J. Mater. Chem., 2011, 21(48), 19241[19] Wang C., Ao Y., Wang P., Zhang S., Qian J., Hou J., Appl. Surf. Sci., 2010, 256(13), 4125—4128[20] Nie L. H., Huang Z. Q., Xu H. T., Zhang W. X., Yang B.R., Fang L., Li S. H., Chinese. J.Catal., 2012, 33(7), 1209—1216(聂龙辉, 黄征青, 徐洪涛, 张旺喜, 杨柏蕊, 方磊, 李帅华. 催化学报, 2012, 33(7), 1209—1216)[21] Yu X., Yu J., Cheng B., Huang B., Chemistry, 2009, 15(27), 6731—6739[22] Tian Y., Huang G. F., Tang L. J., Xia M. G., Huang W. Q., Ma Z. L., Mater. Lett., 2012, 83, 104—107[23] Watanabe T., Takizawa T., Honda K., J. Phys. Chem., 1977, 81(19), 1845—1851[24] Xiong S., Xi B., Wang C., Xu D., Feng X., Zhu Z., Qian Y., Adv. Funct. Mater., 2007,17(15), 2728—2738。

ZnS_Cu纳米颗粒的制备及发光性质

ZnS_Cu纳米颗粒的制备及发光性质

ZnS∶Cu纳米颗粒的制备及发光性质3孙远光,曹立新,柳 伟,苏 革,曲 华,姜代旬(中国海洋大学材料科学与工程研究院,山东青岛266100)摘 要: 采用水热法制备了Cu离子掺杂的ZnS (ZnS∶Cu)纳米颗粒,研究了锌硫比和反应时间对ZnS∶Cu纳米颗粒光致发光性质的影响。

通过X射线衍射(XRD)和透射电子显微镜(TEM)对样品的物相和形貌进行分析表征,发现该方法得到立方闪锌矿结构的球形ZnS∶Cu纳米晶,粒径在1~6nm之间。

室温下,用350nm波长的紫外光激发ZnS∶Cu纳米粒子,可以得到归属于浅施主能级与铜t2能级之间的跃迁产生的绿色发光,发光强度随锌硫比的增大和反应时间的延长先增强后减弱,发射峰位随锌硫比和反应时间的变化有一定移动。

认为浅施主能级为与硫空位有关的能级,锌硫比和反应时间对硫空位的数量和能级位置有一定影响。

关键词: ZnS∶Cu纳米晶;水热法;光致发光中图分类号: O611.4;O614.24文献标识码:A 文章编号:100129731(2009)04206892041 引 言ZnS是一种性能优越的Ⅱ2Ⅵ族发光材料,禁带宽度为3.66eV。

属于直接带结构半导体,在荧屏显示领域已有广泛应用。

近年来,随着纳米材料研究的深入,国内外对ZnS纳米发光材料已进行了多方面的研究,当ZnS中掺入稀土离子或过渡金属离子(如掺Mn[1]、Cu[2~8]、Ag[9])作为激活剂时,可改变基质内部能带结构,形成各种不同的发光能级。

例如,铜离子作为ZnS的激活剂时,在4个硫离子形成的四面体晶体场中,铜的3d9基态分裂为较高的t2能级和较低的e 能级。

相对于锰掺杂,关于铜掺杂ZnS的研究较少,具体到纳米级光致发光材料,就更少了。

纳米级ZnS∶Cu粒子可以用多种方法制备,但不同的工艺形成不同的能级,引起其发光性质的不同。

例如,刘昌辉等[3]研究了硫脲和硫代硫酸钠体系中, Cu+掺杂浓度为0.6%时发射达到最强.该发射峰随掺杂浓度的提高和微粒生长时间的延长而红移;当Cu+掺杂浓度为0.2%时,ZnS∶Cu纳米微粒还产生一个位于450nm的蓝色发射带,该发射带在掺杂浓度更高时被猝灭。

纳米ZnS粉体简介

纳米ZnS粉体简介



2019/4/20

微乳液法:微乳液法又称为反胶束溶液法,微乳液反应体系是由以下四 个部分组成:水、有机溶剂、表面活性剂和助表面活性剂,其中助表面 活性剂不一定是必须的,而水是作为反应物的溶剂,被表面活性剂(助表 面活性剂)包裹,构成水核(或称作“水池”),从而形成微小(纳米级)的反 应容器,加入的水量的多少决定了水核的大小,进一步限制反应形成的 纳米颗粒的粒径,与乳液法不同,微乳液反应体系是热力学稳定的,得到 的纳米颗粒的粒径较小。微乳液法的制备纳米材料的过程是首先制备 微乳液,再加入反应物溶液进行反应形成纳米颗粒。该方法的优点是在 室温条件下制备,操作比较简单,得到的纳米颗粒粒径小且均勻,重要的 是通过实验条件可以有效控制纳米颗粒的粒。
2019/4/20
2.纳米ZnS粉体常用测试手段

