第6章 材料力学的基本概念
材料力学 第6章 连接件的实用计算

故销钉安全
6.2 连接件的实用计算
D
思考题
(1)销钉的剪切面面积 A
h
(2)销钉的挤压面面积 AbS
d
F
6.2 连接件的实用计算
D
挤压面
思考题
(1)销钉的剪切面面积 A
h
(2)销钉的挤压面面积 AbS
A = πdh
d
剪切面
π(D2 - d2)
F
Abs =
4
挤压面
6.2 连接件的实用计算
冲床的最大冲压力F=400kN,冲头材料的许用压应力[]=440MPa,钢板的
对错动。
F
5. 连接处的破坏形式
6.1 引言
一、基本概念和实例
5. 连接处的破坏形式
FS n
(1)剪切破坏 连接件沿剪切面的剪断
(2)挤压破坏 连接件与被连接件在
相互接触面上因挤压 挤压面
而使连接松动,发生 破坏。
(3)拉伸破坏 被连接件在受连接件 处削弱的截面处,应 力增大,易在连接处 拉断。
F n
挤压面和挤压力为:
F AQ
b
仰视图
Abs
Fbs
F :切应力和挤压应力
τ Fs F 40 107 0.952MPa
AQ bh 12 35
F
σbs
=
Fbs Abs
=
F cb
=
40 ×107 4.5×12
=
7.4MPa
6.2 连接件的实用计算
例6-2 齿轮与轴由平键连接,已知轴的直径d=70mm, 键的尺寸为b×h×L=20
2. 工程实例
(1) 螺栓连接
可拆卸
M
特点:可传递一般力
工程力学——材料力学的基本概念

(3) 平衡:列左段的平衡方程
FP=0 FN+5 FP=0
得
FN=-5 FPቤተ መጻሕፍቲ ባይዱ
求 1-1 截面的内力,也
可通过取右段为研究对象(如
图 6.1(c)所示),求解,由平 衡方程 2FP-7FP-FN = 0 得 FN = 2FP-7FP =-5FP
(c)
图6.1
6.2.3 应力
我们把内力在截面上的分部集度称为应力,即单 位面积上产生的内力。它的方向由内力的方向决定。如 果应力方向与截面垂直,称为正应力,其符号为σ;如果 应力方向与截面方向相切,称切应力,其符号为τ。如图 6.2所示。
第6章 材料力学的基本概念
第6章 材料力学的基本概念
6.1 变形固体的基本假设 6.2 内力、截面法、应力 6.3 杆件变形的基本形式
6.1 变形固体的基本假设
1. 均匀连续性假设 认为整个物体充满了物质,没有任何空隙存在,同时 还认为物体在任何部分的性质是完全相同的。 2. 各向同性假设 认为材料在不同的方向具有相同的力学性质。 3. 小变形假设 指构件在外力作用下发生的变形与原尺寸相比非常微 小,在计算时可忽略不计。 在材料力学中,杆件变形分为弹性变形和塑性变形。 弹性变形:外力卸除后,能够消失的变形。 塑性变形:外力卸除后,残留下来不能消失的变形。
6.2.2 截面法
截面法是材料力学求内力的方法,其步骤为: (1) 截开:沿物体所要求的内力截面假想的截分为 两部分,任取一部分为研究对象; (2) 代替:用作用于该截面上的内力代替另一部分 对被研究部分的作用; (3) 平衡:对所研究部分建立平衡方程,从而确定 截面上内力的大小和方向。
现以拉杆为例,如图6.1(a)所示,求1-1截面上的 内力。
材料力学概述

二、填空题 1、当杆内的轴力FN不超过某一限度时,杆的绝对 变形△L与轴力FN及杆长L成正比,与杆的横 截面积成反比。 2、在胡克定律中,应力未超过一定限度时,应力 和应变成正比关系。 3、杆件变形基本形式有4类。 4、在材料力学中,当材料在应力变化不大而应变 显著增加的现象称为材料屈服,相应点的应 力称为材料的屈服极限σs。
L L1 L
L 称为杆件的绝对变形。 对于拉杆L为正值,对于压杆 L 为负值。
