离散时间傅里叶变换
离散时间傅里叶变换.

第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:图3-1离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。
离散时间序列的傅里叶变换

j
( 1) A e
j T
j
e
j
1 Be
j
H (e
A ) B
( )
e
j
( 1) A e
A B
j
e
j
1 Be
j
幅频: H (e j )
相频:
( )
j Im[z]
e
z
j
200 150
100
p
离散系统的频率响应
全同系统和最小相移系统
一、频率 响应定义
H (e ) H ( z ) z e j
j
H ( e j ) H ( e j ) e j ( )
例:单位函数响应为h(k),激励为
e(k ) e jk
稳态响应.
r (k ) h(k )* e
j
jk
j ( k i ) j i jk h(i )e h(i)(e ) e i i 0
j
F (e j )e jk d
DTFT存在的充分必要条件是F(z)的收敛区间包含单位圆。
例1:求离散序列的傅里叶变换。 RN (k ) (k ) (k N )
解:
F (e )
j
k
R
N
(k )e
j k
e jk
k 0
N 1
50
Re[z ]
-3 -2 -1 0 1 2 3 4
0 -4
e j
0
2
H ( e j )
H (e )
j
A B
k 1 r 1 N
§5-6 离散时间傅里叶变换----DTFT

《信号与系统》
Electronic Technology Teaching & Research Section
二、离散时间傅里叶变换的举例
1、单边指数序列 于是
X (e ) =
jω ∞ n = −∞
x ( n)
a>0 0
1 2 3 45
x ( n) = a n u ( n)
− jω n
a <1
n − jωቤተ መጻሕፍቲ ባይዱn
π
《信号与系统》
Electronic Technology Teaching & Research Section
于是,我们得到一对变换关系:
X ( e ) = DTFT { x ( n )} =
jω − jω n x ( n ) e -------DTFT变换式 ∑ ∞
n = −∞
π
1 jω jω jωn x(n) = IDTFT{X (e )} = X ( e ) e dω -------DTFT反变换式 ∫ 2π −π
5、奇、偶、虚、实性 设
DTFT x ( n ) = x r ( n ) + jx i ( n ) ←⎯ ⎯→ X ( e jω ) = X R ( ω) + jX I ( ω)
= X ( e jω ) e jϕ ( ω )
当x(n)是实序列,即 则
x(n) = x* (n)
X ( e jω ) = X * ( e − jω )
ω
0
π
2π
ω
《信号与系统》
Electronic Technology Teaching & Research Section
DTFT x ( n ) ← ⎯ ⎯→ X ( e jω ) 例题:设
第3章离散时间傅里叶变换

第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。
离散时间傅里叶变换

离散时间傅⾥叶变换1. 离散时间傅⾥叶变换的导出针对离散时间⾮周期序列,为了建⽴它的傅⾥叶变换表⽰,我们将采⽤与连续情况下完全类似的步骤进⾏。
考虑某⼀序列x[n],它具有有限持续期;也就是说,对于某个整数N1和N2,在 −N1⩽以外,x[n]=0。
下图给出了这种类型的⼀个信号。
由这个⾮周期信号可以构成⼀个周期序列\tilde x[n],使x[n]就是\tilde x[n]的⼀个周期。
随着N的增⼤,x[n]就在⼀个更长的时间间隔内与\tilde x[n]相⼀致。
⽽当N\to \infty,对任意有限时间值n⽽⾔,有\tilde x[n]=x[n]。
现在我们来考虑⼀下\tilde x[n]的傅⾥叶级数表⽰式\tag{1}\tilde x[n] = \sum_{k=(N)}a_ke^{jk{(2\pi/N)}n}\tag{2}a_k = \frac{1}{N} \sum_{n=(N)} \tilde x[n]e^{-jk{(2\pi/N)}n}因为在-N_1 \leqslant N \leqslant N_2区间的⼀个周期上\tilde x[n]=x[n],因此我们将上式的求和区间就选在这个周期上\tag{3}a_k = \frac{1}{N} \sum_{n=-N_1}^{N_2} x[n]e^{-jk{(2\pi/N)}n} = \frac{1}{N} \sum_{n=-\infty}^{+\infty} x[n]e^{-jk{(2\pi/N)}n}现定义函数\tag{4}X(e^{j\omega})=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\omega n}可见这些系数a_k正⽐于X(e^{j\omega})的各样本值,即\tag{5}a_k = \frac{1}{N}X(e^{jk\omega_0})式中,\omega_0=2\pi/N⽤来记作在频域中的样本间隔。
离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。
同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。
1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。
时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。
)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。
上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。
数字信号处理____第二章 离散时间傅里叶变换(DTFT)

