系统动力学模型PPT课件

合集下载

系统动力学建模 PPT

系统动力学建模 PPT

因果关系图
因果图重要性
• 因果关系图在构思模型的初级阶段起着非 常重要的作用,它既可以在构模过程中初步 明确系统中诸变量间的因果关系,又可以 简化模型的表达,使人们能很快地了解系 统模型的结构假设,使实际系统抽象化和 概念化,非常便于交流和讨论。
流图法
• 流图法又叫结构图法,它采用一套独特的符 号体系来分别描述系统中不同类型的变量 以及各变量之间的相互作用关系。流图中 所采用的基本符号及涵义见图
国民经济流转模型方框问和交流
10
因果关系图法
• 在因果关系图中,各变量彼此之间的因果关系是 用因果链来连接的。因果链是一个带箭头的实线 (直线或弧线),箭头方向表示因果关系的作用方 向,箭头旁标有“+”或“-”号,分别表示两种极性 的因果链。
• a.正向因果链 A→+B:表示原因A 的变化(增或 减)引起结果B 在同一方向上发生变化(增或减)。
系统分析
• 这一步骤首先要对所需研究的系统作深入、广泛 的调查研究,通过与用户及有关专家的共同讨论、 交换意见,确定系统目标,明确系统问题,收集 定性、定量两方面的有关资料和数据,了解和掌 握国内外在解决类似系统问题方面目前所处的水 平、状况及未来的发展动向,并对前人所做工作 的长处与不足作出恰如其份的分析。对其中合理 的思想和方法要注意借鉴、吸收,对其中不足之 处要探究其原因,提出改进的设想。
模型的基本模块
• 根据系统动力学关于系统基本结构的理论, 任何大规模的复杂系统都可以用多个系统 基本结构按照特定的方式联结而成。系统 的基本模块是典型基本结构的形式,也是 由系统的基本单元、单元的运动以及单元 的信息反馈三大部分组成。
• 了解和掌握系统基本模块的性能、特性和 作用,有助于分析和构造系统模型,尤其 是分析和构造大规模复杂系统的模型。

系统动力学及Vensim建模与模拟技术ppt课件

系统动力学及Vensim建模与模拟技术ppt课件
Ventana Systems, Inc. 成立于1985 年, Harvard, Massachusetts
Vensim软件开发于1988年 1993年Vensim 1.50为一个稳定版本 Vensim 1.62 发布于1995 Vensim 3.0发布于1997 Vensim 4发布于1999 Vensim 4.1,4.2发布于2000 Vensim 5发布于2002. Vensim 5.3发布于2004 Vensim 5.5发布于2005 Vensim 5.6发布于2006 Vensim 5.7a发布于2008
(8)复杂系统及行为 复杂系统分析方法 基模与共性结构
Page 3
(9) Vensim高级建模与模拟技术 敏感性测试 模型刻度与政策最优化 真实性检验 模型发布 Vensim其他高级功能简介
(10)建模互动交流 牛鞭效应
3
系统动力学简介
Page 4
系统动力学发展历史 系统动力学主要应用领域 系统动力学基本观点 系统动力学学科基础 系统动力学建模基本过程
i 1,2,, p
Si——代表子系统,
Page 16
16
系统动力学数学描述
数学描述如下:
·
L PR
式中:
R A
W
L A
L——状态变量向量;
R——速率变量向量;
A——辅助变量向量;
L——纯速率变量向量;
P——转移矩阵;
W——关系矩阵。
17
Page 17
系统动力学的系统(System)观点基础
(1)系统动力学简介 系统动力学发展历史 系统动力学主要应用领域 系统动力学学科基础 系统动力学建模基本过程
(2)Vensim 软件简介 软件配置 基本功能 用户界面 模型库及辅助知识