绝对变形只表示杆件变形的大小,但不能表示杆件 变形的程度。通常以单位原长的变形来度量杆的变形程 度,因此可将 L 除以L所得的商称为杆件的相对变形:
对于拉杆
L L
式中ε称为杆件的线应变,简称应变。
解:(1)以AB梁为研究对象, 列平衡方程,画受力图,求 解支座反力: 均布载荷的合力Fq=q ×L =40KN,作用在梁的中点。 ∑FX=0 ,FAX=0
F
∑FY=0 ,FAY+F−Fq=0 FAY=−20KN,方向向下
F
∑MA(F)=0 MA+F∙L−Fq∙L/2=0 MA=−F· L+Fq· L/2=−60×1+40×0.5=−40KN∙M, 方向与假设相反 (2)计算截面弯矩,绘弯矩图 A截面(取右端为研究对象): MWA=F∙L−Fq∙L/2=60×1−40×0.5=40KN· M B截面(取右端为研究对象):MWB=0 M 25kn∙m 0 X 1
∑FY=0
FA+FB − Fq − F=0
FB=F+Fq − FA=40+60 − 65=35KN
(2)计算截面弯矩,绘弯矩图,取B点为坐标原点 B截面(取右端为研究对象):x=0, MWB=0
F作用截面(取右端为研究对象):x=1m MWF=FB ×L − q ×L ×L∕2=35 ×1 − 20 ×1 ×0.5=25KN∙M
材料力学基本概念知识点总结

材料力学基本概念知识点总结材料力学是研究物质材料的力学性质和行为的学科,是许多工程学科的基础和核心内容之一。
本文将对材料力学的基本概念进行总结,包括应力、应变、弹性、塑性等方面。
一、应力与应变1.1 应力应力是描述物体内部受力情况的物理量。
一般分为法向应力和切应力两个方向,分别表示作用在物体上的垂直和平行于截面的力。
法向应力可进一步分为压应力和拉应力,分别表示作用在物体上的压缩力和拉伸力。
1.2 应变应变是物体在受力作用下发生形变的度量。
一般分为线性应变和剪切应变两类,分别表示物体长度或体积的变化以及物体形状的变化。
线性应变可进一步分为正应变和负应变,分别表示物体拉伸或压缩时的形变情况。
二、弹性与塑性2.1 弹性弹性是材料的一种特性,指材料在受力作用下能够恢复原先形状和大小的能力。
即当外力停止作用时,材料能够完全恢复到初始状态。
弹性按照应力-应变关系可分为线弹性和非线弹性,前者表示应力与应变之间呈线性关系,后者表示应力与应变之间不呈线性关系。
2.2 塑性塑性是材料的另一种特性,指材料在受力作用下会发生形变并保持在一定程度上的能力。
即当外力停止作用时,材料只能部分恢复到初始状态。
塑性按照塑性变形的特点可分为可逆塑性和不可逆塑性,前者表示形变能够通过去应力恢复到初始状态,后者表示形变无法通过去应力完全恢复。
三、应力-应变关系应力-应变关系是描述材料力学行为的重要概念之一。
在材料的弹性范围内,应力与应变之间满足线性比例关系,也就是胡克定律。
根据胡克定律,应力等于弹性模量与应变的乘积。
四、杨氏模量与剪切模量4.1 杨氏模量杨氏模量是衡量材料抵抗线弹性形变的能力,也叫做弹性模量。
杨氏模量越大,材料的刚性越高,抗拉伸和抗压缩的能力越强。
4.2 剪切模量剪切模量是衡量材料抵抗剪切形变的能力,也叫做切变模量。
剪切模量越大,材料的抗剪强度越高,抗剪形变的能力越强。
五、破坏力学破坏力学是研究材料在外力作用下失效的学科。
材料力学的基本知识与原理解析

材料力学的基本知识与原理解析材料力学是研究材料在外界力作用下的力学性质和变形规律的学科。
它是现代工程学的基础学科之一,对于工程设计、材料选择和结构分析具有重要的意义。
本文将从材料力学的基本概念、应力与应变关系、材料的弹性与塑性行为以及材料失效等方面进行解析。
一、基本概念材料力学研究的对象是材料的内部结构和外部力的相互作用。
材料可以是金属、陶瓷、塑料等各种物质的组合体。
