流体阻力系数测定实验报告-3

合集下载

化工原理实验~流体流动阻力系数的测定实验报告

化工原理实验~流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告一、实验目的:1、掌握测定流体流动阻力实验的一般实验方法。

2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。

3、验证湍流区内摩擦阻力系数λ为雷诺系数Re和相对粗糙度的函数。

4、将所得光滑管的λ—Re方程与Blasius方程相比较。

二、实验器材:流体阻力实验装置一套三、实验原理:1、直管摩擦阻力不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。

影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下。

流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为△P=f (d, l, u,ρ,μ,ε)引入下列无量纲数群。

雷诺数Re=duρ/μ相对粗糙度ε/ d管子长径比l / d从而得到△P/(ρu2)=ψ(duρ/μ,ε/ d, l / d)令λ=φ(Re,ε/ d)△P/ρ=(l / d)φ(Re,ε/ d)u2/2可得摩擦阻力系数与压头损失之间的关系,这种关系可=△P/ρ=λ(l / d)u2/2用试验方法直接测定。

hf——直管阻力,J/kg式中,hfl——被测管长,md——被测管内径,mu——平均流速,m/sλ——摩擦阻力系数。

当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。

根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。

改变流速可测出不同Re下的摩擦阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。

(1)、湍流区的摩擦阻力系数在湍流区内λ=f(Re,ε/ d)。

对于光滑管,大量实验证明,当Re在3×103~105范围内,λ和Re的关系遵循Blasius关系式,即λ=0.3163 / Re0.25对于粗糙管,λ和Re的关系均以图来表示。

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告一、实验目的1、掌握流体流经直管和管件时阻力损失的测定方法。

2、了解摩擦系数λ与雷诺数 Re 之间的关系。

3、学习压强差的测量方法和数据处理方法。

二、实验原理流体在管内流动时,由于黏性的存在,必然会产生阻力损失。

阻力损失包括直管阻力损失和局部阻力损失。

1、直管阻力损失根据柏努利方程,直管阻力损失可表示为:\(h_f =\frac{\Delta p}{ρg}\)其中,\(h_f\)为直管阻力损失,\(\Delta p\)为直管两端的压强差,\(ρ\)为流体密度,\(g\)为重力加速度。

摩擦系数\(λ\)与雷诺数\(Re\)及相对粗糙度\(\frac{\epsilon}{d}\)有关,其关系可通过实验测定。

当流体在光滑管内流动时,\(Re < 2000\)时,流动为层流,\(λ =\frac{64}{Re}\);\(Re > 4000\)时,流动为湍流,\(λ\)与\(Re\)和\(\frac{\epsilon}{d}\)的关系可由经验公式计算。

2、局部阻力损失局部阻力损失通常用局部阻力系数\(\zeta\)来表示,其计算式为:\(h_f' =\frac{\zeta u^2}{2g}\)其中,\(h_f'\)为局部阻力损失,\(u\)为流体在管内的流速。

三、实验装置1、实验设备本实验使用的主要设备包括:离心泵、水箱、不同管径的直管、各种管件(如弯头、三通、阀门等)、压差计、流量计等。

2、实验流程水箱中的水经离心泵加压后进入实验管路,依次流经直管和各种管件,最后流回水箱。

通过压差计测量直管和管件两端的压强差,用流量计测量流体的流量。

四、实验步骤1、熟悉实验装置,了解各仪器仪表的使用方法。

2、检查实验装置的密封性,确保无泄漏。

3、打开离心泵,调节流量至一定值,稳定后记录压差计和流量计的读数。

4、逐步改变流量,重复上述步骤,测量多组数据。

5、实验结束后,关闭离心泵,整理实验仪器。

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

银纳米粒子制备及光谱和电化学性能表征- 1 -流体流动阻力的测定王晓鸽一、实验目的1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。

2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。

3. 测定流体流经管件、阀门时的局部阻力系数ξ。

4. 学会流量计和压差计的使用方法。

5. 识辨组成管路的各种管件、阀门,并了解其作用。

二、实验原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。

流体流经直管时所造成机械能损失称为直管阻力损失。

流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。

1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:h f =∆p f ρ=p 1−p 2ρ=λl d u 22即,λ=2d∆p fρlu 2式中:λ—直管阻力摩擦系数,无因次; d —直管内径,m ;∆p f —流体流经l 米直管的压力降,Pa ;h f —单位质量流体流经l 米直管的机械能损失,J/kg ;ρ—流体密度,kg/m3;l—直管长度,m;u—流体在管内流动的平均流速,m/s。

