数学建模复习题
大学数学建模课程真题试卷

大学数学建模课程真题试卷一、选择题(每题 5 分,共 20 分)1、在数学建模中,以下哪种模型常用于预测未来的趋势?()A 线性回归模型B 逻辑回归模型C 聚类分析模型D 决策树模型2、对于一个优化问题,若目标函数为凸函数,约束条件为线性,则该问题属于()A 线性规划问题B 非线性规划问题C 凸规划问题D 整数规划问题3、以下哪个方法常用于求解微分方程?()A 有限差分法B 蒙特卡罗方法C 层次分析法D 主成分分析法4、在建模过程中,数据预处理的主要目的是()A 减少数据量B 提高数据质量C 增加数据多样性D 便于数据存储二、填空题(每题 6 分,共 30 分)1、数学建模的基本步骤包括:问题提出、_____、模型假设、模型建立、模型求解、模型分析与检验、_____。
2、线性规划问题的标准形式中,目标函数为_____,约束条件为_____。
3、常见的概率分布有_____、_____、正态分布等。
4、评价模型优劣的指标通常包括准确性、_____、_____等。
5、一个具有 n 个变量,m 个约束条件的线性规划问题,其可行域是由_____个顶点组成的凸多边形。
三、简答题(每题 10 分,共 30 分)1、请简述层次分析法的基本步骤。
2、解释什么是敏感性分析,并说明其在数学建模中的作用。
3、给出一个实际问题,并简述如何将其转化为数学建模问题。
四、应用题(20 分)某工厂生产 A、B 两种产品,已知生产 A 产品每件需要消耗原材料2 千克,劳动力 3 小时,利润为 5 元;生产 B 产品每件需要消耗原材料 3 千克,劳动力 2 小时,利润为 4 元。
现有原材料 180 千克,劳动力 150 小时,问如何安排生产计划,才能使工厂获得最大利润?(1)建立数学模型(8 分)(2)使用软件求解(给出求解过程和结果)(12 分)接下来,我们对这份试卷进行一下分析。
选择题部分主要考查了学生对数学建模中一些基本概念和常见模型方法的理解。
数学建模复习

数学建模复习
复习题
1.什么是数学模型和数学建模?数学建模的⽅法和步骤?数学模型的主要特点以及分类。
2.椅⼦放稳问题
3.核军备竞赛的模型及分析,如⼄安全线的性质及分析等,模型解释及应⽤
4.存贮模型相关内容和⽅法
5.植物基因的分布
6.指数增长模型和Logistic 模型,求解、性质及其应⽤
7.某企业⽣产两种混合配料A 和B ,每100千克的成本分别为100元和80元。
两种混合配料含三种营养成分,但它们的含量各不相同,在每100千克混合配料中各种营养成分的含量分别如下表:
少25千克,营养成分丙⾄少36千克,问满⾜这些要求的最低成本为多少?⽤LINDO 软件如何求解。
8. 钢管下料问题及其数学规划模型
9. 试述最⼩⼆乘法的基本原理,并求解如下线性最⼩⼆乘问题。
设通过观测或实验得到⼀列点(,), 1,2,,.i i x y i n 它们⼤体在⼀条直线上,即
⼤概来说可⽤直线⽅程来反映变量x 与y 之间的对应关系。
现在就要确定⼀条直线使得与这n 个点的偏差平⽅和最⼩(即最⼩⼆乘⽅),请给出该直线⽅程。
10. 差分⽅程,市场经济中的蛛⽹模型
11. 酒精残留模型
12. 层次分析法的建模步骤及应⽤
13. 最速降线问题的建模与分析
14. 易拉罐的最优设计问题
15. 消费者均衡问题。
2023全国数学建模题目

2023全国数学建模题目一、选择题(每题3分,共15分)下列哪个数不是质数?A. 2B. 3C. 9D. 13若一个圆的半径是5cm,则它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π下列哪个方程表示的是一条直线?A. y = x²B. y = 2x + 1C. y = 1/xD. xy = 1下列哪个数最接近√10?A. 2B. 3C. 4D. 5一个三角形的两边长分别为3和4,第三边的取值范围是多少?A. 1 < x < 7B. 2 < x < 8C. 3 < x < 9D. 4 < x < 10二、填空题(每题4分,共20分)绝对值等于5的数是_______。
已知|a - 3| + (b + 2)² = 0,则 a + b = _______。
已知一个正方体的棱长是6cm,则它的体积是_______ cm³。
方程2x - 3 = 5 的解是x = _______。
已知扇形的圆心角为120°,半径为3cm,则扇形的面积是_______ cm²。