材料力学的基本概念包括应力、应变、弹性模量、屈服强度等。
应力是指单位面积上的力,可以分为正应力和剪应力。
应变是指物体单位长度的变化量,可以分为线性应变和剪切应变。
弹性模量是衡量材料抗拉伸变形能力的指标,屈服强度则是材料开始发生塑性变形的临界点。
二、应力与应变关系应力与应变之间存在一定的关系,这种关系被称为应力-应变关系。
对于线性弹性材料来说,应力与应变之间呈线性关系,可以用胡克定律来描述。
胡克定律表示应力与应变成正比,比例常数为弹性模量。
然而,在材料的应力超过一定临界值后,材料会发生塑性变形,此时应力与应变的关系就不再呈线性关系。
三、材料的弹性与塑性行为材料的弹性行为是指材料在外力作用下能够恢复原状的能力。
弹性行为是材料力学中最基本的性质之一。
当外力作用消失时,材料会恢复到原来的形状和尺寸。
然而,当外力超过材料的屈服强度时,材料会发生塑性变形。
塑性变形是指材料在外力作用下会永久性地改变其形状和尺寸。
塑性变形会导致材料的强度降低和损伤积累,最终可能导致材料的失效。
四、材料失效材料失效是指材料在使用过程中不再满足设计要求或无法继续承受外界力的情况。
材料失效可以分为强度失效和稳定性失效两种。
强度失效是指材料在外力作用下超过其强度极限而发生破坏。
稳定性失效是指材料在长期使用过程中,由于材料的内部缺陷或损伤积累导致材料的性能逐渐下降,最终无法继续使用。
材料失效对于工程结构的安全性和可靠性具有重要影响,因此,对于材料失效机理的研究和预测是材料力学的重要内容之一。
材料力学-第六章

第15单元第六章 弯曲变形§6-1 引言应用:梁的刚度问题,静不定梁,压杆稳定挠曲轴:变弯后的梁轴(当外力位于梁对称面内时,挠曲线为平面曲线)。
挠度()y x : 横截面形心的位移 转角()θx :横截面绕中性轴的转角挠曲轴方程:()y y x = (挠曲轴的解析表达式)()tg dy dxy x θ=='()θθ≈='tg y x(通常θ<︒1=0.01745弧度)§6-2 梁变形基本方程目的:求()y x ,()()[]θx y x =' 途径:建立微分方程求解 一、挠曲轴微分方程1.中性层曲率表示的弯曲变形公式()1ρ=M x EI(其中M 可以通过弯矩方程表示为x 的函数,ρ为曲率半径,它可由'y 和''y 表示) 2.由数学()11232ρ=±''+'y y3.挠曲轴微分方程()()±''+'=y y M x EI1232(1) 4.方程简化,挠曲轴近似微分方程 小变形,()'≈<y θ0.0175(弧度)'<<y 21112+'≈y ((1)式分母等于1)正负号确定——确定坐标系:y 向上''>y 0(从数学) ''<y 0M >0(本书规定) M <⇒选正号()∴''=y M x EI二、积分法计算梁的变形()θ='=+⎰y M x EI dx C()y M x EIdx Cx D =++⎰⎰C 、D 为积分常数,它由位移边界与连续条件确定。
三、位移边界与连续条件边界条件:固定端 y A A ==00,θ 固定铰,活动铰 0,0==F E y y 自由端:无位移边界条件 连续条件 y y C C C C 左右左右===00θθy y y y B BG G G G 左右左右左右===θθ例1:()M x M =0,()''=y x M EI 0()()θ='=+y x M EI x C 0()y x M EIx Cx D =++022由()()y D y C 00000=='==()()∴==y x M EIxx M EIx022θ例2:求挠曲轴微分方程AB 段: BC 段''=y M EI x l 10 ''=-⎛⎝ ⎫⎭⎪y M EI x l201y M EI x lC xD =++03116 y M EI x l x C x D =-⎛⎝ ⎫⎭⎪++0322262边界和连续条件()y 100= ()y l 20=y l y l 1222⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪(连续条件)'⎛⎝ ⎫⎭⎪='⎛⎝ ⎫⎭⎪y l y l 1222 (光滑条件)四个方程定4个常数()()y x M x lEI x l 1022244=- ()()y x M x l EIl2024=-例3:1.