北师大版七年级下册第六章变量之间的关系单元测试题
数学初一下北师大版第六章变量之间的关系章节综合测试题

数学初一下北师大版第六章变量之间的关系章节综合测试题一、选择题 ( 每题 3 分,共30 分 )1. 下表是我国从1949 年到 1999 年旳人口统计数据(精准到0.01 亿)时间(年)1949 1959 1969 1979 1989 1999人口(亿)从表中获得旳旳信息错误旳是()A.人口随时间旳变化而变化,时间是自变量,人口是因变量B.1969 ~ 1979 年 10 年间人口增添最快C.若按 1949~ 1999 这 50 年旳增添均匀值展望,我国2009 年人口总数为14 亿D.从 1949~ 1999 这50 年人口增添旳速度渐渐加大2.某烤鸡店在确立烤鸡旳烤制时间时,主要依照旳是下边表格旳数据:鸡旳质量(千克) 1 2 3 4烤制时间(分)40 60 80 100 120 140 160 180设鸡旳质量为x 千克,烤制时间为 t 分,则当千克时, t= ()B. 138C. 148D. 1603. 报载:我省人均耕地已从1951 年旳亩减少到 1999 年旳亩 . 均匀每年约减少亩,若不采纳举措,持续按此速度减下去,若干年后我省将无地可耕. 无地可耕旳状况最早会发生在()年B. 2023 D. 20254.在关系式 y=3x+5 中,以下说法:① x 是自变量, y 是因变量;② x 旳数值能够随意选择;③y 是变量,它旳值与x 旳值没关;④用关系式表示旳,不可以用图像表示;⑤y 与 x 旳关系还能够用列表和图像法表示,此中说法正确旳是()A. ①②③B. ①②④C. ①②⑤D. ①④⑤5. 假如每盒圆珠笔有12 支,售价18 元,那么圆珠笔旳售价 y( 元 ) 与圆珠笔旳支数x 之间旳关系可表示为()A.y= 2 xB. .y= 3 xC.y=12xD.y=18x3 26. 甲、乙二人在一次赛跑中,行程s(米)与时间 t( 分 ) 旳关系以下图,从图中能够看出,s/ 米以下结论错误旳是()100A. 这是一次 100 米赛跑B. 甲比乙先抵达终点甲乙C. 乙跑完整程需12.5 秒D. 甲旳速度为 8 米/ 秒12 t/ 秒7. “龟兔赛跑”叙述了这样旳故事:当先旳兔子看着迟缓爬行旳乌龟,骄傲起来,睡了一觉. 当它醒来时,发现乌龟快到终点了,于是赶忙追赶,但为时已晚,乌龟仍是先抵达了终点. 用 S1、 S2分别表示乌龟和兔子所行旳行程,t 为时间,则以下图象中与故事情节相符合旳是()s S1 s 1 sSS1 s S1S2 S2 S2 2SA tB tC tD tS(米)500·400·300·200·100··········24681111 1 t(分)9. 礼拜天晚餐后,小红从家里出发去漫步,以下图描绘了她漫步过程中离家旳距离s(米)与漫步所用旳时间 t (分)之间旳关系,依照图象,下边描绘切合小红漫步情形旳是()A. 从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了 .B. 从家出发,到了一个公共阅报栏,看了一会儿报,持续向前走了一段后,而后回家了.C.从家里出发,向来漫步(没有逗留),而后回家了D.从家里出发,散了一会儿步,就找同学去了,18 分钟后才开始返回 .10. 一辆汽车以均匀速度60 千米 / 时旳速度在公路上行驶,则它所走旳行程s(千米)与所用旳时间 t (时)旳关系表达式为()A.s 60 t B. 60 C. t D. s 60ts s60t二. 填空题: ( 每个空 2 分,共 20 分 )11. .A 、 B 两地相距 500 千米,一辆汽车以 50 千米 / 时旳速度由 A 地驶向 B 地 . 汽车距 B 地旳距离y( 千米 ) 与行驶时间 t( 之间 ) 旳关系式为. 在这个变化过程中,自变量是,因变量是.12 某人用新充值旳50 元 IC 卡打长途电话,按通话时间 3 分钟内收元,超出 1 分钟加收一元钱旳方式缴纳话费. 若通话时间为t 分钟( t 大于等于 3 分钟),那么电话花费 w能够表示为;当通话时间达到10 分钟时,卡中所剩话费从50 元减少到元 . 13.下表是春汛时期某条河流在一天中涨水状况记录表格:时间/时0 4 8 12 16 20 24超戒备水位 / 米⑴时间从 0 时变化到 24 时,超戒备水位从上涨到;⑵借助表格可知,时间从到水位上涨最快 .14、一辆公共汽车从车站开出,加快行驶一段后开始匀速行驶,过了速度一段时间后,汽车抵达下一个车站,乘客上、下车后汽车开始加快一段时间后又开始匀速行驶,试将这一过程中汽车旳速度与时间旳关系在右侧用一幅图近似地刻画出来时间三、解答题(共50 分)15、 (8 分 ) 将以下各情境旳序号写在相切合旳图象下边.⑴足球守门员大脚开出去旳球( 高度与时间旳关系)⑵一杯越晾越凉旳水( 温度与时间旳关系)⑶一面徐徐上涨旳旗帜(高度与时间旳关系)⑷匀速行驶旳汽车(速度与时间旳关系)O O O O16、(12 分 ) 一年中,每日日照(从日出到日落)旳时间是不一样旳,以下图表示了某地域从1998年1月1日到 1998年12月26日旳日照时间 .(1)右图描绘是哪两个变量之间旳关系?日照时间 / 时此中自变量是什么?因变量是什么?(2)哪天旳日照时间最短?这天旳17日照时间约是多少?16(3)大概在什么时间段内,日照时间1514在增添?在什么时间段内,日照时间13在减少?12(4)说一说该地一年中日照时间是11如何随时间而变化旳 .10930 60 90 120 15 18 21 24 270 30 33 36一年之中第几日17、 (9 分 ) 图为一位旅游者在清晨8时从城市出发到郊野所走旳行程与时间旳变化图 . 依据图回答以下问题:⑴9时, 10 时 30 分, 12 时所走旳行程分别是多少?⑵他歇息了多长时间?⑶他从歇息后直至抵达目旳地这段时间旳均匀速度是多少?18、(9 分 ) 在弹簧限度内,弹簧挂上物体后弹簧旳长度与所挂物体旳质量之间旳关系以下表:所挂物体旳质量/千克 0 1 2 3 4 5 6 7 8弹簧旳长度 /cm 12 13 14 15 16⑴弹簧不挂物体时旳长度是多少?⑵假如用 x 表示弹性限度内物体旳质量,用y 表示弹簧旳长度,那么跟着x 旳变化, y 旳变化趋向如何?写出y 与 x 旳关系式 .⑶假如此时弹簧最大挂重量为25 千克,你能展望当挂重为14 千克时,弹簧旳长度是多少?参照答案一、选择题: D、 C、D、 C、 B、 D、 D、 A、B、 D二、填空题:11.y=500-50t t y12.w=2.4+ (t-3 );13.(1) 0.2 米; 1.0 米;(2)12 时; 20 时14.略三、 15:⑵、⑴、⑷、⑶17:( 1)4 千米; 9 千米; 15 千米[3](2) 30 分钟[3](3)由题目可知,他从歇息后到抵达目旳地旳行程为:15-9=6 千米时间为:小时,故其均匀速度为:6/1.5=4 ㎞ /h[3]18: ( 1) 12cm [3]( 2) y 随 x 旳增大而增大,[3](3)19cm [3]19: ( 1) 112 万立方米[4]( 2)[4]( 3)150 天[4]一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一。
新北师大版 七下 第六章 变量之间的关系单元测试题(含答案) (27)