三、计算题(每题10分,共30分)计算:√27 - | - 2| + (1/2)^(-1) - (π - 3)^0。
解方程组:{x + 2y = 5,3x - y = 8.}已知一个矩形的面积是48cm²,一边长为6cm,求另一边长。
四、应用题(每题15分,共30分)某商店购进一批苹果,进价为每千克5元,售价为每千克8元。
若商店想要获得至少300元的利润,则至少需要售出多少千克的苹果?一辆汽车从A地开往B地,前两小时行驶了120km,后三小时行驶了180km。
求这辆汽车的平均速度。
数学建模复习完整版

数学建模复习HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。
(2)建立数学模型的一般方法是什么?在建模中如何应用这些方法,结合实例加以说明。
二(10分)、(1).简述数学建模的一般步骤,分析每个步骤的主要内容和注意事项。
(2)简述数学模型的表现形态,并举例说明。
三(10分)、(1)简述合理分配席位的Q -值方法,包括方法的具体实施过程,简述分配席位的理想化原则。
(2)建立录像机记数器读数与录像带转过时间之间的关系模型,包括模型假设与模型建立全过程。
四 (15分)(1)建立不允许缺货情况下的存储模型,确定订货周期和订货量(包括问题叙述,模型假设和求解过程).(2)建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r k r >,.在每个生产周期 T 内,开始的一段时间(00T t ≤≤)一边生产一边销售,后来的一段时间T t T ≤≤0()只销售不生产.设每次生产开工费为1c ,单位时间每件产品贮存费为2c ,(a)求出存储量)(t q 的表示式并画出示意图。
(2)以总费用最小为准则确定最优周期T ,讨论r k >>的情况. 五(15分)、(1)建立传染病传播的SIS 模型并求解(简述假设条件和求解过程),(2)建立SIR 模型,并用相平面方法求解,在相平面上画出相轨线并进行分析。
六(15分)(1)建立一般的战争模型,分析各项所表示的含义。
(2)在假设a b y x 9,00==条件下对正规战争模型(忽略增援和非战斗减员)进行建模求解,确定战争结局和结束时间。
七(15分)设渔场鱼量的自然增长服从模型x Nrx x ln = ,又单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量mh 及获得最大产量的捕捞强度m E 和渔场鱼量水平0x .八(10分)假设商品价格k y 和供应量k x 满足差分方程求差分方程的平衡点,推导稳定条件参考答案与评分标准一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。
数学建模小学试题及答案

数学建模小学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是偶数?A. 2B. 3C. 4D. 5答案:A2. 一个长方形的长是8厘米,宽是4厘米,那么它的面积是多少平方厘米?A. 16B. 24C. 32D. 48答案:C3. 一个数的3倍是45,这个数是多少?A. 15B. 12C. 10D. 5答案:A4. 一个班级有40名学生,其中女生占全班人数的1/3,那么女生有多少人?A. 10B. 13D. 20答案:D5. 一个数加上它的一半等于10,这个数是多少?A. 5B. 6C. 7D. 8答案:B6. 一个圆的直径是10厘米,那么它的半径是多少厘米?A. 5B. 10C. 15D. 20答案:A7. 一个数的4倍是32,这个数是多少?A. 6B. 8C. 10D. 12答案:B8. 一个班级有60名学生,其中男生占全班人数的2/3,那么男生有多少人?A. 40B. 50C. 60D. 809. 一个数减去它的1/4等于9,这个数是多少?A. 12B. 11C. 10D. 9答案:A10. 一个长方形的长是10厘米,宽是5厘米,那么它的周长是多少厘米?A. 30B. 25C. 20D. 15答案:A二、填空题(每题4分,共20分)1. 一个数的5倍加上20等于50,这个数是______。
答案:62. 一个数的3倍减去10等于20,这个数是______。
答案:103. 一个班级有50名学生,其中男生占全班人数的3/5,那么男生有______人。
答案:304. 一个数的2倍减去5等于15,这个数是______。