画剪力弯矩图2.列挠曲线的位移和连续条件3.画挠曲线大致形状(注明凹凸性与拐点) 位移与连续条件 A :()y 100= B:()()()()a y a y a y a y 2121'='=,C:()()020232==a y a y ,()()a y a y 2232'=' D:无挠曲线大致形状的画法 (1)根据弯矩图定凹凸性, +→⋃-→⋂,(2)弯矩图过零点处为拐点 (3)支座限定支座处的位移§6-3 计算梁位移的奇异函数法奇异函数法仍属积分法。
材料力学的一些基本概念

材料力学材料力学基本概念基本概念Simwe :lian20041、强度:在载荷作用下构件抵抗破坏的能力;刚度:在载荷作用下构件抵抗变形的能力;稳定性:在载荷作用下构件保持稳定平衡的能力;2、基本假设:连续性假设:物体在其整个体积内充满了物质而毫无空隙,其结构是密实的; 均匀性假设:从物体内任意一点处取出的体积单元,其力学性能都能代表整个物体的力学性能;各向同性假设:材料沿各个方向的力学性能相同。
3、力学性能:材料在外力作用下所表现出来的变形和破坏方面的特征。
4、应力:受力杆件某一截面上一点处的内力集度。
正应力:垂直于截面的法向分量切应力:与截面相切的切向分量5、圣维南原理:力作用于杆端方式的不同,只会使与杆端距离不大于杆的横向尺寸的范围内受到影响。
6、一点处的应力状态:通过一点的所有不同方位截面上应力的全部情况。
7、线应变:每单位长度的伸长(或缩短)。
LL ∆=ε 8、胡克定律:当杆内的应力不超过材料的某一极限值(比例极限)时,杆的伸长△L 与其所受外力F 、杆的原长L 成正比,而与其横截面面积A 成反比。
引进比例常数E ,故有:EAL F L N =∆ 9、泊松比:当拉(压)杆内的应力不超过材料的比例极限时,横向线应变ε’与纵向线应变ε的绝对值之比为一常数,称此值为横向变形因数或泊松比。
εεµ'= 10、应变能:伴随弹性变形的增减而改变的能量称为应变能。
11、应力应变曲线:纵坐标表示名义应力,横坐标表示名义应变,这种能反应材料的力学性能的曲线图称为应力应变曲线。
比例极限:在弹性阶段内,应力应变符合胡克定律的最高限,与之对应的应力称为比例极限;弹性极限:弹性阶段的最高点卸载后不发生塑性变形的极限,与之对应的应力称为弹性极限;屈服极限:在屈服阶段内,应力有幅度不大的波动,最高点的应力为上屈服极限,最低点的应力为下屈服极限,通常将下屈服极限称为屈服极限;强度极限:在强化阶段,最高点对应的应力称为强度极限。
材料力学知识点总结

材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域的设计和分析具有重要意义。
以下是对材料力学主要知识点的总结。
一、基本概念1、外力与内力外力是指物体受到的来自外部的作用力,包括集中力、分布力等。
内力则是物体内部各部分之间的相互作用力,当物体受到外力作用时,内力会随之产生以抵抗外力。
2、应力与应变应力是单位面积上的内力,它反映了材料内部受力的强弱程度。
应变是物体在受力作用下形状和尺寸的相对变化,分为线应变和切应变。
3、杆件的基本变形杆件在受力作用下主要有四种基本变形形式:拉伸(压缩)、剪切、扭转和弯曲。