系统动力学的基本理论课件

系统动力学的基本理论课件

详细描述
随着大数据技术的不断发展,越来越多的数据被收集并 用于对系统进行建模和分析。数据驱动的系统动力学研 究通过利用大数据技术,建立更加精确、全面的系统模 型,并利用这些模型对系统的动态行为和演化规律进行 深入分析和预测。
人工智能与系统动力学的融合研究
总结词
人工智能与系统动力学的融合研究是未来发展的重要方向之一,主要将人工智能技术应用于系统动力学建模和分 析中。
系统动力学的基本理 论
目录
• 系统动力学概述 • 系统动力学的基本概念 • 系统动力学建模 • 系统动力学应用领域 • 系统动力学研究展望
01
系统动力学概述
定义与特点
定义
系统动力学是一门研究系统动态行为的学科,它 通过建立数学模型来模拟系统的行为和动态变化 。
特点
系统动力学强调系统的整体性、动态性和反馈机 制,通过分析系统的结构和行为之间的相互作用 ,来理解和预测系统的行为。
定义参数和常数
为微分方程中的参数和常数赋予实际意义和数 值。
方程简化与推导
对微分方程进行化简和推导,得出更易于分析的模型方程。
模型验证与仿真
模型验证
对比模型预测结果与实际数据,检验模型的准确性和 可靠性。
模型仿真
通过模拟不同输入条件下的系统行为,预测未来发展 趋势和可能出现的状态。
敏感性分析
分析模型中各参数对系统行为的影响程度,找出关键 因素和最优解。
详细描述
在实际问题中,许多系统都存在着多尺度特征,即在 不同时间、空间尺度上表现出不同的行为和演化规律 。系统动力学通过建立多尺度模型,研究不同尺度之 间的相互作用和转化,揭示系统在不同尺度上的动态 行为和演化规律。
数据驱动的系统动力学研究

系统动力学第3讲-系统流图n

系统动力学第3讲-系统流图n
确定系统边界
明确系统的范围和要素,将系 统与其他外部环境区分开来。
确定因果关系
分析系统中各要素之间的相互 影响和作用,明确因果关系的 方向和强度。
绘制反馈回路
根据因果关系,绘制出系统中 的反馈回路,包括正反馈和负 反馈。
完善系统流图
在初步绘制出系统流图后,需 要经过多次修改和完善,确保 系统流图的准确性和完整性。
感谢您的观看
VS
详细描述
供应链系统是一个复杂的系统动力学问题 ,涉及到供应商的选择、采购过程的控制 、物流配送的优化等环节。通过系统流图 可以清晰地表示出这些环节之间的相互影 响和反馈关系,例如供应商的供货能力会 影响采购计划的实施,物流配送的效率又 会影响产品的交付时间和成本等。
THANKS FOR WATCHING
特性
流位变化率是时间的函数, 其值取决于流入速率和流 出速率的变化。
流率变量
01
定义
流率变量表示某一时间内流位变 量的变化量,通常用小写字母表 示。
02
03
例子
特性
库存变化量、人口增长率、货币 增量等。
流率变量是时间的函数,其值取 决于流入速率和流出速率的变化。
辅助变量
定义
辅助变量是用来描述系统其他特性的变量,通常用小写字母表示。
详细描述
销售系统是一个典型的系统动力学问题,涉及到市场需求的分析、销售计划的制定、销 售渠道的管理等环节。通过系统流图可以清晰地表示出这些环节之间的相互影响和反馈 关系,例如市场需求的变化会影响销售计划的调整,销售渠道的管理又会影响产品的销
售量和市场份额等。
实例四:供应链系统
总结词
描述了供应链系统的动态变化过程,包 括供应商的选择、采购过程的控制、物 流配送的优化等环节。

系统动力学模型SD1

系统动力学模型SD1

系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.3 系统动力学理论基本观念
(八)开放复杂系统的其他重要性质
(1)在非平衡状态下运动、发展、进化是开放复杂系统的一个重 要动态行为特征。系统动力学所研究的系统,诸如社会、经济、生 态系统,都具有这一特性。
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.3 系统动力学研究问题的过程
建立数学的规范的模型是第三个步骤。
主要任务:用系统动力学语言表述系统及其结构
1)建立L,R,A,C诸方程; 2)确定与估计参数; 3)给所有N方程,C方程与表函数赋值。
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.1 系统动力学—学科基础
系统动力学的学科基础可划分为三个层次:
(1)方法论——系统方法论。即其基本原则是将所研究 对象置于系统的形式中加以考察。
(2)技术科学和基础理论——主要有反馈理论、控制论、 信息论、非线性系统理论,大系统理论和正在发展中的 系统学。 (3)应用技术——计算机模拟技术。为了使系统动力学 的理论与方法能真正用于分析研究实际系统,使系统动 力学模型成为实际系统的“实验室”,必须借助计算机 模拟技术。如:社会经济动力学:经济理论、决策理论 和组织理论等。
系统动力学模型 System Dynamics
系统动力学模型 System Dynamics
1.2 系统动力学基ห้องสมุดไป่ตู้概念
模型:是客观存在的事物与系统的模仿、代表或替代物。 它描述客观事物与系统的内部结构、关系与法则。 如:脑力模型、物理模型、数学模型、计算机模型或者 前述模型的组合。