层流流时,λ=64 Re湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。

欲测定λ,需确定l、d,测定∆p f、u、ρ、μ等参数。

l、d为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得,u通过测定流体流量,再由管径计算得到。

∆p f可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。

求取Re和λ后,再将Re和λ标绘在双对数坐标图上。

2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。

本实验采用阻力系数法。

流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。

流体流动阻力的测定(化工原理实验报告)

流体流动阻力的测定(化工原理实验报告)

流体流动阻力的测定(化工原理实验报告)流体流动阻力的测定(化工原理实验报告)摘要:本实验研究了流体流动阻力的测定方法,以了解流阻比数据和参数对流体流动特性的影响。

实验中采用了空心管实验装置,在一定的压差试验条件下,通过压力表和熨斗流量计测量压力和流量,计算出流阻比系数。

通过实验,研究了流阻比系数随着实验参数(流量、温度、压力)变化的规律,从而获得一定规律性的微观流动特性数据。

关键词:流阻比;熨斗流量计;实验;流动阻力1 前言流体流动阻力是研究流体流动特性的一项重要参数。

它决定了流体在管道内流动时会受到什么样的阻力,直接影响着流体在设备内的流动性能和传热特性。

因此,准确测量流体流动阻力是研究管道流动的关键问题。

本实验旨在研究空心管装置测量的流阻比数据对流体流动特性的影响,以便获得微观流动特性数据,并用于管道设计、传热学的研究中。

2 实验目的1)研究在空心管实验装置内测量流阻比系数的变化规律:2)利用测量的流阻比系数,得出瞬态流体流动特性曲线,即流量与压力的变化规律; 3)通过实验有规律地分析,获得实验流体的微观流动特性参数。

3 实验装置本实验主要采用空心管实验装置(见图1),由电磁阀控制罐内的液体,带动空心管内的流体循环,保持流量一定,从而实现实验的要求。

该装置由如下几个部分组成:(1)空心管;(2)球阀;(3)高低压罐;(4)汽缸和气缸;(5)液体泵;(6)电磁阀;(7)水箱;(8)熨斗流量计;(9)压力表;(10)温度计。

4 实验方法1)确定实验条件:根据实验任务,确定温度、压力、流量等参数,以及电磁阀的控制时间;2)进行实验:根据实验条件,控制电磁阀的开启和关闭,实现空心管内的液体流动,同时调节实验参数,测量压力及流量;3)根据压力和流量,绘出流量-压力曲线,计算出对应的流阻比系数;4)根据实验数据,进行实验数据分析,探究实验参数变化时,流阻比系数变化规律,得出流体的微观流动特性参数。

5 实验数据在实验中,调节不同的参数,实现不同的实验条件,测量得到流量和压力的数据,根据测量的实验数据,画出Flow-Pressure曲线,结果如下表1所示:实验条件实测压力(MPa) 实测流量(M3/h)流阻比(MPa/m3/h)条件1 0.39 0.159 0.80条件2 0.51 0.159 1.06条件3 0.62 0.159 1.29条件4 0.68 0.159 1.41条件5 0.80 0.159 1.64表1 实验结果图2 Flow-Pressure曲线图6 结论1)根据上述的实验结果,可以发现,随着压力和流量的增加,流阻比也相应地增大;2)通过分析实验数据,可以获得一定的规律性的微观流动特性数据,即通过把不同的实验参数变量并入方程式中,可以根据需要精确地预测不同条件下,流体流动时的压力和流量变化规律;3)该测试结果可以作为设计管路时流体传热特性和流动特性的参考,更好地掌握管路中流体的流动特性。

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告摘要:通过测算不同流速和管道直径下流体的流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。

实验的结果表明,流体流动阻力与流速和管道直径的平方成正比,结果与理论计算值基本吻合。

一、实验原理在流体力学中,我们研究流体在管道中的运动和分布。

不同形状、不同截面的管道中,流体的流动速度和压强是不同的,流体的动能和势能也会随着时间和位置的变化而发生变化。

在流体流动中,管道内壁与流体的相互作用形成一定的阻力,这种阻力称为流体流动阻力。

实验中,我们设计了一套管道流体流动测量装置,通过测算流体在不同流速和管道直径下流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。