x a (t )e
st
e
jk
2 T
t
dt
用傅里叶级数表示
即:Z变换可看成是x(n)乘以指数序列r-n后的傅里叶变换。 2、单位圆上的Z变换就是序列的傅里叶变换
X a ( s jk s )
k
周期延拓
z re
j
r 1 z e
j
X (z)
ze
sT
X (e
M N
y (n)
m 0
bm x (n m )
k 1
ak y (n k )
23
24
4
§2.3 离散线性移不变(LSI)系统的频域特征
2、变换域中的表述 用系统函数H(z)来表征(指明收敛域)
§2.3 离散线性移不变(LSI)系统的频域特征
用频率响应来H(ejω)表征
H (e
x ( n )e
j ( n )
]
X (e
*
j
)
满足共轭反对称性
X o (e
j
) X o (e
)
19
20
§2.2 离散时间傅里叶变换(DTFT)
4、信号的实部和虚部的傅里叶变换
x ( n ) Re[ x ( n )] j Im[ x ( n )]
§2.2 离散时间傅里叶变换(DTFT)
j
)] X e ( e
j
)
Im[ X ( e
j
)] Im[ X ( e
j
奇函数
j Im[ x ( n )]
1 2
[ x ( n ) x ( n )] 1 2
离散时间序列的傅里叶变换