第六章 变量之间的关系单元测试(A)一、填空题: 1.在变化过程中,我们把变化着的量叫做变量,其中一个叫__________,一个叫_________. 2.表示两个变量之间的关系有________种,分别是_________________________________. 3.在△ABC 中,当面积S 一定时,底边BC 的长度a 与底边BC 上的高h 之间的关系式为________.4.每周一,我们仰望国旗冉冉升起,请在右图中画出国旗升高的高度h 与时间t 的大致图象.5.如图,表示一辆汽车行驶的速度和时间的图象,你能用语言描述汽车的行驶情况吗?________________________________.6.已知关系式y=kx+2,且自变量x=-3时,因变量y=0,则当自变量x=9时,因变量y 的值是________. 7.声音在空气中传播的速度y (米/秒)(简称音速)与气温x (℃)之间的关系如下:从表中可知音速y 随温度x 的升高而__________.在气温为20 ℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点________米. 二、选择题:1.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q (升)与行驶时间t (时)的关系用图象表示应为图中的( )Q(升)t(时)A408OQ(升)t(时)40B8OQ(升)t(时)408COQ(升)t(时)408DO2.弹簧的长度与所挂物体的质量的关系如图所示,由图可知不挂重物时弹簧的长度为( )A.8 cm;B.9 cm;C.10 cm;D.11 cm 3.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm,燃烧时剩下的高度y (cm )与燃烧时间x (小时)的关系用下图中( )图象表示.t(分)h(米)O v(千米/时)t(时)60OABC4.长途汽车客运公司规定旅客可以随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李费用y (元)与行李重量x (千克)之间的图象如图所示,当携带( )千克的行李不收费用.A.20;B.30;C.40;D.505.土地沙漠化是人类生存的大敌,某地现有绿地4万公顷,由于人们环保意识不强,植被遭到严重破坏.经观察土地沙化速度为0.2万公顷/年,那么t 年后该地所剩绿地面积S (万公顷)与t 的关系用下图中的( )图象表示.)A)B)Cs(万公顷)t(年)0420D三、解答题:1.如图,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是100千米,请根据图象回答或解决下面的问题.(1)谁出发的较早?早多长时间?谁到达乙地早?早到多长时间? (2)两人在途中行驶的速度分别是多少?(3)指出在什么时间段内两车均行驶在途中;在这段时间内,①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面?102030405060708090100876543210自行车摩托车/时距离/千米2.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化106y (元) x(千克)8060O情况(如图所示).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量? (2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远? (4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?答案与提示: 一、(1)自变量 因变量;(2)3 表格法 关系式法 图象法;(3)a=hS2;(4)(5)略;(6)8;(7)加快,68.6 二、(1)D ;(2)C ;(3)B ;(4)B ;(5)B.三、1.(1)自行车出发较早,早3个小时,摩托车到达乙地较早,早3个小时.(2)自行车:12.5千米/时;摩托车:50千米/时. (3)①3<x <4 ②x=4 ③4<x <5.2.(1)时间与距离,时间是自变量,距离是因变量; (2)10时和13时,分别离家10千米和30千米; (3)到达离家最远的时间是12时,离家30千米; (4)11时到12时,他行驶了13千米;(5)他可能在12时到13时间休息,吃午餐; (6)共用了2时,因此平均速度为15千米/时.。
新北师大版 七下 第六章 变量之间的关系单元测试题(含答案) (29)

第六章变量之间的关系单元测试(时间60分钟,满分100分)班级_______ 姓名________ 学号______一、填空题(每小题6分,共24分)1.一种豆子在市场上出售,•豆子的总售价与所售豆子的数量之间的数量关系如下表(1)上表反映的变量是______,______是因变量,_____随_____的变化而变化的;(2)若出售2.5千克豆子,售价应为______元;(3)根据你的预测,出售_____千克豆子,可得售价12元.2.我区的水电资源丰富,并且得到了较好的开发,电力充足.•某供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量(x)度与相应电费y(元)之间的图象如图所示.(1)当月用电量为100度时,应交电费_______元;(2)当x≥100时,求y与x之间的关系式_________.(3)当月用电量为260度时,应交电费________元.3.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:(1)上表中________是自变量,_______是因变量;(2)你预计该地区从_______年起入学儿童的人数不超过1000人.4.在△ABC中,当面积S一定时,底边BC的长度a与底边BC上的高h之间的关系式为_______.二、选择题(每小题6分,共24分)5.某装满水的水池按一定的速度放掉水池的一半水后,•停止放水并立即按一定的速度注水,水池注满后,停止注水,又立即按一定的速度放完水池的水,水池的存水量与放水(或注水)时间的关系用图象近似可表示为().6.已知变量x、y满足下面的关系:则x,yA.y=33...33x xB yC yD yx x=-=-=7.一根蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(小时)的关系所对应的图象为图中的().8.一天早晨,小强从家出发,以v1的速度前往学校,途中饮食店吃早点,之后,•以v2的速度向学校行进,已知v1>v2,下面的图象中表示小强从家到学校的时间t(分钟)与路程s(千米)之间的关系式是().三、解答题(共52分)9.(8分)在表格中分别填写下列图形的周长,当梯形的个数是n时,用代数式表示图形的周长.10.(8分)搭1个正方形需要4根火柴棒.(1)搭2个正方形需要几根火柴棒,搭3个正方形需要几根火柴棒?(2)搭10个这样的正方形需要多少根火柴棒?(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?11.为了加强公民的节水意识,合理利用水资源,•各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月份的用水量和水费如下表所示:设某户该月用水量为(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?12.(12分)某学校要印制一批宣传材料,甲印务公司提出收制版费900元,另外每份材料收印刷费0.5元;乙印务公司提出不收制版费,每份材料收印刷费0.8元.(1)分别写出两家印务公司的收费y(元)与印制材料份数x(份)之间的关系式;(2)若学校准备印5000份这样的宣传资料,请问学校应选择哪家印务公司更合算?13.(12分)观察下图:(数据来源:国家统计局)回答:(1)图上描述的是哪两个变量之间的关系?(2)哪一年的GDP 增长率最高?(3)哪些时间范围内GDP 增长率在提高?(4)1981年的国内生产总值少于1980年的生产总值,这句话对吗?•你是怎么判断的?答案:1.(1)所售豆子数量和售价,售价,售价,所售豆子数量 (2)5 (3)62.(1)•60 (2)y=12x+10 (3)140 3.(2)年份,入学儿童人数 (2)20084.a=2s n5.A 6.C •7.C 8.A 9.略 10.(1)7,10 (2)31 (3)301 (4)1+3x11.(1)依照题意,当x•≤6时,y=ax ,当x>6时,y=6a+c (x-6).由已知,得7.5=5a ①27=6a+3c ,②由①得a=1.5,•把a=1.5代入②得c=6,所以y=1.5x (x ≤6);y=9+6(x-6)=6x-27(x>6).(2)将x=8代入y=6x-27(x>6)得y=6×8-27=21(元)12.(1)y 甲=900+0.5x ,y 乙=0.8x (2)乙13.(1)上图描述的是年份与GDP 的增长率之间的关系(2)1984年的GDP•的增长率最高(3)79~80,80~84,86~87,90~92,99~2000(4)不对,1981年的GDP 的增长率少于1980年的,但不等于生产总值少于1980的.•。