(完整版)第五章系统动力学模型

(完整版)第五章系统动力学模型
28
5.2 系统反馈结构
5.2.2 系统动力学流图
1. 变量与符号
(1)原件结构要素
原件结构要素
变量要素,它是由状态变量、速率变量、辅助变量 等组成。
关联要素,是信息链和物质链。
29
5.2 系统反馈结构
5.2.2 系统动力学流图
30
5.2 系统反馈结构
5.2.2 系统动力学流图
描述状态变量变 化快慢的变量
5.1.2 系统动力学发展历史
J.W.Forrester等在系统动力学方面的主要成果 1958年 发表著名论文《工业动力学——决策的一个重要突破口》 1961年 出版《工业动力学》(Industrial Dynamics) 1968年 出版《系统原理》(Principles of Systems) 1969年 出版《城市动力学》(Urban Dynamics) 1971年 出版《世界动力学》(World Dynamics) 1972年 学生梅多斯教授等出版《增长的极限》(The Limits to Grow2.2 系统动力学流图
出生系数是常数
32
5.2 系统反馈结构
5.2.2 系统动力学流图
辅助 变量
33
5.2 系统反馈结构
5.2.2 系统动力学流图
34
5.2 系统反馈结构
5.2.2 系统动力学流图
35
5.2 系统反馈结构
5.2.2 系统动力学流图
当模型用于经济政策分析时,通常 采用对模型施加外部干扰的办法, 以研究和揭示内部结构与其动态行 为之间的关系。
第五章 系统动力学模型
System Dynamics Model
1
目录
5.1 系统动力学学科简述 5.2 系统反馈结构 5.3 系统动力学方程基础 5.4 DYNAMO语言 5.5 典型反馈结构 5.6 系统动力学模型 5.7 仿真软件Vensim

系统动力学模型

系统动力学模型

系统动力学模型系统动力学模型是指它是一种分析和模拟物理系统及其动力学过程的数学技术。

它可以用来研究运动学,控制系统,流体动力学,形式力学,电学,冲击学和弹性动力学等领域的数学模型,并可用于实际的工程问题的解决。

系统动力学模型基于物理系统的动力学处理和控制问题,用来研究物体的运动行为。

例如,系统动力学模型可以用来探讨汽车的运动性,即汽车在不同条件下的行驶特性,以确定汽车行驶性能的最佳状态。

此外,系统动力学模型还可以模拟任意静力学,力学,流体力学或热力学系统的运动模式。

系统动力学模型的建立要求具备完备的物理基础知识,形成一个系统模型的首要任务是了解物理系统的特性和行为,因此必须确定物理系统的运动方程和力学特征,物理量的表达式在构建模型时必须明确。