二、实验步骤1. 准备工作:将实验装置安装好,并连接好各个部件。

2. 流量测定:打开水泵,将水流导向流量计中,通过观察流量计中的示数,测定流体的流量。

3. 压降测定:利用几何水平仪测定与水平面夹角,计算出流体在管道中的压降。

4. 流速测定:通过测算流量和管道截面积,计算出流体的平均流速。

5. 重复实验:重复以上测定步骤,测定不同流速和管道直径下的流量和压降数据,以确定流体流动阻力与流速和管道直径的关系。

6. 数据处理:根据实验数据计算出流体流动阻力公式,并与理论计算值对比。

三、实验结果与分析1. 流量与管道直径的关系通过实验测定,流量与管道直径的平方成正比。

实验数据如下:流量 Q (m3/h) 1 2 3 4 5直径 D (cm) 1 1.5 2 2.5 32. 压降与流速的关系通过实验测定,压降与流速的平方成正比。

实验数据如下:流速 v (m/s) 0.67 1.13 1.33 1.51压降 h (m) 0.05 0.09 0.12 0.163. 流体流动阻力与流速和管道直径的关系根据实验得到的数据,流体流动阻力与流速和管道直径的平方成正比。

流体流动阻力公式为:f = αρv2 D2/4其中,f 为阻力系数,ρ 为流体密度,v 为平均流速,D 为管道直径,α 为系数。

流动流体综合实验报告(3篇)

流动流体综合实验报告(3篇)

第1篇一、实验目的1. 掌握流体流动阻力测定的基本原理和方法。

2. 学习使用流体力学实验设备,如流量计、压差计等。

3. 通过实验,了解流体流动阻力在工程中的应用,如管道设计、流体输送等。

4. 分析实验数据,验证流体流动阻力理论,并探讨其影响因素。

二、实验原理流体流动阻力主要分为直管摩擦阻力和局部阻力。

直管摩擦阻力是由于流体在管道中流动时,与管道壁面产生摩擦而导致的能量损失。

局部阻力是由于流体在管道中遇到管件、阀门等局部阻力系数较大的部件时,流动方向和速度发生改变而导致的能量损失。

直管摩擦阻力计算公式为:hf = f (l/d) (u^2/2g)式中:hf为直管摩擦阻力损失,f为摩擦系数,l为直管长度,d为管道内径,u 为流体平均流速,g为重力加速度。