最新北师大版 七下第六章 变量之间的关系单元测试题(含答案) (1)

第六章变量之间的关系6.1 小车下滑的时间一、知识回顾1、列一个生活中可以反应出变量之间的关系的例子:。
在你的例子中,是自变量,是因变量。
二、自我评估2、明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()A、明明B、电话费C、时间D、爷爷3上述问题中,第五排、第六排分别有个、个座位;第排有个座位.4、据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的变化,地球上的人口数量在逐渐地增加,如果用t表示时间,y表示人口数量,是自变量,是因变量。
5(1(2)随着自变量的变化,因变量变化的趋势是什么?(3)你认为入学儿童的人数会变成零吗?三、生活体验6(1)时间为8分钟时,水的温度是多少?(2)上表反应了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)水的温度是怎样随时间变化的?(4)根据表格,你认为13分钟、14分钟时水的温度是多少?(5)为了节约能源,在烧开水时,你认为应在几分钟左右关闭煤气?四、自主探索7、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?(4)从表格中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?(5)根据表格大致估计当时间为23分钟时,学生对概念的接受能力是多少?6.2 变化中的三角形一、知识回顾1、在关系式S=45t 中,自变量是 ,因变量是 ,当t=1.5时,S= 。
二、自我评估2、给定自变量x 与因变量y 的关系式xy 1-=,当x =2时,y = 。
3、地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式2035+=x y 来表示,则y 随x 的增大而( )A 、增大B 、减小C 、不变D 、以上答案都不对 4、如图, 一圆锥高为6cm ,当其底面半径从5cm 变化到10cm 时, 其体积从 变化到 。
(完整版)北师大版数学七年级下册变量之间的关系单元试题及答案(4套)

北师大版数学七年级下册变量之间的关系单元试题及答案(4套)北师大版数学七年级下册变量之间的关系单元试题及答案(1)一、选择题(每小题3分,共30分)1.已知变量x、y满足下面的关系,则x,y之间用关系式表示为()A. y=3xB. y=3C. y=xD. y=32.在用图象表示变量之间的关系时,下列说法最恰当的是()A.用水平方向的数轴上的点表示因变量B.用竖直方向的数轴上的点表示自变量C.用横轴上的点表示自变量D.用横轴或纵轴上的点表示自变量3. 在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中正确的是()A.①②⑤ B.①②④ C.①③⑤ D.①④⑤4. 从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A.物体 B.速度 C.时间 D.空气5. 如图,是反映两个变量关系的图,下列四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从启动到匀速行驶,速度与时间的关系C.一架飞机从起飞到降落的速度与时间的关系D. 踢出足球的时间与速度的关系O6.如图,是广州市某一天内的气温变化图,根据图象,下列说法中错误的是()A.这一天中最高气温是26 ℃B.这一天中最高气温与最低气温的差为18 ℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低7.变量y与x之间的关系式是y=12x2+1,当自变量x=2时,因变量y的值是()A.-2 B.-1 C.1 D.38.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是()A.12分钟 B.15分钟C.25分钟 D.27分钟9.三军受命,我解放军各部队奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24 km,如图是他们行走的路程与时间的图象,四位同学观察此图象得出有关信息,其中正确的个数是()....A .1 B .2 C .3 D .410.下面的图表是护士统计的一位病人一天的体温变化情况,通过图表,估计这个病人下午16:00时的体温是( ) OA .38.0 ℃B .39.1 ℃C .37.6 ℃D .38.6 ℃二、填空题(每小题3分,共24分)11. 长方形的面积为S ,则长a 和宽b 之间的关系为 ,当长一定时, 是常量, 是变量.12.如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量 .(1)小于3 t (2)大于3 t(3)小于4 t (4)大于4 t13.在“变量之间的关系”一章中,我们学习的“变量”是指自变量和因变量,而表达它们之间的关系通常有三种方法,这三种方法是指 、 和 . 第10题图 12345614.找出能反映下列两个变量间的关系图象,并将代号填在横线上.一辆匀速行驶的汽车,其速度与时间的关系.对应的图象是.第14题图15.变量y与x之间的对应关系如下表所示,则y与x之间的关系可表示为.x…1 1.5 2 3 4 …y…6 4 3 2 1.5 …16.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是天.(1公顷=15亩)17. 如图所示的图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小明离他家的距离,则小明从学校回家的平均速度为千米∕时.耗油量(升)18.某型号汽油的耗油量与相应金额的关系如图所示,那么这种汽油的单价是每升元.三、解答题(共46分)19.(6分)父亲告诉小明:“距离地面越远,温度越低,”并给小明出示了下面的表格.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面6千米的高空温度是多少吗?20.(6分)下表是某公共电话亭打长途电话的几次收费记录:(2)如果用x表示时间,y表示电话费,那么随x的变化,y的变化趋势是什么?(3)丽丽打了5分钟电话,那么电话费需付多少元?21.(6分) 心理学家发现,学生对概念的接受能力y与提出概念所用时间x(单位:分)之间有如下关系(其中0≤x≤30).(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内时,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内时,学生的接受能力逐步降低?22. (6分)张爷爷晚饭以后外出散步,碰到老邻居,交谈了一会儿,返回途中在读报栏前看了一会儿报,下图是据此情景画出的图象,s(m)表示张爷爷离开家的距离,t(min)表示外出散步的时间.请你回答下面的问题:(1)张爷爷是在什么地方碰到老邻居的?交谈了多长时间?(2)读报栏大约离家多少路程?(3)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?23.