傅里叶变换: 傅里叶反变换:
F ( j ) f ( t )e jt dt
1 f (t ) 2
F ( j )e jt d
一、离散序列傅里叶变换DTFT公式
F (e j ) F ( z )
T
z e jT
F (e j )
围内。
四、几种特殊的离散时间系统:
低通、高通、带通、带阻
全通系统
最小相位系统 最小相位系统:极零点全部在单位圆内。
全通
1) m=n;
2)
H (e j ) H 0 H ( z) |z 1
全通系统:对任意频率的离散正弦时间信号都有相同的幅
频响应,除了在z=0处的极点外,其余的极点和零点关于单
r (k )
i
k i k h ( i )( 1 ) ( 1 )
i
( 1) k H ( z ) z 1
H(-1)=32/3
32 r (k ) ( 1) k 3
k
作业:8.17 (2) , (3);
8.18(1)(5)
解:
F (e )
j
k
R
N
(k )e
j k
e jk
k 0
N 1
1 e 1 e j
j N
N sin j N 1 2 e 2 sin 2
| F (e j ) | e j ( )
|F(e j)| 幅频特性曲线 ()相频特性曲线
位圆镜像对称(即两者相角相等,幅度互为倒数, 或 zi
1 pi*
)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X
(e
j
)
sin
N1
sin
1 2
2
连续时间非周期矩形脉冲傅里叶变换: X(j)2sinT1
4. x[n][n]
X(ej) 1
Xej xnejn nejn1
n
n
20
三、离散时间傅里叶变换的收敛性
例5.1,5.2是无限长序列
x[n]a|n|,|a|1; 其傅里叶变换存在。 x[n]anu[n]|,a|1
X * ( e j ) X ( e j )即,X * ( e j ) X ( e j )
因此:
X (ej)X (e j) RX ( e ej) RX ( e e j) X (ej) X (e j) Im X (ej) Im X (e j)
❖ 若 x[n] 是实偶信号,则 x[n]x[n],
x% [n]X(ej)
ak2(k02l) kN l
23
如图P263 Fig5.9:下页
X (e j ) 2 a 0 ( 2 l) 2 a 1 (0 2 l)
l
l
.. .2aN1 ((N1)02l) ,02/N l
如果周期函数中包含连续相继的N次谐波,则有:
X(ej)2k ak(2N k)
调制特性在信息传输中是极其重要的。
一定是以 2 为周期的,因此,频域的冲激应该是周
期性的冲激串:
2(0 2k)
k
对其作反变换有
xn 1 X ej ejnd
2 2
0 ejnd ej0n
2
22
可见, 2( 02k) F 1 ej0n k
由DFS ,有 ~ xnkNakejk0n,02N
因此,周期信号 ~xn 可表示为DTFT
表明 X (e j ) 是虚奇函数.
❖若 x [n ] x e[n ] x o [n ], 则
x e[n ] RX ( e ej)
x o [n ] jIm X (ej)
说明:这些结论与连续时间情况下完全一致.
34
6. 时域差分与累加
x[n]X(ej)
x [n ] x [n 1 ] ( 1 e j )X (e j )
X(ej) x[n]ejn
非
n
周
期
序 列
x[n]2 1 2X(ej)ejnd
离 散 周
xn
akejk0n,
kN
2 0N
期 序 列
X(ej)2k ak(2N k)
46
常用信号的离散时间傅里叶变换
1 2 、 、 x x [ n [] n ]a |n |, a |a n u | [ 1 n ],|1 a a |1 e 1 j 1 1 a a e e j a 1 j e j 1 2 a 1 c o s a 2 a 2
复习知识点:
x(t) akejk0t k
ak
1 T
x(t)ejk0td
T
t
x n
jk2 n
ake N
k N
ak
1 Nn
jk2n
xne N
N
1
h(t)
h [n]
其中: H jk 0 h t e jk0t dt
t
H e jk0
h n e jk0 n
n
n
r
x[r]ejrkX(ejk)
r
x(k)[n]X(ejk)
信号的反转:
x[n]X(ej)
36
x(
k
)[n]
x[n
k
],
0
n是k的整倍数。 其它n
返回
37
38
例5.9 作为时域扩展性质在确定傅里叶变换应用中的一个例子
39
8. 频域微分特性 x[n]X(ej)
dX(ej)
nx[n]j d
离散时间傅里叶变换
4
§5.1 非周期信号的表示: 离散时间傅里叶变换
一、从傅里叶级数到傅里叶变换
本章将采用与讨论CTFT完全相同的思想方法,来研 究离散时间非周期信号的频域分解问题。
5
即 ~ x[n] N x[n]
从DFS的分析中得出DTFT。
周期信号 ~x[n]
非周期信号 x[n] 6
此时 X(ej) x[n]ejn n
这是一个无限项的求和,存在着一个收敛条件:
条件1:
| x[n] |
n
条件2:
| x[n] |2
n
21
§5.2 周期信号的DTFT DTFT for periodic signals
对连续时间信号,有 2( 0) F 1ej0t, 由此
推断对离散时间信号或许有相似的情况.但由于DTFT
m n x [m ] 1 X (e e j j )X (ej0)k ( 2k)
n
例:累加器:u[n] [m] m
[n]1
u[n]
11ej
(2k)
k
35
7. 时域与频域的尺度变换
x(k
)[n]
x[n
k
],
0
n是k的整倍数。
图5.13
其它n
X (k)(ej) x(k)[n ]ej n x (k)[r]e kj rk
1. 傅里叶变换
~x[n]
jk2n
ake N
kN
ak
1
~x[n]ejk2Nn
NnN
ak= N 1n x[n]ejk2N ( n 当 N )
7
当N 时, ~ x[n] x[n]
2
N
0
d,
k 2
N
ak
1
jk2n
x[n]e N
Nn
Nkax[n]ejn令X(ej)
n
X(ej) x[n]ejn n
40
9. 帕斯瓦尔定理
若 x[n]X(ej)
则
|x[n]|21 |X(ej)|2d
n
2 2
——非周期信号
能量
对比:
N 1n N |x[n]|2k N |ak
|2
——周期信号 功率
说明:一个周期信号中的平均功率等于它各次谐波
分量的平均功率之和。
41
42
43
复习上节课内容:
第四章第五节
h(t)
h [n]
其中: H jk 0
h t e jk 0t dt
t
H e jk0
h n e jk 0 n
n
N
k
M
akjYj bkjkXj M
k0
k0
Y (j)X (j)H (j)
bk j k
H j
k 0 N
ak j k 45
k 0
第五章:
离 散
离散时间傅里叶变换 信号的频谱
X (ej)Nk,aa kN 1X (ej)| k2 N
8
X(ej) x[n]ejnX(ej(2)) n
重要结论:
X (e j ) 为周期信号,周期为2。
9
~ x[n]kN akejk 2 N nkNN 1X (ejk 2 N )ejk 2 N n
1 0 N 2
3 、矩形脉冲: xn 1
0
n N1 n N1
X(ej)
N1
ejn
sinN ( 1
1)
2
nN1
sin
2
4. x[n][n]
X(ej) 1
5 、 x n c o s0 n X ( e j ) ( 0 2 k ) ( 0 2 k )
6 、 x n [ n k N ] k X ( e j ) 2( 2k )
x[n]X(ej)
x[n n 0] X (ej)ej n 0
ej0nx[n] X(ej( 0))
29
例:求 x[n] (1)n[n2k] 的X (e j )
k0 2
解: [n] 1 [n2k] ej2k
x[n] (1)2k[n2k]
k0 2
X(ej)(1)2kej2k
1
k0 2
1(1ej)2
j
)
sin
N1
sin
1 2
2
周期离散矩形脉冲的傅里叶级数系数:
显然有
ak
1 N
sin
k
N sin
(2
N1 k
1)
,
N
1 N
sin
N1
1 2
k0
sin k0 2
ak N1 X(ej)2Nk
2. 与对应的连续时间矩形脉冲比较
x (t )
1,
0
,
t T1 t T1
离散时间矩形脉冲的傅里叶变换:
k
N k N
47
§5.4 时域卷积性质
•若
x[n]X(ej)
h[n]H(ej)
•则
x [n ]* h [n ] X (ej)H (ej)
卷积特性是频域分析LTI系统的理论基础。
48
例:累加性质的证明
证明:
n
x[k]x[n]*u[n]
k n
x[k]X(ej)U(ej)
k
X(ej) 11 ejk (2k)
26
例: xn [nkN]
均匀脉冲串
k
a kN 1nN x[n]ej k0nN 1N n 0 1[n]ej k0nN 1
X(ej)2 (2k)
Nk
N
比较:与连续时间情况下对应的一致.
•
•
x[n] •1 •
•
X (e j )
2 N
2N N 0 N 2N n
4 2
N
N
0 2 N
4