答案:105. 一个长方形的长是12厘米,宽是8厘米,那么它的面积是______平方厘米。
答案:96三、解答题(每题10分,共50分)1. 一个数的4倍加上8等于40,求这个数。
答案:设这个数为x,则有4x + 8 = 40。
解这个方程,我们得到4x = 32,所以x = 8。
(完整版)数学建模复习内容带习题答案

考试内容分布:1、线性规划2题,有1题需编程;2、非线性规划2题,有1题需编程;3、微分方程1题,需编程;4、差分方程2题,纯计算,不需编程;5、插值2题,拟合1题,纯计算,不需编程;;6、综合1题(4分),纯计算,不需编程。
一、列出下面线性规划问题的求解模型,并给出matlab计算环境下的程序1.某车间有甲、已两台机床,可用于加工三种工件,假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400,600和500,且已知用两种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。
问怎样分配车床的加工任务,才能即满足加工工件的要求,又使加工费用最低。
(答案见课本P35, 例1)2.有两个煤厂A,B,每月进煤分别不少于60t、100t,它们负责供应三个居民区的用煤任务,这三个居民区每月需用煤分别为45t, 75t, 40t。
A厂离这三个居民区分别为10km, 5km, 6km,B厂离这三个居民区分别为4km, 8km, 15km,问这两煤厂如何分配供煤,才能使总运输量最小?(1)问题分析设A煤场向这三个居民区供煤分别为x1,x2,x3;B煤场向这三个居民区供煤分别为x4,x5,x6,则min f=10*x1+5*x2+6*x3+4*x4+8*x5+15*x6,再根据题目约束条件来进行解题。
(2) 模型的求解>> f=[10 5 6 4 8 15];>> A=[-1 -1 -1 0 0 00 0 0 -1 -1 -1-1 0 0 -1 0 00 -1 0 0 -1 00 0 -1 0 0 -1];>> b=[-60;-100;-45;-75;-40];>> Aeq=[];>> beq=[];>> vlb=zeros(6,1);>> vub=[];>> [x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)Optimization terminated.(3) 结果分析x =0.0000 20.0000 40.0000 45.0000 55.0000 0.0000 fval = 960.0000即A 煤场分别向三个居民区供煤0t,20t,40t ;B 煤场分别向三个居民区供煤45t,55t,0t 可在满足条件下使得总运输量最小。
初中数学建模试题及答案

初中数学建模试题及答案一、单项选择题(每题3分,共30分)1. 某工厂生产一批零件,原计划每天生产100个,实际每天生产120个,原计划需要30天完成,实际需要多少天完成?A. 20天B. 25天C. 30天D. 35天答案:B2. 一个长方体的长、宽、高分别为2厘米、3厘米、4厘米,求其体积。
A. 12立方厘米B. 24立方厘米C. 36立方厘米D. 48立方厘米答案:C3. 某商店销售一种商品,进价为50元,售价为70元,若打8折销售,利润率为多少?A. 20%B. 30%C. 40%D. 50%答案:B4. 一个圆的半径为5厘米,求其面积。
A. 78.5平方厘米B. 157平方厘米C. 78.5平方分米D. 157平方分米答案:A5. 一个班级有50名学生,其中男生占60%,女生占40%,求男生和女生各有多少人?A. 男生30人,女生20人B. 男生30人,女生20人C. 男生25人,女生25人D. 男生35人,女生15人答案:B6. 某工厂生产一批零件,原计划每天生产100个,实际每天生产120个,原计划需要30天完成,实际需要多少天完成?A. 20天B. 25天C. 30天D. 35天答案:B7. 一个长方体的长、宽、高分别为2厘米、3厘米、4厘米,求其体积。
A. 12立方厘米B. 24立方厘米C. 36立方厘米D. 48立方厘米答案:C8. 某商店销售一种商品,进价为50元,售价为70元,若打8折销售,利润率为多少?A. 20%B. 30%C. 40%D. 50%答案:B9. 一个圆的半径为5厘米,求其面积。