(8分)在如图所示的三个图象中,有两个图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的图象分别是、(填写序号);(2)请你为剩下的图象写出一个合适的情境.24.(8分)如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明仅往返(不考虑中间的等待时间)花了多少时间?(3)小明出发后20分钟到30分钟内可能在做什么?(4)小明从家到超市的平均速度是多少?返回时的平均速度是多少?25. (6分)某县从2007年开始实施退耕还林,每年退耕还林的面积如下表:时间/年2007 2008 2009 2010 2011 2012面积/亩350 380 420 500 600 720(2)从表中可知,随时间的变化,退耕还林面积的变化趋势是什么?(3)从2007年到2012年底,该县已完成退耕还林面积多少亩?(1公顷=15亩)参考答案1. C解析:观察表中数据知=,故x,y之间用关系式表示为y=3 x .2. C解析:用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.故选C.3. A解析:①x是自变量,y是因变量,正确;②x的数值可以任意选择,正确;③y是变量,它的值与x无关,错误,因为y随x的变化而变化;④用关系式表示的不能用图象表示,错误;⑤y与x的关系还可以用列表法和图象法表示,正确.故选A.4. C解析:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,故本题选C.5. B 解析:题中给的图象变化情况为先是y随x的增大而增大,后随着x的增加y不变.A.热水的水温先是随时间的增加而下降,后不变,所以不符合.B.汽车启动的过程中,速度是随着时间的增长从0增大的,而匀速后,速度随时间的增加是不变的,故符合题意.C.飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,所以不符合题意.D.踢出的足球的速度是随着时间的增加而减小的,所以不符合题意.故选B.6.D解析:0时至2时之间和14时至24时之间的气温在逐渐降低,剩下时段气温逐渐上升,A、B、C的说法都是正确的,故选D.7. D解析:当 x=2时,y=12x2+1=2+1=3.故选D.8. B 解析:先算出平路、上坡路和下坡路的速度分别为13千米/分、15千米/分和12千米/分,∴他从单位到家门口需要的时间是2÷15+1÷12+1÷13=15(分钟).故选B.9. D 解析:由图可知:甲队、乙队的起始时间分别为0 h和2 h,因此甲队比乙队早出发2 h;在3 h-4 h这段时间内,甲队的图象与x轴平行,因此在行进过程中,甲队停顿了1 h;两个图象有两个交点:①甲行驶4.5 h、乙行驶2.5 h时,两图象相交,因此乙队出发2.5 h后追上甲队;②甲队行驶6 h、乙队行驶4 h后,两图象相交,此时两者同时到达目的地.在整个行进过程中,乙队用的时间为4 ,行驶的路程为24 km,因此乙队的平均速度为6 km/h.这四个同学的结论都正确,故选D.10.D解析:由图表可知,这个病人下午14:00~18:00时的体温差是39.1-38.0=1.1(℃),平均每小时体温增加1.1÷4≈0.3(℃),因此估计这个病人下午16:00时的体温是38.0+0.3×2=38.6(℃).故选D.11.a;a;S,b 解析:由题意,得a,在该关系式中,当长一定时,a是常量,S,b是变量.12.(4)解析:盈利时收入大于成本,即l1>l2,在图上应是l1在上面,在交点右边的部分满足条件,故填(4).13.表格法;关系式法;图象法解析:表示两个变量之间的关系时,通常有三种方法:表格法、关系式法、图象法.14.a解析:匀速时速度和时间之间的关系不变,故选a.15. y=6x解析:∵x与y的乘积是定值6,∴xy=6,即y=6x,所以y与x之间的关系可表示为y=6 x .16. 4 解析:600÷150=4(天).17. 6 解析:平均速度为6÷1=6(千米/时).18. 7.79 解析:单价为779÷100=7.79(元/升),故填7.79.19.解:(1)反映了温度和距离地面高度之间的关系,高度是自变量,温度是因变量.(2)由表可知,每上升1千米,温度降低6 ℃,可得关系式为y=20-6x.(3)将=6代入=206得=2036=16,即距离地面6千米的高空温度是16 ℃.20.解:(1)反映的是时间和电话费两个变量之间的关系,时间是自变量,电话费是因变量;(2)根据表格中的数据得出:每增加1分钟,电话费增加0.6元;(3)由表格中的数据直接得出:丽丽打了5分钟电话,电话费需付3元.21. 解:(1)反映了提出概念所用时间x和对概念的接受能力y两个变量之间的关系;其中x是自变量,y是因变量.(2)提出概念所用时间为13分钟时,学生的接受能力最强.(3)当x在2分钟至13分钟内时,学生的接受能力逐步增强;当x在13分钟至20分钟内时,学生的接受能力逐步降低.22.解:由图象可知:(1)张爷爷是在距家600 的地方碰到老邻居的,交谈了25-15=10(min);(2)读报栏离家300 ;(3)反映了离开家的距离与外出散步的时间之间的关系,时间t是自变量,离开家的距离是因变量.23.解:(1)∵情境a:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回家里找到了作业本,即又返回家,离家的距离是0,又去学校,即离家越来越远,此时只有③符合,∴只有③符合情境a;∵情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,∴只有①符合,(2)情境是小芳离开家不久,休息了一会儿,又走回了家.24. 解:根据图形可知:(1)图中所反映的是时间与距离之间的关系;超市离家900米.(2)小明到达超市用了20分钟;返回用了15分钟,往返共用了35分钟.(3)小明出发后20分钟到30分钟可能在超市购物或休息.(4)小明到超市的平均速度是900÷20=45(米/分),返回时的平均速度是900÷15=60(米/分).25.解:(1)反映了时间和退耕还林的面积之间的关系,其中时间是自变量,退耕还林的面积是因变量.(2)由表中数据可知退耕还林面积的变化趋势是逐年增加.(3)由题意得,从2007年到2012年底,该县已完成退耕还林面积350+380+420+500+600+720=2 970(亩).北师大版数学七年级下册变量之间的关系单元试题及答案(2)一、选择题(每小题3分,共30分)1.下面说法中正确的是 ( ) A .两个变量间的关系只能用关系式表示 B .图象不能直观的表示两个变量间的数量关系 C .借助表格可以表示出因变量随自变量的变化情况 D .以上说法都不对2.如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是 ( ) A .y=12x B.y=18x C.y=23x D.y=32x 3. 一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程s (千米)和行驶时间t (小时)的关系的是 ( )4.在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为1232++=t t s ,则当4t =时,该物体所经过的路程为 ( ) A.28米 B.48米 C .57米 D .88米5.在某次试验中,测得两个变量m 和v 之间的4组对应数据如下表:A .22v m =-B .21v m =-C . 33v m =-D .1v m =+6.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用S 1,S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是 ( )7.正常人的体温一般在C 037左右,但一天中的不同时刻不尽相同,如图1反映了一天24小时内小红的体温变化情况,下列说法错误的是 ( )A.