局部阻力计算公式为:hj = K (u^2/2g)式中:hj为局部阻力损失,K为局部阻力系数,u为流体平均流速。

三、实验设备与仪器1. 实验台:包括直管、弯头、三通、阀门等管件。

2. 流量计:涡轮流量计。

3. 压差计:U型管压差计。

4. 温度计:水银温度计。

5. 计时器:秒表。

6. 量筒:500mL。

7. 仪器架:实验台。

四、实验步骤1. 准备实验台,安装直管、弯头、三通、阀门等管件。

2. 连接流量计和压差计,确保仪器正常运行。

3. 在实验台上设置实验管道,调整管道长度和管件布置。

4. 开启实验台水源,调整流量计,使流体稳定流动。

5. 使用压差计测量直管和管件处的压力差,记录数据。

6. 使用温度计测量流体温度,记录数据。

7. 计算直管摩擦阻力损失和局部阻力损失。

8. 重复步骤4-7,改变流量和管件布置,进行多组实验。

五、实验数据记录与处理1. 记录实验管道长度、管径、管件布置等信息。

2. 记录不同流量下的压力差、流体温度等数据。

3. 计算直管摩擦阻力损失和局部阻力损失。

4. 绘制直管摩擦阻力损失与流量关系曲线、局部阻力损失与流量关系曲线。

六、实验结果与分析1. 通过实验数据,验证了流体流动阻力理论,即直管摩擦阻力损失和局部阻力损失随流量增加而增大。

流体阻力测定实验报告

流体阻力测定实验报告

流体阻力测定实验报告实验目的,通过实验测定不同流速下流体对物体的阻力,探究流体阻力与流速、物体形状、流体粘度等因素的关系。

实验仪器,流体实验装置、流速计、物体模型。

实验原理,当物体在流体中运动时,流体对物体的阻力与流速、物体形状、流体密度、流体粘度等因素有关。

根据液体静力学原理,流体对物体的阻力与流速成正比,与物体形状、流体密度和粘度有关。

实验步骤:1. 将流速计安装在流体实验装置上,调节流速计至所需的流速。

2. 将物体模型放入流体实验装置中,使其在流体中运动。

3. 测定不同流速下物体受到的阻力,并记录实验数据。

实验数据处理:根据实验数据,绘制流速与阻力的关系曲线,分析不同流速下物体受到的阻力变化情况。

通过实验数据分析,得出流体阻力与流速成正比的结论,并探讨流体阻力与物体形状、流体粘度等因素的关系。

实验结果分析:实验结果表明,在相同流速下,不同形状的物体受到的阻力不同。

流体阻力与物体形状有一定的关系,表现为不同形状的物体在同一流速下受到的阻力不同。

此外,流体的粘度也会影响物体受到的阻力,粘度越大,阻力也越大。

结论,流体阻力与流速成正比,与物体形状、流体粘度等因素有关。

在实际应用中,需根据具体情况选择合适的物体形状和流速,以降低流体对物体的阻力,提高流体运动效率。

实验总结,通过本次实验,我们深入了解了流体阻力的测定方法和影响因素,对流体力学有了更深入的理解。

在今后的工程实践中,将更加注重流体阻力的研究和应用,为工程设计和生产提供更加科学的依据。

通过本次实验,我们不仅掌握了流体阻力测定的方法,还对流体阻力与流速、物体形状、流体粘度等因素的关系有了更深入的认识。

这对我们今后的学习和科研工作都具有重要的指导意义。

希望通过今后的实践和研究,能够进一步完善流体阻力的理论体系,为工程实践和科学研究提供更加可靠的理论基础。

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告实验报告:流体流动阻力的测定摘要:本实验通过测量流体在管道中的压降,来确定流体流动阻力的大小。

采用了排水法和泄水法分别测量不同直径的导管中水的流速和压降,并通过处理实验数据得到了流体的流动阻力,并与理论值进行了比较。

引言:液体或气体在管道中流动时会遇到一定的阻碍力,即流动阻力。

流动阻力的大小与管道直径、流速、流体性质等因素有关,因此需要进行实验测定。

实验仪器和材料:1. 导管:直径分别为2cm、4cm、6cm的塑料导管。

2.水泵:用于提供水流。

3.节流装置:用于调节水流量。

4.U型水银压力计:用于测量压降。

5.超声波流速仪:用于测量流速。

6.计时器:用于计时。

7.温度计:用于测量流体温度。

实验步骤:1. 将2cm直径的导管连接至水泵和节流装置,并调节节流装置使水流量适中。

2.打开水泵,使水开始流动,打开计时器记录时间。

3.使用超声波流速仪测量水在导管中的流速,并记录测量值。

4.同时使用U型水银压力计测量水在导管两端的压降,并记录测量值。

5.根据实验数据计算流体的流动阻力,并记录结果。

6. 重复以上步骤,分别对4cm、6cm直径的导管进行实验测量。

实验数据与结果:对于2cm直径的导管,测得的流速为0.032m/s,压降为2cm水柱。

通过计算得出流动阻力为0.053Pa·s/m^3对于4cm直径的导管,测得的流速为0.024m/s,压降为4cm水柱。

通过计算得出流动阻力为0.083Pa·s/m^3对于6cm直径的导管,测得的流速为0.018m/s,压降为6cm水柱。

通过计算得出流动阻力为0.093Pa·s/m^3讨论与分析:通过实验测量得到的流动阻力与导管直径成反比,与流体流速成正比。

这与理论预期是一致的。

由于实验条件的限制,实验中可能存在误差,例如流速和压降的测量误差、流体温度的变化等。

同时,水的物理性质也可能受实验环境的影响而发生变化,因此计算得到的流动阻力也可能不完全准确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理实验
实验题目:
——流体流动阻力的测定姓名:沈延顺
同组人:覃成鹏
臧婉婷
王俊烨
实验时间:2011.10。

24
一、实验题目:流体流动阻力的测定
二、实验时间:2011.10.24
三、姓名:沈延顺
四、同组人员:覃成鹏、臧婉婷、王俊烨
五、实验报告摘要:
进行流体流动的学习,知道流体的性质和如何计算流体阻力的方法。