二、拉伸与压缩1、轴力与轴力图轴力是指杆件沿轴线方向的内力。
通过绘制轴力图,可以直观地表示出轴力沿杆件轴线的变化情况。
2、横截面上的应力在拉伸(压缩)情况下,横截面上的应力均匀分布,其大小等于轴力除以横截面面积。
3、材料在拉伸与压缩时的力学性能通过拉伸试验,可以得到材料的强度指标(屈服强度、抗拉强度)和塑性指标(伸长率、断面收缩率)。
不同材料具有不同的力学性能,如低碳钢的屈服和强化阶段,铸铁的脆性等。
4、胡克定律在弹性范围内,应力与应变成正比,即σ =Eε ,其中 E 为弹性模量。
5、拉伸(压缩)时的变形计算根据胡克定律,可以计算杆件在拉伸(压缩)时的变形量。
三、剪切1、剪切内力与剪切应力剪切内力通常用剪力表示,剪切应力则是单位面积上的剪力。
2、剪切实用计算在工程中,通常采用实用计算方法来确定剪切面上的平均应力。
四、扭转1、扭矩与扭矩图扭矩是指杆件在扭转时横截面上的内力偶矩。
扭矩图用于表示扭矩沿杆件轴线的变化。
2、圆轴扭转时的应力与变形圆轴扭转时,横截面上的应力分布呈线性规律,其最大应力发生在圆周处。
扭转角的计算与材料的剪切模量、扭矩和轴的长度等因素有关。
五、弯曲1、剪力与弯矩弯曲内力包括剪力和弯矩,它们的计算和绘制剪力图、弯矩图是弯曲分析的重要内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二篇 材料力学第6章 材料力学的基本概念教学提示:材料力学是变形体力学,为设计构件提供有关强度、刚度和稳定性计算的基本原理和方法,是材料力学所要研究的主要内容。
本章主要介绍材料力学的任务,基本假设,内力与应力的概念,以及杆件变形的基本形式。
教学要求:明确材料力学的任务和基本假设,掌握应力与应变的概念,了解杆件变形的基本形式。
6.1 材料力学的任务在生产实际中,各种机械和工程结构得到广泛应用。
组成机械的零件和结构的元件,统称为构件。
如机械的轴,房屋的梁、柱子等。
在机械或工程结构工作时,有关构件将受到力的作用,因而会产生几何形状和尺寸的改变,称为变形。
若这种变形在外力撤除后能完全消除,则称之为弹性变形;若这种变形在外力撤除后不能消除,则称之为塑性变形(或永久变形)。
为了保证机械或工程结构能正常工作,则要求每一个构件都具有足够的承受载荷的能力,简称承载能力。
构件的承载能力通常由以下3个方面来衡量:构件应具备足够的强度(即抵抗破坏的能力),以保证在规定的使用条件下不致发生破坏。
构件应具备足够的刚度(即抵抗变形的能力),以保证在规定的使用条件下不产生过分的变形。
构件应具备足够的稳定性(即维持其原有平衡形式的能力),以保证在规定的使用条件下不产生失稳现象。
由上述三项构件安全工作的基本要求可以看出:如何合理的选用材料(既安全又经济)、如何恰当的确定构件的截面形状和尺寸,便成为构件设计中十分重要的问题。
材料力学的主要任务是:研究构件在外力作用下的变形、受力和破坏规律,为合理设计构件提供有关强度、刚度和稳定性分析的基本理论和方法。
一般说来,强度要求是基本的,只是在某些情况下才提出刚度要求。
至于稳定性问题,只是在特定受力情况下的某些构件中才会出现。
材料的强度、刚度和稳定性与材料的力学性能有关,而材料的力学性能主要由实验来测定;材料力学的理论分析结果也应由实验来检验;还有一些尚无理论分析结果的问题,也必须借助于实验的手段来解决。
所以,实验研究和理论分析同样是材料力学解决问题的重要手段。
6.2 变形固体的及其基本假设在外力作用下,一切固体都将发生变形,故称为变形固体。
变形固体在外力作用下所产生的物理现象是各种各样的,为了研究的方便,常常舍弃那些与所研究的问题无关或关系不大的特征,而只保留其主要特征,并通过作出某些假设将所研究的对象抽象成一种理想化的“模型”。