清晨5时体温最低B.下午5时体温最高C.这一天小红体温T C 0的范围是36.5≤T ≤37.5D.从5时至24时,小红体温一直是升高的8.小王利用计算机设计了一个程序,输入和输出的数据如下表: 输入 (1)2345… 输出…1225310417526…那么,当输入数据8时,输出的数据是 ( ) A.861 B.863 C.865D.867 9. 如图2,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是 ( ) A.第3分时汽车的速度是40千米/时 B.第12分时汽车的速度是0千米/时36.51712 5 0 T/()C 0t/h24 37.5图1图2C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时10. 向高为10厘米的容器中注水,注满为止,若注水量V (厘米3)与水深h(厘米)之间的关系的图象大致如图3所示,则这个容器是下列四个图中的 ( )二、填空题(每小题3分,共30分)11.对于圆的周长公式c=2 r ,其中自变量是____,因变量是____. 12.在关系式y=5x+8中,当y=120时,x 的值是 .13.一蜡烛高20 厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是__________(0≤t ≤5).14.等腰三角形的周长为12厘米,底边长为y 厘米,腰长为x 厘米. 则y 与x 的之间的关系式是 .15.如图4所示的关系图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时.16.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数. 日期︳日 1 2 3 4 5 6 7 8 电表读数︳度2124283339424649(1)表格中反映的变量是______,自变量是______,因变量是______. (2)估计小亮家4月份的用电量是______,若每度电是0.49元,估计他家4月份应交的电费是______.图3图417.如图5所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为 .18.根据图6中的程序,当输入x =3时,输出的结果y = .19. 小明早晨从家骑车到学校,先上坡后下坡,行程情况如图7所示,若返回时上、 下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是_______分 .20. 一根弹簧原长13厘米,挂物体质量不得超过16千克,并且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X (千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x 的取值范围)三、解答题(第21题6分,第22题7分,共13分)21.(6分)某校办工厂现在年产值是15万元,计划以后每年增加2万元. (1)写出年产值y (万元)与年数x 之间的关系式.(2)用表格表示当x 从0变化到6(每次增加1)y 的对应值.时间/分18 363696路程/百米图7(3)求5年后的年产值.22.(7分)星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的图8中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的图象.图8四、本题满分8分。
数学七年级下北师大版第六章变量之间的关系单元测试

第六章变量之间的关系单元测试1、下面哪副图能表示切土豆的过程?A BC D2、小明每天从家走到车站后,乘车上学,下面哪副图能反映他先步行,再乘车的情况。
A B3、如图,它表示甲乙两人从同一个地点出发后的情况。
到十点时,甲大约走了13千米。
根据图象回答:(1)甲是几点钟出发?(2)乙是几点钟出发,到十点时,他大约走了多少千米?(3)到十点为止,哪个人的速度快?(4)两人最终在几点钟相遇?(5)你能将图象中得到信息,编个故事吗?4、下表是一个港口的水位在24小时内的变化情况。
水位随着潮汐而时涨时落。
0 1 2 3 4 5 6 7 8时间(时)水深10.1 10.6 11.5 13.2 14.5 15.5 16.2 15.4 14.6 (米)(1)什么时候水位最深?为多少? (2)什么时候水位最浅?为多少? (3)在什么时间段,水位变化最快?(4)画一张图,描述你所看到的情况?你准备使用什么刻度?你认为全班同学会使用同一刻度吗?5、某市市长和他的顾问团试图劝说一家公司在本市建工厂。
他们告诉老总:本市的人口在迅速增长,从而可以给公司提供大量的熟练工。
而一个环保组织却认为,这家公司曾有过空气污染和水污染问题,于是他们对公司老总说:本市的人口增长并没有市长们所说的那么快。
最终,公司派人亲自对情况作了调查。
最后这三组人员分别做了一张曲线图。
(1)解释上面这三张图哪一张是市长他们作的?(2)这三张图是否都正确表示了该市的人口增长情况?为什么?6、下面的4张曲线图哪一张最能代表人的身高与年龄的关系?说明你的理由,如果你认为没有一张图能代表这种变化,绘制一张曲线图,并加以说明。
7、这里有一张关于温度的曲线图,是根据学生旅行团从A到B 的旅行中收集到的数据画出来的。
a.这张图表示哪两个变量间的关系?b.根据该图绘制一张表格。
c.这一天的最低和最高温度之间相差多少?d.在哪一时间段内温度上升的最快?降低得最快呢?e.根据表或图回答c问题,哪个方法更容易?为什么?f.根据表或图回答d问题,哪个方法更容易?为什么?8、以下是一部流行电影发行后前八周每周的票房收入表(以百万元计)。
七年级数学下册《变量之间的关系》练习题附答案(北师大版)

七年级数学下册《变量之间的关系》练习题附答案(北师大版)班级:___________姓名:___________考号:___________一、选择题1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器2.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )A.Q和x是变量B.Q是自变量C.50和x是常量D.x是Q的函数3.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是( )A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.随着所挂物体的重量增加,弹簧长度逐渐边长D.所挂物体的重量每增加1kg,弹簧长度增加0.5cm4.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃-20 -10 0 10 20 30声速/(m/s) 318 324 330 336 342 34下列说法错误的是( )A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s5.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各表达式中的( )m 1 2 3 4v 0.01 2.9 8.03 15.1A.v=2m-2B.v=m2-1C.v=3m-3D.v=m+16.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是( )d 50 80 100 150b 25 40 50 75A.b=d2B.b=2dC.b=12d D.b=d+257.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD的面积为24平方米,设BC边的长为x米,AB边的长为y米,则y与x之间的函数解析式为()A.y=24xB.y=-2x+24C.y=2x-24D.y=12x-128.