模式构建完成后,需要求解模型,并将模型运用到实际问题中,用以求解物理过程及其动力学运行状态。

为此,我们可以使用计算机模拟技术来求解模型,用以检验结果的正确性和准确性。

系统动力学模型在很多领域中都发挥着重要的作用,例如机械系统的设计,控制系统的调整,电子电气系统的设计,机器人的控制,航空航天技术,建筑工程设计等。

例如,在机器人技术中,系统动力学模型可以模拟机器人的运动特性,帮助机器人决定如何完成任务。

此外,系统动力学模型在工程设计中也有广泛应用,可用于分析和解决工程设计问题,以便改善工程性能。

例如,系统动力学模型可以帮助分析和解决结构物振动问题,提高结构物的稳定性和耐久性,以及改善系统的可靠性。

此外,系统动力学模型也可以帮助优化控制系统的性能,以提高系统的功率和可靠性。

综上所述,系统动力学模型是一个强大的工具,可以帮助我们研究和分析物理系统及其动力学过程,从而有效地改善工程性能。

它在机械,控制,电子,航空航天等各个领域都有广泛的应用,并被广泛用来分析和解决工程设计问题。

系统动力学课件

系统动力学课件

要点二
系统模型建立
根据流图,建立相应的数学模型,包括变量、参数、方程 等,描述系统的动态行为。
参数估计与模型检验
参数估计
根据历史数据和实际情况,估计模型中的参数值,使模 型更加接近实际系统。
模型检验
通过对比模拟结果和实际数据,验证模型的准确性和有 效性,对模型进行必要的调整和修正。
模型仿真与结果分析
VS
详细描述
iThink是一款具有创新性和灵活性的系统 动力学软件。它提供了丰富的建模工具和 功能,支持构建各种类型的系统模型,并 能够进行仿真和分析。iThink还具有开放 性和可扩展性,支持与其他软件进行集成 和定制开发,满足用户的特定需求。
06
系统动力学案例分析
企业战略管理案例
总结词
通过系统动力学方法分析企业战略管理问题 ,探究企业战略制定和实施过程中的动态变 化和反馈机制。
系统动力学课件
contents
目录
• 系统动力学概述 • 系统动力学的基本概念 • 系统动力学的应用领域 • 系统动力学建模方法与步骤 • 系统动力学软件介绍 • 系统动力学案例分析
01
系统动力学概述
系统动力学的定义
系统动力学:是一门研究系统动态行为的学科,它通过建 立数学模型来描述系统内部各要素之间的相互作用和反馈 机制,从而预测系统的未来状态和行为。
05
系统动力学软件介绍
STELLA
总结词
功能强大、广泛应用的系统动力学软件
详细描述
STELLA是一款功能强大的系统动力学软件,广泛应用于各个领域,如商业、教育、科研等。它提供了丰富的建 模工具和功能,支持构建复杂的系统模型,并能够进行仿真和分析。STELLA具有友好的用户界面和易于学习的 特点,使得用户能够快速上手并高效地构建和运行模型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
门开度范围内得到不同的车辆性能。 常见的组合型换档规律:小油门开度以舒适、稳定及少污染为
主;大油门开度则以动力性能为主;在中等油门开度下,首先要求 很好的燃料经济性,其次要有满意的动力性能。
(b)多规律换档控制 并列有几种不同换档规律的控制器,驾驶员改变选择开关,就
可使同一变速箱改换用另一种换档规律进行控制。
四档变速箱
一、换挡规律
阿里逊CLBT-6061重型车辆的换档规律? (a)采用收敛型换档规律。当油门 (全b)开在时7,5%降-1档00速%油差门最开小度,范有围利内于,得升 档况动高缩档到 时 档 次前 , 力 了 减 设( 采 档 降 定 率 ( 升 变 效数优重,变性经到计发区较矩档c点 档用d转,)良 叠降)矩 济动, 3,的高器前与 前了速0也在的 工档在-器性又使机范的基始油发单,7有2动作速小0降已具。转围区终本5门动参也利转%力区差于档进有当速内域在上-开机数可于/7性最,2工工时入分很油也液位55度转的使提%%能大可作作得闭,高门很于力油高油无速换变以。,。。到锁采的全高高传门经门关 不档矩很效动大后在 得传 开用,开济开低规器。好工区了度的动 时既大小到性度于律保这况或的范等机效得 ,减油广。范最持, 样下接围功速械率到降少门泛围小在其 可近工内率差传良, 档换开的内稳效使换高作,利的动好速也档度多,,用降工的差提。
可以充分利用变矩器变矩性能,提高动力性;高档闭锁
n T 较低,以便尽早闭锁,利用机械传动,提高传动效率。
闭锁工况的 工作区
3. 单参数闭锁控制
2)按车速进行闭锁控制
把涡轮转速改成变速箱 输出轴转速。只要当车速达 到某一定值时,就能实现变 矩器闭锁。
这可以避免低挡范围内 频繁闭锁,减少由此引起的 冲击和磨损。
单参数控制
按涡轮转速 按车速 按挡位
按转速比控制 双参数控制 按涡轮转速和油门开度
按车速和油门开度
3. 单参数闭锁控制
1)按(涡轮转速)进行闭锁控制
只要涡轮转速达到某个固定不变的 数值时,变矩器就闭锁。 这种控制方法只能在少部分油门开 度下保证有合理的动力性与经济性。
对于多档变速器各档均闭锁时,一般低档闭锁 n T 较高,
不能实现驾驶员的干预换档。经济性差, 实际中只有少数军用车辆上有所应用, 目的是减少换档次数,发挥车辆动力性 能。
一、换挡规律
2.双参数换挡规律
B A
1
等延迟型换档规律:换档延迟不随油门开 度的变化而变化
驾驶员可干预,可提前换入高档或提前降 到低档,很大程度上改善了车辆的燃油经 济性。
2
a Ⅰ
b Ⅱ
一、换挡规律
2.双参数换挡规律
12
23
12
23
v
收敛型换档规律:换档延迟随油门开度增 大而减小,呈收敛状分布,也称减延迟型 换档规律 。
1)在升降档时都有较好的功率利用,动 力性好。 2)低速时,可以松油门提前换高挡,改 善燃油经济性。
发动机可以在较低转速下工作,燃油经济 性好、噪声低、行驶平稳舒适。该规律适 合于比功率较低的货车。
一、换挡规律
消除循环换档的措施:
①改变油门开度予以消除。这是因为改变油门开度可以极大地改变 输出的牵引力,消除出现循环换挡的起因; ②在换挡规律的设计中,增大降挡速差能减轻或消除循环换挡现象。 ③在恶劣路面,强制挂低挡。
一、换挡规律
3.其它换档规律
(a)组合型换档规律 由两段或多段不同变化规律所组成的换档规律,便于在不同油
1)油门开度不变,假设为 2
1 B
车速达到 v 2 时,I挡自动升入II挡 车速降到 v 1 时,II挡自动换回I挡
降档线
1 2
升档线
2)车速不变,假设为 v 1
行驶阻力减小,油门开度小于 1 时,自动升入II挡 行驶阻力增加,油门开度大于 2 时,自动换入I挡
干预换挡:松油门提前换高挡,猛踩油门强制换低挡
二、闭锁规律
1.变矩器的闭锁控制 (1)改善传动性能的闭、解锁。 (2)换档时变矩器的缓冲解锁。
二、闭锁规律
2.闭锁点的选择
一般把闭锁点设计在偶合器工况点附近,以保证得到较高的效 率和牵引力。闭锁点应随油门开度而变,油门开度越小,闭锁点的 转速则越低。
在闭锁点与解锁点之间,也要有一定的解锁速差,以免过于频 繁的闭锁一解锁循环。
单参数换挡规律 双参数换挡规律 三参数换挡规律
一、换挡规律
2.单参数换挡规律
B A
换档重叠或换档延迟
1
1)换入新档后不会因车速稍有变化而
重新换回原来的排档,保证了换档过程
的稳定性;