通过流体阻力实验,包括不锈钢管、镀锌钢管、突然扩大管路和层流管路的测定流体的流量和压降通过伯努利方程来推倒阻力系数和雷诺数之间的关系,来验证层流、湍流雷诺数与阻力系数之间的关系。

流体阻力的大小关系到输送机械的动力消耗和输送机械的选择,测定流体流动阻力对化工及相关过程工业的设计、生产和科研具有重要意义。

六、实验目的及任务:
1、掌握测定流体流动阻力实验。

2、测定直管的摩擦阻力系数λ及突然扩大管路和阀门的局部阻力系数ζ。

3、测定层流管的摩擦阻力。

4、验证湍流区内摩擦阻力系数λ为雷诺数Re和相对粗糙度的函数。

5、将所得光滑管的λ—Re方程与Blasius方程相比较。

七、基本原理:
1、直管摩擦阻力
不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流的作
用产生摩擦阻力;流体在流过突然扩大管、弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。

影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得以在一定条件下具有普遍意义的结果,其方法如下:流体流动阻力与流体的性质,流体流经处的结合尺寸以及流动状态有关,可表示为:
引入下列无量纲数群。

雷诺数
相对粗糙度
管子长径比
从而得到:

可得摩擦阻力系数与压头损失之间的关系,这种关系可用实验方法直接测定。

式中——直管阻力,J/kg
被测管长,m
d——被测管内径,m
u——平均流速,m/s
λ——摩擦阻力系数。

当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面之间的静压强差,即为流体流过两截面间的流动阻力。

根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。

改变流速可测出不同Re下的摩擦阻力系数,这样就可得出某一相对粗糙度下管子的λ——Re关系。

(1)湍流区的摩擦阻力系数
在湍流区内。

对于光滑管,大量实验证明,当Re在
范围内,λ与Re的关系遵循Blasius关系式,即
对于粗糙管,λ与Re的关系均以图来表示。

(2)层流的摩擦阻力系数
2、局部阻力
式中,ζ为局部阻力系数,其与流体流过的管件的集合形状及流体的Re有关,当Re大到一定值后,ζ与Re无关,成为定值。

八、实验装置和流程:
实验装置
本实验装置如下图所示,管道水平安装,实验用水循环使用。

其中No.1管委层流管,管径Φ(6x1.5)mm,两侧压点之间距离为1m,No.2管安装有球阀和截止阀两种管件,管径为Φ(27x3)mm,No.3管为Φ(27x2.75)mm的不锈钢管。

No.4管为Φ(27x2.75)mm镀锌钢管,直管阻力的两测压口碱的距离为1.5m.No.5为突然扩大管,管子有Φ(22x3)mm扩大到Φ(48x3)mm,a1,a2为层流管两端的测压口;b1,b2表示球阀的两测压口;c1,c2表示截止阀的两测压口;d1,d2表示不锈钢管的两测压口;e1,e2表示粗糙管的两测压口;f1,f1表示突然扩大管的两测压口。

系统装有孔板流量计(孔径φ24.00mm,孔流系数)以
测量流量。

实验的测量系统如上图的左侧所示,共有两套U型压差计,一套正U形压差计(正U形压差计中指示液为CCL4,其密度为1595kg/m3)和一组切换阀。

正U形压差计用来测量层流管的阻力,他也可用倒U形压差计测量;倒U型压差计用来测量孔板压差,直管阻力和局部阻力,各测压点均与面板后两个汇集管相连,通过面板上切换阀与倒U型压差计相连。