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程s(千米)与行驶时间t(时)之间的函数关系式及自变量的取值范围是( )A.s=120﹣30t(0≤t≤4)B.s=30t(0≤t≤4)C.s=120﹣30t(t>0)D.s=30t(t=4)9.如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数( )A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小10.如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没在水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是( )11.某学校组织团员举行“伏羲文体旅游节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是( )A.33分钟B.46分钟C.48分钟D.45.2 分钟12.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是( )A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35 h时,选择B方式最省钱D.每月上网时间超过70 h时,选择C方式最省钱二、填空题13.小丽烧一壶水,发现在一定时间内温度随时间的变化而变化,即随时间的增加,温度逐渐增高,如果用t表示时间,T表示温度,则_____是自变量,_____是因变量.14.已知3x﹣y=7中,变量是,常量是 .把它写成用x的式子表示y的形式是 .15.一辆汽车以45km/h的速度行驶,设行驶的路程为s(km),行驶的时间为t(h),则s与t的关系式为,自变量是,因变量是.16.弹簧挂上物体后会伸长,测得﹣弹簧的长度y(cm)与所挂重物的质量x(㎏)有下面的关系:那么弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为 .17.有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水高度y(米)与注水时间x(小时)之间的函数图象如图,若要使甲、乙两个蓄水池蓄水深度相同,则注水时间应为小时.18.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间图象如图,则慢车比快车早出发小时,快车追上慢车行驶了千米,快车比慢车早小时到达B地.三、解答题19.已知高度每增加1000米,气温下降6℃,如果某地面气温为22℃(1)分别计算出该地1000米、2000米高空的气温.(2)若h米高空的气温为T,试写出T与h的关系,并指出关系式中的常量和变量.20.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30).提出概念所用时间(x) 2 5 7 10 12 13 14 17 20对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内,学生的接受能力逐步降低?(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少.21.下列是三种化合物的结构式及分子式⑴请按其规律,写出下一种化合物的分子式....⑵每一种化合物的分子式中H的个数m是否是分子式中C的个数n的函数?如果是,请你其写出关系式.22.一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系式.(2)指出自变量x的取值范围.(3)汽车行驶200km时,油箱中还有多少汽油?23.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图.请你根据图象解决下列问题:⑴谁先出发?先出发多少时间?谁先到达终点?先到多少时间?⑵分别求出甲、乙两人的行驶速度;⑶在什么时间段内,两人均行驶在途中(不包括起点和终点)?请你根据图中的情形,分别求出关于行驶时间x与行程y之间的函数关系式,根据图象回答:①两人相遇;②甲在乙的前面;③甲在乙后面.24.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.根据图象进行以下探究:【信息读取】(1)甲、乙两地相距千米,两车出发后小时相遇;(2)普通列车到达终点共需小时,普通列车的速度是千米/小时.【解决问题】(3)求动车的速度;(4)普通列车行驶t小时后,动车到达乙地,求此时普通列车还需行驶多少千米到达甲地?25.小刚周末骑单车从家出发去少年宫,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的深圳书城,买到书后继续前往少年宫,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小刚从家到深圳书城的路程是多少米?(2)小刚在书城停留了多少分钟?(3)买到书后,小刚从书城到少年宫的骑车速度是多少米/分?(4)小刚从家到少年宫的整个过程中,骑车一共行驶了多少米?参考答案1.C2.A3.A4.C5.B6.C.7.A8.A.9.A10.D11.D12.D13.答案为:t 是自变量,T 是因变量.14.答案为:答案是:x 和y ;3和7;y=3x ﹣7.15.答案为:s=45t ;t ;s.16.答案为:y=0.5x+12.17.答案为:3518.答案为:2,276,4.19.解:∵离地面距离每升高1 km ,气温下降6℃∴该地空中气温T(℃)与高度h(km)之间的函数表达式为:T =22﹣6h ;(1)把h =1km 代入T =22﹣6h =16把h =2km 代入T =22﹣6h =22﹣12=10答:该地1000米、2000米高空的气温分别为16℃、10℃;(2)T =22﹣6h ,其中22,6是常量,T ,h 是变量.20.解:(1)反映了提出概念所用的时间x 和对概念接受能力y 两个变量之间的关系; 其中x 是自变量,y 是因变量.(2)提出概念所用的时间为13分钟时,学生的接受能力最强.(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强.当x在13分钟至20分钟的范围内,学生的接受能力逐步降低.(4)估计当提出概念所用的时间为23分钟时,学生的接受能力为49.9.21.解:⑴ C4H10;⑵m=2n+2.22.解:(1)根据题意,每行程x,耗油0.1x,即总油量减少0.1x则油箱中的油剩下50﹣0.1x∴y与x的函数关系式为:y=50﹣0.1x;(2)因为x代表的实际意义为行驶里程,所以x不能为负数,即x≥0;又行驶中的耗油量为0.1x,不能超过油箱中现有汽油量的值50即0.1x≤50,解得,x≤500.综上所述,自变量x的取值范围是0≤x≤500;(3)当x=200时,代入x,y的关系式:y=50﹣0.1×200=30.所以,汽车行驶200km时,油桶中还有30L汽油.23.解:⑴甲比乙早10分钟出发,乙比甲早5分钟到达;⑵ V甲=12km/t V乙=24km/t ;⑶当10<t<25两人均在途中,y甲=12x, y乙=24x-4①t=20两人相遇②10<t<20甲在乙前面③20<t<25,甲在乙后面.24.解:(1)由图象可得甲、乙两地相距1400千米,两车出发后4小时相遇,故答案为:1400,4;(2)由图象可知普通列车到达终点共需14小时,普通列车的速度是:1400÷14=100千米/小时故答案为:14,100;(3)动车的速度为:1400÷4﹣100=350﹣100=250千米/小时即动车的速度为250千米/小时;(4)t=1400÷250=5.6动车到达乙地时,此时普通列车还需行驶:1400﹣100×5.6=840(千米)即此时普通列车还需行驶840千米到达甲地.25.解:(1)根据函数图象,可知小刚从家到深圳书城的路程是4000米;(2)30﹣20=10(分钟).所以小刚在书城停留了10分钟;(3)小刚从书城到少年宫的路程为6250﹣4000=2250米,所用时间为35﹣30=5分钟小刚从书城到少年宫的骑车速度是:2250÷5=450(米/分);(4)6000+(6000﹣4000)+(6250﹣4000)=6000+2000+2250=10250(米).答:小刚从家到少年宫的整个过程中,骑车一共行驶了10250米.第11 页共11 页。