2)有利于减少换档循环,防止控制元 件加速磨损与降低乘坐舒适性;
BA
降档线
1 2
升档线
3)变化换挡延迟可改变换挡规律。
第二章 传动系统动力学模型
第一节 传动系统的控制
控 换挡规律 制 器 闭锁规律
自动换挡、自动闭解锁的车辆
一、换挡规律
1. 换挡规律
排挡之间自动换挡点的控制参数(车速υ、油门开度α)变化规律。 每一个自动换挡系统都有一个换挡规律,它的曲线形状取决于车 辆传动的要求,由自动换挡系统的结构和参数来实现。 换档特性是由牵引特性和换档规律组合而成的。当牵引特性一定 时,换档规律对车辆动力性、经济性和使用性能有决定意义。
一、换挡规律
2.双参数换挡规律
1
2
23
1 22 3
v
发散型换档规律:换档延迟随油门开度的 增大而增大,呈发散状分布,也称增延迟 型换档规律。
优点: 1)大油门时换档延迟大,可减少换档次数。 2)大油门时,升档车速高,接近最大功率点, 动力性好 。
缺点: 大油门降档时的车速低,功率利用差,较适用 于后备功率大的轻型车辆。
一、换挡规律
丰田小轿车换档规律的特点?
(在降档耐( 性 设 ( 8力 得 度( 开 入 机 利5久a节档次计%升bd和性时用)c低 转度油) )性)气速数在入排能,和采档速达门升合,设门差,较超放变换动用,,8开挡理且计高全都有5速力坏挡。发-提改度点使经了车9开较利档性点各,散0高善以济的用速强%和大于。。型车油换时性上设超了了。制小中提,的速门挡也,,计速降 降降于等高大换较下规良为,档可档 档档2开变大档好高升律5了考 。以后 后,%度速减规。些挡规不油在虑提的 的当时箱少律点定,使大门动前发 功油的,换,都于不动力开 减动 率降门 小排放。其余中等开度,使用 超速档节油。
相关文档
最新文档