前者用来测量直管阻力和局部阻力,后者用来测量孔板压差,其测压口与装置相同编号的测压口相连。

实验流程图
九、操作要点:
1、启动离心泵,打开被测管线上的开关阀及面板上与其相应的切换阀,关闭其他的开关阀和切换阀,保证测压点一一对应。

2、系统要排净气体使液体流动。

设备和测压管线中的气体都要排净,检查是否排净的方法是当流量为零时,观察U型压差计中两液面是否水平。

3、读取数据时,应注意稳定后再读数。

测量直管摩擦阻力时,流量由大到小,充分利用面板量程测取10组数据,然后再从小到大测取几组数据,以检查数据的重复性。

测定突然扩大管、球阀和截止阀的局部阻力时,各测量3次。

层流管的流量用量筒与秒表测取。

4、测完一根管的数据后,应将流量调节阀关闭,观察压差计的两液面是否水平,水平时才能更换另一条管路,否则全部数据无效。

同时要了解各种阀门的特点,学会使用阀门,注意阀门的切换,同时要关严,防止内漏。

十、原始数据:
不锈钢管
镀锌钢管
突然扩大管路
层流管路
十一、实验数据处理:
实验计算方法,原理,公式如下:
流体在管道内流动时,由于流体的粘性和涡流的影响会产生阻力作用,流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,他们之间的关系如下:
1、不锈钢管数据处理如下:处理过程如下:
整理后的得到的数据如下:
2、镀锌钢管数据处理如下:处理过程如下:
处理后的数据如下:
3、由“不锈钢管”和“镀锌钢管”数据得到λ——Re图如下:
λ——Re关系图
由上图可知道:
1、不锈钢管的曲线函数是:相关度是:0.9751,即λ—
—Re的关系是:.
2、镀锌钢管的曲线函数是:相关度是:0.969,即λ—
—Re的关系是:。

3、实际上Blasius关系式是
4、根据实验和实验数据知道曲线相关度分别是0.9751和0.969和函数的
表达式可以说明实验在有外在的条件干涉下证明和验证了Blasius方
程。

4、突然扩大管数据处理:
处理过程如下:
处理后的数据如下:
5、层流数据处理如下:
数据处理过程如下:
处理完的数据如下:
层流阻力系数和雷诺数的关系图
十二、结果结论:
1、对于光滑管理论的摩擦阻力系数和实验测定的摩擦阻力系数所差无几。

而对
于镀锌钢管来说用Blasius公式算出的数据与实验的数据相差的很远。

2、通过双对数坐标对不锈钢管和镀锌钢管的摩擦阻力系数和雷诺数的关系可以
看出所得的数据做成的曲线的方程,和Blasius方程很相近。

3、对于层流管的摩擦阻力系数的实验数据所得的值和理论公式所得的值几乎一
样。

4、对于突然放大管路的摩擦阻力系数的值算出来三组数据都不相等,但是差距
很小,可以认为是一样的。

十三、分析讨论:
1、在不锈钢管实验中,由最后的数据显示摩擦系数的值和理论摩擦系数的值很
相近但还是有有一定的差距,我想这是由于下面的几点原因:第一,不锈钢管可以看作是光滑管但它还是有一定的阻力,并不是不受阻力的影响。

第二,实验中温度、压差和流量都不是一个定值,是在变化的。

第三,在实验过程中和数据处理中有效合理的处理数据而造成了一定的误差。

2、通过“不锈钢管”、“镀锌钢管”和“层流管”实验数据的显示可以看出:在
湍流区的摩擦阻力系数,对于光滑管,实验可以证明当Re在3000到300000范围内λ与Re的关系遵循Blasius关系式,即:。

而对于湍
流区的粗糙管路,λ与Re之间的关系就只能用图来表示。

而对于层流的摩擦阻力系数是符合:的关系的。

3、对于突然放大管路来说,从理论上来讲,摩擦阻力系数应该是相等的,但是
在实验的数据表明摩擦阻力系数并不相等。

这是由于我们在测定压差时,压差传感器的两端并不是在离突然放大管路很近的地方,而是
d1=140mm,d2=280mm距离还是很多的。

所以会造成了最后的数据并不相等,而是有很微小的差异。

十四、思考题
2、答:我认为对于相对粗糙度相同的其他数据不同的设备测量的数据是可以关联到一条曲线上的。

因为压差是与管路的长度,直径,流体的流速,密度,黏度和粗糙度相关。

但是可以将这六个数据可以通过量纲分析的方法可以变成压差只于三个数组群有关,即雷诺数,相对粗糙度和长径比。

当相对粗糙度相等时,就可以通过数据的相连关就可以使λ与Re在一条曲线上。

3、答:适用,应为数据的处理是通过三个数群来计算,而这三个数群的纲领都是一,与流体的性质无关。

所以可以适用于其他的牛顿流体。

4、答:无关,测量的阻力时是与虚拟压差有关,摆放的位置不会影响流体的虚拟压强差,所以摆放的位置状态不会影响测量结果的。

相关文档
最新文档