最新北师大版 七下第六章 变量之间的关系单元测试题(含答案) (18)

第六章《变量之间的关系》综合水平测试(三)一、相信你的选择!(每小题3分,共30分)1.小丽从济南给远在广州的爸爸打电话,电话费随着时间的变化而变化,在这个过程中,因变量是( ).A. 小丽B.时间C.电话费D.爸爸 2.变量y 与x 之间的关系是1212+=x y ,当自变量x=2时,因变量y 的值是( ). A.-2 B.-1 C.1 D.33.在关系式y=3x+5中,有下列说法:①x 是自变量,y 是因变量;②x 的数值可以任意选择;③y 的值与x 的值无关;④用关系式表示的,不能用图象表示;⑤y 与x 的关系也可以用列表法和图象法表示.其中说法正确的是( ).A. ①②③B. ①②④C. ①②⑤D. ①④⑤4.一长为5米,宽为2米的长方形木板,现要在长边上截去长为x 米的一部分(如图1),则剩余木板的面积y(平方米)与x(米)之间的关系式为(0≤x <5)( ).A.y=2xB. y=10-2xC. y=5xD.y=10-5x5.如图2是某市一天的温度随时间变化的图象, 通过观察图象可知下列说法错误的是 ( ) A .这天15点时温度最高 B .这天3点时温度最低C .这天最高温度与最低温度的差是13 ℃D .这天21点时温度是30 ℃6.对关系式x y 212-=的描述不正确的是( )A .当x 看作自变量时,y 就是因变量B .随着x 值的增大,y 值变小C .在非负数范围内,y 可以最大值为3D .当y=0时,x 的值为23 7.弹簧挂上物体后会伸长,测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)间有下面下列说法不正确的是( ).A.x 与y 都是变量,且x 自变量,y 是因变量B.弹簧不挂重物时的长度为0C.物体质量每增加1 千克 ,弹簧长度y 增加0.5厘米D.所挂物体质量为7千克时,弹簧长度为13.5 厘米图22米 图18.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据设鸭的质量为x 千克,烤制时间为t ,估计当x=3.2千克时,t 的值为( ). A .140 B .138 C .148 D .160二、试试你的身手!(每小题3分,共30分) 1.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中________是自变量,_______因变量.2.三角形的底边是12厘米,当底边上的高h(厘米)变化时,三角形的面积S (平方厘米)也随着高的变化而变化,可用式子表示成S =________. 3.有一边长为2cm 的正方形,如果将边长增加cm x ,则面积的增加值()2cm y 与边长增加值x 之间的关系式为____.4.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为____(不考虑利息税).5.梯形上底长16,下底长x ,高是10,梯形的面积与下底长x 间的关系式是_______.当x =0时,表示的图形是_______,其面积________. 6.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间x (小时)的关系式为____,该汽车最多可行驶____小时.7.小红到批发市场共批了20支笔,她每月平均用3支笔,小红剩下的笔的支数用y 表示,用x 表示她用的月数,且y 与x 之间的关系可近似用x y 320-=表示.试问,当她用了2个月后,还剩____支笔,用了6个月后,还剩____支笔,小红的笔够用7个月吗?____(填“够”或“不够”)8.声音在空气中传播的速度简称音速,实验测得音速与气温的一些数据如下表:用x 表示y 的关系式为__________________.三、夯实你的基础!(本大题共38分)1.(8分)有一高为5厘米的圆柱,当底面半径r 厘米由小到大变化时,体积V (立方厘米)也随之发生变化.(1)在这个过程中自变量和因变量分别是什么?(2) 写出圆柱的体积V (立方厘米)与半径r (厘米)之间的关系式;2.(10分)秋天到来了,小明家的苹果获得了丰收,他主动帮助妈妈到集市上去卖刚刚采摘下的苹果.已知销售数量x(千克)与售价y(元)的关系如下表所示:(1)根据表格中的数据,售价y是怎样随销售量的变化而变化的?(2)求当x=15时,y的值是多少?3.(10分)图4为一位旅行者在早晨8时从城市出发到郊外所走的路程与时间的变化图象.根据图象回答问题.(1)图象表示了哪两个变量的关系?(2)9时,10时30分,12时所走的路程分别是多少?图44.(10分)爸爸告诉方方::“距离地面越高,温度越低”,并给方方出示了下面的表格:根据上表,爸爸又给方方出了下面几个问题,你能帮方方解答吗?(1)如果用h表示距离地面的高度,用T表示温度,那么随着h的变化,T是如何变化的?(2)你能写出T与h之间的关系式吗?四、提升你的能力!(本大题共22分) 1.(10分)图5表示甲骑电动自行车和乙驾驶汽车沿相同路线由A 地到B 地,两人行驶的路程y(千米)与时间x(时)的关系,请你根据这个行驶过程中的图象回答下面的问题: (1)谁出发较早?早多长时间?谁到达B 地较早?早多长时间?(2)请你求出表示电动自行车行驶过程的路程y(千米)与时 间x(小时)的关系式.2. (12分)某文具店出售书包和文具盒,书包每个定价为30元,文具 盒每个定价为5元.该店制定了两种优惠方案:①买一个书包赠送一个文具盒;②按总价的九折(总价的90%)付款.某班学生需购买8个书包、若干个文具盒(不少于8个),如果设文具盒数x(个),付款数为y(元).(1)分别求出两种优惠方案中y 与x 之间的关系式; (2)购买文具盒多少个时,两种方案付款相同?) 图5参考答案一、1~8 CDCB CDBB二、1、销售量,销售收入 2. h S 6= 3. 24y x x =+ 4. 1000.2y x =+5、S=80+5x ;三角形,80 6. 405y x =-,8 7.14;2,不够8、y=331+x 53三、1、(1)底面半径是自变量,体积是因变量; (2)V=5πr 2.2、(1)销售量每增加1千克,售价就增加2.1元. (2)当x=15时,y=2.1×15=31.5(元).3、(1)图象表示了路程与时间之间的关系,时间是自变量,路程是函数. (2)9时,10时30分,12时所走的路程分别是4千米、9千米和15千米.4、(1)距离地面的高度每增加1千米,温度就下降6℃; (2)-16℃;(3)T=20-6h.四、1.(1)甲早出发2小时,乙早到B 地2小时; (2) y=18x.2、(1) y 1=5x+200; y 2=4.5x+216;(2)当5x+200=4.5x+216时, x=32,即当购买32个文具盒时,两种方案付款相同.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级下册第六章变量之间的关系单元测试题
一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1.李老师骑车外出办事,离校不久便接到学校到他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是( ) 2.已知变量x ,y 满足下面的关系
则,之间用关系式表示为( )
A.y =
x 3 B.y =-3
x C.y =-x
3
D.