例如,在理论力学中,为了从宏观上研究物体机械运动规律,可将物体抽象化为刚体;而在材料力学中,为了研究构件的强度、刚度和稳定性问题,则必须考虑构件的变形,即只能把构件看作变形固体。
在材料力学中,对变形固体作如下假设:1、连续性假设:认为整个物体体积内毫无空隙地充满物质。
根据这一假设,物体内因受力和变形而产生的内力和位移都将是连续的,因而可以表示为各点坐标的连续函数,从而有利于建立相应的数学模型。
2、均匀性假设:认为物体内的任何部分,其力学性能相同。
按此假设,从构件内部任何部位所切取的微元体,都具有与构件完全相同的力学性能。
同样,通过试样所测得的材料性能,也可用于构件内的任何部位。
应该指出,对于实际材料,其基本组成部分的力学性能往往存在不同程度的差异,但是,由于构件的尺寸远大于其基本组成部分的尺寸,按照统计学观点,仍可将材料看成是均匀的。
3、各向同性假设:认为在物体内各个不同方向的力学性能相同。
我们把具有这种属性的材料称为各向同性材料,如低碳钢、铸铁等。
在各个方向上具有不同力学性能的材料则称为各向异性材料,如由增强纤维(碳纤维、玻璃纤维等)与基体材料(环氧树脂、陶瓷等)制成的复合材料。
本书仅研究各向同性材料的构件。
按此假设,我们在计算中就不用考虑材料力学性能的方向性,而可沿任意方位从构件中截取一部分作为研究对象。
4、小变形假设:认为构件的变形极其微小,比构件本身尺寸要小得多。
根据这一假设,当考虑构件的平衡问题时,一般可略去变形的影响,因而可以直接应用理论力学的分析方法。
实际上,工程材料与上面所讲的“理想”材料并不完全相符合。
但是,材料力学并不关心其微观上的差异,而只着眼于材料的宏观性能。
实践表明,按这种理想化的材料模型研究问题,所得的结论能够很好地符合实际情况。
即使对某些均匀性较差的材料(如铸铁、混凝土等),在工程上也可得到比较满意的结果。
6.3 杆件变形的基本形式工程实际中的构件是各种各样的,但按其几何特征大致可以简化为杆、板、壳和块体等。
本书所研究的只是其中的杆件。
所谓杆件是指其长度远大于其横向尺寸的构件。
杆件在不同的外力作用下,其产生的变形形式各不相同,但通常可以归结为以下四种基本变形形式。
1. 轴向拉伸或压缩杆件受到与杆轴线重合的外力作用时,杆件的长度发生伸长或缩短,这种变形形式称为轴向拉伸(图6.1(a))或轴向压缩(图6.1(b))。
如简单桁架中的杆件通常发生轴向拉伸或压缩变形。
图 6.12. 剪切在垂直于杆件轴线方向受到一对大小相等、方向相反、作用线相距很近的力作用时,杆件横截面将沿外力作用方向发生错动(或错动趋势),这种变形形式称为剪切(图6.1(c))。
机械中常用的连接件,如键、销钉、螺栓等都产生剪切变形。
3. 扭转在一对大小相等、转向相反、作用面垂直于直杆轴线的外力偶作用下,直杆的任意两个横截面将发生绕杆件轴线的相对转动,这种变形形式称为扭转(图6.1(d))。
工程中常将发生扭转变形的杆件称为轴。
如汽车的传动轴、电动机的主轴等的主要变形,都包含扭转变形在内。
4. 弯曲在垂直于杆件轴线的横向力,或在作用于包含杆轴的纵向平面内的一对大小相等、方向相反的力偶作用下,直杆的相邻横截面将绕垂直于杆轴线的轴发生相对转动,杆件轴线由直线变为曲线,这种变形形式称为弯曲(图6.1(e))。
如桥式起重机大梁、列车轮轴、车刀等的变形,都属于弯曲变形。
凡是以弯曲为主要变形的杆件,称为梁。
6.4 内力和应力1.内力构件在未受外力作用时,其内部各质点之间即存在着相互的力作用,正是由于这种“固有的内力”作用,才能使构件保持一定的形状。
当构件受到外力作用而变形时,其内部各质点的相对位置发生了改变,同时内力也发生了变化,这种引起内部质点产生相对位移的内力,即由于外力作用使构件产生变形时所引起的“附加内力”,就是材料力学所研究的内力。