X射线衍射(XRD) X射线能量色散能谱(EDS):获取样品中元素组成和比例的信



透射电子显微镜(TEM)和高分辨透射电子显微 镜(HRTEM) 紫外可见吸收光谱(UV-vis absorption spectroscopy):从吸收谱上可以得到样品禁带宽度、缺陷能级的信

溶胶-凝胶法:以无机盐或有机盐(如金属醇盐)为前躯体,将其溶于水或 有机溶剂形成均质溶液,溶质发生水解、醇解或螯合反应,生成纳米尺寸 的颗粒且不团聚的溶胶,通过物理或化学方法使溶胶转化为凝胶,再将凝 胶进行热处理形成一定尺寸的纳米结构。该方法的优点是:制备方法简单, 热处理温度较低,制备的纳米材料纯度高且尺寸均勻。
1. ZnS纳米粉体
1.1体相ZnS型发光材料
ZnS是一种宽禁带半导体,Eg=3.68eV。ZnS型荧 光化合物是发现较早的发光材料,也是被研究的最多 的发光材料之一。它具备了多种荧光特性,如光导性、 长余辉,并能发出蓝色、绿色和红色荧光。它既是光 致发光材料,又是电致发光材料、阴极射线发光材料。 在完美的ZnS晶体中即使离子间有一点极化作用, 但不足以使电子云产生足够的形变将电子激励到禁 带中,所以没有荧光现象。

水热法制备ZnS∶Cu纳米晶及其光致发光性能

水热法制备ZnS∶Cu纳米晶及其光致发光性能

水热法制备ZnS∶Cu纳米晶及其光致发光性能∗胡云;彭龙;李乐中;涂小强;杨航【摘要】采用水热法制备了不同掺杂浓度的ZnS∶Cu (0~0.6%(原子分数))纳米晶.结果表明,ZnS∶Cu纳米晶为立方晶系闪锌矿结构,晶粒尺寸在3~4 nm之间;相比未掺杂的 ZnS 纳米晶,掺杂ZnS∶Cu纳米晶在500 nm处产生了发射光谱(PL).这是由于发光中心位于446和468 nm 两个 PL 光谱与 ZnS 自身的缺陷有关,发光中心位于500 nm的绿光为浅施主能级(S缺陷)与铜t2能级之间跃迁而产生.并且其发光强度随掺杂浓度显著增强,当浓度为0.4%(原子分数)时达到最大值,进而发生了浓度淬灭现象.%In this paper,ZnS∶Cu (0-0.6at%)nanocrystals (NCs)were synthesized by hydrothermal method. The results show that the as-prepared NCs are confirmed to be the cubic zinc blende structure and their average size are about 3-4 pared with the non-doped ZnS NCs,the Cu-doping ZnS NCs has an additional photo-luminescence spectrum at the wavelength of about 500 nm.Two peaks centered at 447 and 468 nm are related with native defects (sulfur vacancy)ofZnS.Moreover,the PL spectra of Cu-doping ZnS NCs centered at 500 nm should be due to the recombination between the shallow donor level (sulfur vacancy)and the t2 level of Cu2+.Besides,it is found that the photoluminescence intensity of Cu-doping NCs obviously increases with the concentration of Cu and reaches maximum at 0.4at% because of concentration quenchment of Cu2+.【期刊名称】《功能材料》【年(卷),期】2015(000)006【总页数】4页(P6139-6142)【关键词】ZnS∶Cu;水热法;纳米晶粒;光致发光【作者】胡云;彭龙;李乐中;涂小强;杨航【作者单位】成都信息工程学院光电技术学院,成都 610225;成都信息工程学院光电技术学院,成都 610225;成都信息工程学院光电技术学院,成都 610225;成都信息工程学院光电技术学院,成都 610225;成都信息工程学院光电技术学院,成都 610225【正文语种】中文【中图分类】O611.41 引言ZnS是一种性能优越的Ⅱ-Ⅵ族发光材料,禁带宽度为3.68 eV,属于宽禁带的直接带隙半导体,被广泛应用于液晶背景照明、荧屏显示等领域。

Cu掺杂ZnS的第一性原理计算

Cu掺杂ZnS的第一性原理计算

Cu掺杂ZnS的第一性原理计算作者:刘建军章志敏来源:《安徽理工大学学报·自然科学版》2008年第04期(淮北煤炭师范学院物理与电子信息学院,安徽淮北 235000)摘要:采用第一性原理的平面波赝势方法和广义梯度近似,研究了闪锌矿ZnS掺杂Cu 前后的电子结构和光学性质。