y =
3
x 3.某同学从学校走回家,在路上遇到两个同学,一块儿去文化宫玩了会儿,然后回家,下列象能刻画这位同学所剩路程与时间的变化关系的是( )
4.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式2035+=x y 来表示,则y 随x 的增大而( )
A 、增大
B 、减小
C 、不变
D 、以上答案都不对
5.某校办工厂今年前5个月生产某种产品总量(件)与时间(月)的关系如图1所示,则对于该厂生产这种产品的说法正确的是( )
A.1月至3月生产总量逐月增加,4,5两月生产总量逐月减少 B.1月至3月生产总量逐月增加,4,5两月均产总量与3月持平 C.1月至3月生产总量逐月增加,4,5两月均停止生产 D.1月至3月生产总量不变,4,5两月均停止生产
A. B. C. D.
图2
6.如图2是反映两个变量关系的图,下列的四个情境比较合适该图的是( ) A.一杯热水放在桌子上,它的水温与时间的关系 B.一辆汽车从起动到匀速行驶,速度与时间的关系 C.一架飞机从起飞到降落的速度与时晨的关系 D.踢出的足球的速度与时间的关系
7.如图3,射线l 甲,l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则图中显示的他们行进的速度关系是( )
A.甲比乙快 B.乙比甲快 C.甲、乙同速 D.不一定
8.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )
A.太阳光强弱
B.水的温度
C.所晒时间
D.热水器 9.长方形的周长为24厘米,其中一边为x (其中0>x ),面积为y 平方厘米,则这样的
长方形中y 与x 的关系可以写为( )
A 、2x y =
B 、()2
12x y -= C 、()x x y ⋅-=12 D 、()x y -=122
10如果没盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支
数,那么y 与x 之间的关系应该是( ) (A )y=12x (B )y=18x (C )y=
23x (D )y=32
x 二、填一填,要相信自己的能力!(每小题3分,共30分)
1.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为____(不考虑利息税).
2.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是____.
3.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间x (小时)的关系式为____,该汽车最多可行驶____小时.
4.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中 是自变量, 是因变量。
5.地面温度为15 ºC ,如果高度每升高1千米,气温下降6 ºC ,则高度h(千米)与气温 t(ºC)之间的关系式为 。
6.汽车以60千米/时速度匀速行驶,随着时间t
变化,则它们之间的关系式为 。
7.小明和小强进行百米赛跑,小明比小强跑得快,如果
两人同时起跑,小明肯定赢,如图4所示,现在小明让小强先跑 米,直线 表示小明的路程与时间的
关系,大约 秒时,小明追上了小强,小强在这次赛
跑中的速度是 。
8.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票 后所剩钱数y (元)与买邮票的枚数x (枚)之间的关系式 为
9.拖拉机工作时,油箱中的余油量Q (升)与工作时间t (时)的关系式为406Q t =-.当4t =时,Q =_________,从关系式可知道这台拖拉机最多可工作_________小时. 10.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势
(1)上表中_____是自变量,_____是因变量.
(2)你预计该地区从_____年起入学儿童的人数不超过1 000人. 三、做一做,要注意认真审题呀!(本大题共38分) 1.(
8分)某校办工厂现在年产值是15万元,计划以后每年增加2万元. (1)写出年产值y (万元)与年数x 之间的关系式.
(2)用表格表示当x 从0变化到6(每次增加1)y 的对应值.
(3)求5年后的年产值. 2
.(10分)如图5,反映了小明从家到超市的时间与距离之间关系的一幅图. (1)图中反映了哪两个变量之间的关系?超市离家多远? (2)小明到达超市用了多少时间?小明往返花了多少时间? (3)小明离家出发后20分钟到30分钟内可以在做什么?
(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?
3.(10分)如图6,它表示甲乙两人从同一个地点出发后的情况。
到十点时,甲大约走了13千米。
根据图象回答: (1)甲是几点钟出发?
(2)乙是几点钟出发,到十点时,他大约走了多少千米? (3)到十点为止,哪个人的速度快? (4)两人最终在几点钟相遇?
(5)你能将图象中得到信息,编个故事吗?
图4
4.(10分)在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得
的弹簧的长度y 与所挂物体质量x 的一组对应值.
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢? (3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗? 四、拓广探索!(本大题共22分) 1.(10分)小明在暑期社会实距活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图7所示.请你根据图象提供的信息完成以下问题:
(1)求降价前销售金额y (元)与售出西瓜x (千克)之间的关系式;
(2)小明从批发市场共购进多少千克西瓜? (3)小明这次卖瓜赚子多少钱?
2.(12分某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x 分钟,两种方式的费用分别为1y 元和2y 元.
(1)写出1y 、2y 与x 之间的关系式;
(2)一个月内通话多少分钟,两种移动通讯费用相同?
(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?)
参考答案:
一、1~10 CCBAC BACD C .
二、1、1000.2y x =+;2、三角形的面积由15变为50;3、405y x =-,8; 4、销售量,销售收入;5、h=15-6t ;6、s=60t ;7、10,l 1,20;8、y=500-80x
9、16;
203
10、 (1)年份,入学儿童人数;(2)2008;
图7
三、1、(1)y=15+2x ;(2)略;(3)25; 2、(1)时间与距离之间的关系;900米;(2)20分钟;35分钟;(3)休息;(4)45米/分钟;60米/分钟; 3、(1)8点;(2)9点;13米;(3)乙;(4)10点;(5)答案不惟一,略; 4、(1)弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;
(2)24厘米;18厘米;(3)32厘米. 四、1.(1) 1.6y x =;(2)50千克;(3)36元. 2.(1)12500.4,0.6y x y x =+=;
(2)由1y =2y ,即500.40.6x x +=,解得x=250,当每个月通话250分钟时,两种移动通讯费用相同.
(3)当x=300时,1y =170,2y =180,1y <2y ,所以使用“全球通”合算.。