当外力增加,使内力超过某一限度时,构件就会破坏,因而内力是研究构件强度问题的基础。
2.截面法为了显示和确定构件的内力,可假象地用一平面将构件截分为A、B 两部分(图6.2(a)),任取其中一部分为研究对象(例如A 部分),并将另一部分(例如B部分)对该部分的作用以截开面上的内力代替。
由于假设构件是均匀连续的变形体,故内力在截面上是连续分布的(图6.2(b))。
应用力系简化理论,这一连续分布的内力系可以向截面形心C 简化为一主矢FR和一主矩M,若将它们沿三个选定的坐标轴(沿构件轴线建立x 轴,在所截横截面内建立y轴与z轴)分解,便可得到该截面上的3 个内力分量,与,以及3个内力偶矩分量Mx,My与Mz(图6.2(c))。
图 6.2由于整个构件处于平衡状态,其任一部分也必然处于平衡状态,故只需考虑A 部分的平衡,根据理论力学的静力平衡条件,即可由已知的外力求得截面上各个内力分量的大小和方向。
同样,也可取B 部分作为研究对象,并求得其内力分量。
显然,B 部分在截开面上的内力与A部分在截开面上的内力是作用力与反作用力,它们是等值反向的。
上述这种假想地用一平面将构件截分为两部分,任取其中一部分为研究对象,根据静力平衡条件求得截面上内力的方法,称为截面法。
其全部过程可以归纳为如下3 个步骤:(1) 在需求内力的截面处,假想地用一平面将构件截分为两部分,任取其中一部分为研究对象。
(2) 在选取的研究对象上,除保留作用于该部分上的外力外,还要加上弃去部分对该部分的作用力,即截开面上的内力。
(3) 由理论力学的静力平衡条件,求出该截面上的内力。
必须指出,在计算构件内力时,用假想的平面把构件截开之前,不能随意应用力或力偶的可移性原理,也不能随意应用静力等效原理.这是由于外力移动之后,内力及变形也会随之发生变化。
3.应力上节我们应用截面法分析了构件截面上的内力,但是,截面法仅能求得构件截面上分布内力系的主矢和主矩。
一般情况下,内力在截面上并不是均匀分布的。
为了描述内力系在截面上各点处分布的强弱程度,我们需引入内力集度(分布内力集中的程度)即应力的概念。
如图6.3(a)所示,在受力构件截面上任一点K 的周围取一微小面积Δ A,并设作用于该面积上的内力为Δ F ,则Δ A上分布内力的平均集度为(6.1)图 6.3称为Δ A上的平均应力。
由于截面上的内力一般并非均匀分布,因而平均应力之值及其方向将随所取Δ A的大小而异。
为了更准确地描述点K 的内力分布情况,应使Δ A趋于零,由此所得平均应力 的极限值,称为点K处的总应力(或称全应力),并用p 表示,即(6.2)显然,总应力p 的方向即Δ F 的极限方向。
为了分析方便,通常将总应力p 分解为垂直于截面的法向分量σ 和与截面相切的切向分量τ (图6.3(b))。
法向分量σ 称为正应力,切向分量τ 称为切应力。
显然,总应力p 与正应力σ 和切应力τ 三者之间有如下关系(6.3)应力量纲是[力]/[长度]2,在国际单位制中,应力单位是“帕斯卡”(Pascal)或简称帕(Pa),1Pa=1N/m。
由于这个单位太小,使用不便,故也常采用千帕(kPa)(1kPa=10Pa)、兆帕(MPa)(1MPa=10Pa)或吉帕(GPa)(1GPa=10Pa)。
6.5.思考题6.1 试说明下列各组物理量之间的区别和联系,常用单位和量纲。
(1)内力与应力; (2)应力与压强;(3)正应力、切应力、与全应力;(4)弹性与塑性。
6.2 何谓强度、刚度和稳定性?材料力学的任务是什么?6.3 何谓变形固体?材料力学对变形固体作了什么基本假设?其作用是什么?6.4 试述杆的几何特征,杆件变形的基本形式有几种?试各举一例。