A. 78.5平方厘米B. 157平方厘米C. 78.5平方分米D. 157平方分米答案:A10. 一个班级有50名学生,其中男生占60%,女生占40%,求男生和女生各有多少人?A. 男生30人,女生20人B. 男生30人,女生20人C. 男生25人,女生25人D. 男生35人,女生15人答案:B二、填空题(每题4分,共20分)1. 一个长方体的长、宽、高分别为3厘米、4厘米、5厘米,其体积为____立方厘米。
数学建模复习题

数学建模复习题1.把下⾯的线性规划问题化为对偶形式32132min x x x S +-=≥≥-=++-≤-+≥+-⽆⾮负限制321321321321,0,022203282x x x x x x x x x x x x1.把下⾯的线性规划问题化为标准形式32132min x x x S +-=≥≥-=++-≤-+≥+-⽆⾮负限制321321321321,0,022203282x x x x x x x x x x x x2某⼤学⽣毕业在即,有三个单位A,B,C 可选择,假设他主要考虑如下因素:(1)单位⼯资待遇,(2)单位所在城市,(3)继续深造条件(4)发展条件(5)专业爱好。
试建⽴层次结构模型,并叙述层次分析的基本步骤。
2.如果要对美、俄、中、英、法、⽇、德等⼤国的国家综合势⼒进⾏分析判断,请你⽤层次分析法从国民收⼊、军事⼒量、科技⽔平、社会稳定、对外贸易五⽅⾯建⽴个层次结构模型来描述此问题,并写出基本步骤。
3在培养细菌的实验中,细菌的增长率与总数成正⽐。
如果细菌总数在24⼩时内由100增⾄800,那么前48⼩时后总数是多少?1.在椅⼦放稳问题的数学模型中,假设四脚连线呈正⽅形,试构造模型并求解1.在椅⼦放稳问题数学模型的假设条件中,将四脚连线呈正⽅形改为呈长⽅形,其余不变,试构造模型并求解2⽤单纯形求解213max x x S +=≥≤≤+0,68221121x x x x x2.家具公司⽣产桌⼦和椅⼦,⽤于⽣产的全部劳动⼒共计450个⼯时,原料是400个单位的⽊材,每张桌⼦要使⽤15个⼯时的劳⼒,20个单位的⽊材,售价80元。
每把椅⼦使⽤10个⼯时,⽤材5个单位,售价45元。
问为达到最⼤收益,应如何安排⽣产?2.左图是某新建公园的游览路线平⾯图,如果让你设计公园的⼊⼝和出⼝,你把它们设在什么位置,并说明理由。
下图是⼀个线路⽹,连线上的数字表⽰两点之间的距离,寻找⼀条由A 到E 的路线,使得总距离最短.5.某地区⼀条河流中的⼩岛与两岸之间建有12座桥(如图),下列有关⼀次不重复遍历所有的桥的说法()是正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学建模》公选课复习题
一、判断题:(对的打√,错的打×)
(1) MATLAB 中变量的第一个字母必须是英文字母.-------- --( )
(2) ones( 3 )命令可以生成一个3阶全零矩阵. ----------------( )
(3) 命令[1,2,3]^2的执行结果是[1,4,9].-------------------------( )
(4) 一元线性回归既可以使用regress 也可以使用polyfit. ------(
) (5) LINGO 集合语言集合段以“set:”开始“endset ”结尾. ---(
) (6) MATLAB 中变量名不区分大小写.----------------------------( )
(7) 多元线性回归既可以使用regress 也可以使用nlinfit. -----------(
) (8) 命令linspace(0,1,100)共产生100个点. ----------------------(
) (9)用LINGO 程序中@Gin(x)表示x 取整数. -----------( )
(10) LINGO 集合语言数据段以“data:”开始“enddata”结尾------(
) 二、用MATLAB 命令完成如下矩阵操作:
(1)创建矩阵A=⎥⎥⎦
⎤
⎢⎢⎣⎡--252013132;
(2)求A 的所有元素的最大值, 赋给x
(3)取出A 的第2行所有元素和第3列所有元素,分别赋给B 和C;
(4)求A 的逆矩阵, 赋给D.
(5)创建一个矩阵B 为3阶全1矩阵;
(6)修改B 的第2行第3列元素为2;
(7)删除B 的第1列所有元素;
(8)求B 的行列式,赋值给x.
三、(1)使用for 循环结构,设计MATLAB 程序,求∑=100
32n n .