通过对掺杂前后电子能带结构,态密度以及分态密度的计算和比较,发现引入杂质Cu后,在价带顶Cu3d态与S3p态发生p-d排斥,造成价带顶向高能端移动;在导带底Zn4s与Cu3p相互重叠,发生杂化,引起导带向低能端偏移,两方面的作用使得ZnS的带隙变小。

掺Cu后ZnS的光吸收向低能端扩展,并且在可见光区生成新的吸收峰。

关键词:密度泛函理论;电子结构;Cu掺杂ZnS-principles Calculation of Cu-doped ZnSLIU Jian-jun,ZHANG Zhi-min(Department of Physics and Electronic Information, Huaibei Coal Industry Teache rs college, Huaibei Anhui 235000, China)Abstract: The electronic structure and optical properties of pure and Cu-doped s phalerite ZnS were studied by using first-principles plane wave pseudopotentia lmethod with the generalized gradient approximation. Analysis of the band structu re, state density and partial state density of Cu doped ZnS showed that on top o f valence band, p-d rejection effect between Cu3d state and S3p state occurred ,which makes top of valence band move to higher energy side; on bottom of conduct ion band, Zn4S and Cu3p states overlap each other,which causes hybrid. It makesconduction band excursion to lower energy side. Both of the effects result in t he band gap narrowing. The optical absorption extends to lower energy side and g enerates a new peak of optical absorption in the visible light region after Cu d oped ZnS.Key words:density functional theory; electronic structure; C u-doped ZnSZnS 是Ⅱ-Ⅵ族化合物中重要的宽禁带半导体材料,其室温下的禁带宽度达3 .68 eV,具有良好的热红外透明性、荧光效应和电致发光功能等光物理特性,被广泛应用于短波发光器件,传感器与光催化等领域[1-2]。

Cu掺杂ZnS纳米晶光学特性和荧光标记性能研究的开题报告

Cu掺杂ZnS纳米晶光学特性和荧光标记性能研究的开题报告

Cu掺杂ZnS纳米晶光学特性和荧光标记性能研究的开题报告一、选题背景随着人们对高性能材料的需求不断提高,纳米材料开始引起研究者的广泛关注。

纳米材料具有许多优良的性质,如较高的比表面积、较好的光学性质和较高的强度等。

因此,纳米材料在许多领域中有着广泛的应用,如荧光探针、生物传感器、光催化剂等。

ZnS是一种典型的半导体材料,具有较好的光学性质和荧光性能,因此在纳米材料领域中具有广泛的应用前景。

同时,掺杂是改变ZnS纳米材料性质的最常见方法之一。

通过对ZnS纳米材料进行掺杂,可以改变其光学性质和荧光性能,从而获得更优异的性能。

二、研究内容本研究旨在通过制备Cu掺杂ZnS纳米晶,研究其光学特性和荧光标记性能。

具体内容如下:1.制备Cu掺杂ZnS纳米晶:采用溶剂热法制备Cu掺杂ZnS纳米晶,通过改变掺杂浓度、反应温度和反应时间等条件来优化掺杂过程,以获得最佳的纳米晶性能。

2.分析纳米晶的光学特性:利用荧光光谱仪和紫外可见分光光度计等测试设备,对Cu掺杂ZnS纳米晶的吸收和荧光特性进行测试和分析。

3.研究纳米晶的荧光标记性能:将制备的Cu掺杂ZnS纳米晶应用于荧光标记实验中,探究其作为荧光探针时的性能表现。

三、研究意义1.丰富了ZnS纳米材料及其应用研究的内容和方法,为其工业化生产提供了新思路。

2.深入研究Cu掺杂ZnS纳米晶的光学特性和荧光标记性能,对该材料的应用前景进行全面评估,为其在生物医药、光电通讯等领域的应用提供理论基础和技术支持。

3.本研究结果有望为纳米材料的绿色环保制备提供新思路和方法。

四、研究方法1.化学制备法:利用溶剂热法制备Cu掺杂ZnS纳米晶,通过改变掺杂浓度、反应温度和反应时间等条件来优化掺杂过程。

2.光学性能测试:利用荧光光谱仪和紫外可见分光光度计等测试设备,对Cu掺杂ZnS纳米晶的吸收和荧光特性进行测试和分析。

3.荧光标记实验:将制备的Cu掺杂ZnS纳米晶应用于荧光标记实验中,探究其作为荧光探针时的性能表现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档