(2)使用for 循环结构,设计MATLAB 程序,求10021n n n
=-∏ 四、某工厂利用原材料甲、乙、丙生产A 、B 、C 三种产品,有关资料如表:
(1)试建立使该问题利润最大的数学模型。
(2)写出求解该问题的LINGO 程序。
五、某工厂生产A 、B 两种产品都需要经过装配和检验两道工序,如果每天可用于装配的工时只有100h, 可用于检验的工时只有120h,各种产品每件需占用工序时数和可获得利润如表所示:
(1)试建立使该问题利润最大的数学模型。
(2)写出求解该问题的LINGO 程序。
六、将容器1放入一密闭恒温(100度)的容器2中进行加热. 假设容器1的温度变化率与容器2与1的温度差成正比
(1)建立容器1的温度变化模型并求出通解;
(2)试写出根据下表建立温度差与时间回归方程所涉及的MATLAB命令
时间2345678910
温度差21
七、(1)画出下图的最优树(2)求最优树的权和
八、某地拟建一新厂以满足市场对某种产品的需要。
有三个方案可供选择:
a:建大厂,需投资350万元。
若销路好,可以年获利100万元;但若销路差1
将年亏损25万元,服务期为10年。
a:建小厂,需投资145万元。
若销路好,可以年获利40万元;若销路差则2
年获利30万元,服务期为10年。
a:先建小厂,若销路好,三年后再扩建,需追加投资200万元,扩建后每年3
获利95万元;服务期为7年。
根据市场预测,该产品10年内销路好的概率为,销路不好的概率为。
试用决策树方法选定最佳方案。
九、现有3个产粮地和4个粮食需求地,供应量、需求量(万吨)以及单位运价(元/吨)如表所示:
运价需求地
B1 B2 B3 B4供应量
产粮地
安排一个运输计划,使总的运输费用最少。
建立规划模型,用LINGO集合语言编程.
参考答案
一、√××√×××√√√
二、(1)A=[2,3,1;3,-1,0;2,5,-2] (2)x=max(max(A)) (3)B=A(2,:);C=A(:,3)
(4)D=inv(A) (5)A=ones(3) (6) B(2,3) =2 (7) B(:,1)=[] (8)x=det(A)
三、(1)clear;s=0;
for n=3:100
s=s+n^2;
end
s
(2)clear;
s=1;
for n=2:100
s=s*(n-1)/n;
end
s
四、 解:(1)设A 、B 、C 三种产品的生产量为x 1、x 2、x 3,利润z ,则有:
123
123123123123max 423..2200
23500
22600
,,0
z x x x s t x x x x x x x x x x x x =++++≤++≤++≤≥ (2)LINGO 程序:
max 4*12*23*3;
2*123200;12*23*3500;
2*12*23600;
x x x x x x x x x x x x =++++<=++<=++<= 五、解:(1)设A 、B 产品的生产量为x 1、x 2,利润z ,则有:
12
12121212max 64..23100
42120
,0
z x x s t x x x x x x x x =++≤+≤≥,取整
(2)LINGO 程序
max 6*14*2;
2*13*2100;
4*12*2120;@(1);
@(2);
x x x x x x gin x gin x =++<=+<=
六、解:(1)设时刻t min 时容器1的温度为x,则有: )100(x k dt
dx -=,其中k 为比例系数,待定
解得通解为kt ce x --=100其中k ,c 为待定系数。
(2)令x y -=100表示容器2与1的温度差,则kt c y ce y kt -=⇒=-ln ln 记k b c a y z -===,ln ,ln 则bt a z +=为线性回归模型 程序:clear;t=[2:10]’;y=[,21,,,,,,,]’;z=log(y); X=[ones(size(y)),t] ;
[b,bint,r,rint,stats]=regress(z, X )
c=exp(b(1)) k=-b(2)
七、解:(1)最优生产树为:
(2)最小权和为18
八、
选方案3a
九、
解:假设 表示第i 个产粮地运往第j 个需求地的运量
(万吨)用Z 表示总运输费用,则得:
LINGO 程序:
model:
sets:
chandi/1..3/:chanliang;
xiaodi/1..4/:xuqiuliang;
yunfei(chandi,xiaodi):c,x;
endsets
data:
chanliang=10,8,5;
xuqiuliang=5,7,8,3;
c=3,2,6,3
5,3,8,2
4,1,2,9;
enddata
,1,2,3;1,2,3,4ij x i j ==111213142122232431323334111213142122232431323334112131122232132333142434min /100003263538242910855:7830,1,2,31,2,3,4ij
Z x x x x x x x x x x x x x x x x x x x x x x x x x x x st x x x x x x x x x x i j =++++++++++++++=⎧+++=+++=++=⎨++=++=++=≥==⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
min=@sum(yunfei:c*x);
@for(chandi(i):@sum(xiaodi(j):x(i,j))= chanliang(i)); @for(xiaodi(j):@sum(chandi(i):x(i,j))= xuqiuliang(j)); end。