直线的参数方程的应用
直线的参数方程及应用

直线的参数方程及应用直线的参数方程及应用直线参数方程的标准式过点P(x,y),倾斜角为α的直线l的参数方程是x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(x,y)为直线上的任意一点。
直线l上的点与对应的参数t是一一对应关系。
若P1、P2是直线上两点,所对应的参数分别为t1、t2,则P1P2 = t2 - t1,|P1P2| = |t2 - t1|。
若P1、P2、P3是直线上的点,所对应的参数分别为t1、t2、t3,则P1P2中点P3的参数为t3 = (t1 + t2)/2,|PP3| = |(t1 + t2)/2|。
若P为P1P2的中点,则t1 + t2 = 0,t1·t2 < 0.直线参数方程的一般式过点P(xb,y),斜率为k = a的直线的参数方程是x = x + aty = y + bt其中t为参数,表示有向线段PP的数量,P(xb,y)为直线上的任意一点。
直线的参数方程给定点P(xl,y),倾斜角为α,求经过该点的直线l的参数方程。
直线l的参数方程为x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。
特别地,若直线l的倾斜角α = 90°,直线l的参数方程为x = x + ty = y其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。
2、直线的参数方程与标准形式如果直线的方向已知,那么可以使用参数方程来表示直线。
对于倾斜角为 $\alpha$,过点 $M(x,y)$ 的直线 $l$,其参数方程一般式为:begin{cases}x=x_M+t\cos\alpha \\y=y_M+t\sin\alphaend{cases}其中 $t$ 是参数,表示从点 $M$ 沿着直线 $l$ 方向前进的距离。
如果要将参数方程转化为标准形式,可以通过以下步骤:1.消去参数 $t$,得到 $y-y_M=\dfrac{\sin\alpha}{\cos\alpha}(x-x_M)$。
直线的参数方程的几何意义

直线的参数方程的几何意义直线的参数方程是用变量表示直线上的每一个点的坐标的一种表示方法。
在二维空间中,直线的参数方程可以用以下形式表示:x = x0 + nt, y = y0 + mt,其中n和m是常数。
在三维空间中,直线的参数方程可以用以下形式表示:x = x0 + nt, y = y0 + mt, z = z0 + pt,其中n、m和p是常数。
直线的参数方程的几何意义体现在以下几个方面:1.直线的方向向量:直线的参数方程中的常数n、m和p是直线的方向向量的分量。
直线上的每一个点都可以通过起点坐标加上方向向量的分量与参数的乘积得到。
2. 直线的斜率:在二维空间中,直线的参数方程可以转化为斜截式方程y = mx + c的形式,其中m代表直线的斜率。
直线的斜率是直线上两个不同点之间纵坐标变化量与横坐标变化量的比值。
3. 直线的截距:在二维空间中,直线的参数方程可以转化为截距式方程y = mx + c的形式,其中c代表直线与y轴的交点坐标。
直线的截距可以通过将参数方程中x等于零得到。
4.直线的方向:直线的参数方程中的常数n、m和p可以决定直线的方向。
当n、m和p都不为零时,直线是斜的,方向由斜率来确定;当其中一个常数为零时,直线平行于一个坐标轴,方向由与之平行的轴来决定;当两个常数为零时,直线垂直于一个坐标轴,方向由与之垂直的轴来决定。
5.直线上的点的坐标:直线的参数方程中的变量t可以取不同的值,对应于直线上的不同点。
通过给定不同的t值,可以得到直线上的各个点的坐标。
直线上的点的坐标可以通过代入参数方程中的t值来计算。
总之,直线的参数方程能够描述直线的方向、斜率、截距以及直线上各个点的坐标。
利用参数方程,可以方便地求解与直线相关的问题,如直线与其他几何图形的交点、直线的长度等。
同时,参数方程也是研究曲线、平面、空间之间关系的重要工具。
直线的参数方程及应用

直线的参数方程及应用1、 直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ⎩⎨⎧+=+=ααs i n c o s00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)为直线上任意一点.P 0P=t ∣P 0P ∣=t(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1,∣P 1P 2∣=∣t 2(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t +2.直线参数方程的一般式过点P 0(00,y x ),斜率为ab k =的直线的参数方程是:⎩⎨⎧+=+=bty y at x x 00 (t 为参数) 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,例2:化直线2l 的参数方程⎩⎨⎧+=+-= t313y t x (t 为参数)为普通方程,并求倾斜角, 说明∣t ∣的几何意义.例3:已知直线l 过点M 0(1,3),倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y tx 233211(t 为参数)和方程⎩⎨⎧+=+= t331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.例4:写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且求出直线l 上与点M 0相距为2的点的坐标.例5:已知直线l 过点P (2,0),斜率为34,直线l 和抛物线x y 22=相交于A 、B 两点, 设线段AB 的中点为M,求:(1)P 、M 两点间的距离|PM|;(2)M 点的坐标; (3)线段AB 的长|AB|例6:已知直线l 经过点P (1,-33),倾斜角为3π, (1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ |; (2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.例7:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右,直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.xy ,)例8:已知椭圆134)1(22=+-y x ,AB 是通过左焦点F 1的弦,F 2为右焦点, 求| F 2A |·| F 2B |的最大值.方法总结:利用直线l 的参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数),给研究直线与圆锥曲线C :F(y x ,)=0的位置关系提供了简便的方法.一般地,把l 的参数方程代入圆锥曲线C :F(y x ,)=0后,可得一个关于t 的一元二次方程,)(t f =0, 1、(1)当Δ<0时,l 与C 相离;(2) 当Δ=0时,l 与C 相切;(3) 当Δ>0时,l 与C 相交有两个交点;2、 当Δ>0时,方程)(t f =0的两个根分别记为t 1、t 2,把t 1、t 2分别代入l 的参数方程即可求的l 与C 的两个交点A和B 的坐标.3、 l 被C 截得的弦AB 的长|AB|=|t 1-t 2|;P 0A ·P 0B= t 1·t 2;弦AB 中点M 点对应的参数为221t t +;| P 0M |=221t t +基础知识测试1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-= 25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=ty t x 521511(t 为参数)的斜率和倾斜角分别是( )A) -2和arctg(-2) B) -21和arctg(-21) C) -2和π-arctg2 D) -21和π-arctg 214、 已知直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ(λ≠-1),则P 所对应的参数是 .5、直线l :⎩⎨⎧+=+=bty y at x x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣C 2221b a t t +- D ∣t 1∣+∣t 2∣6、 已知直线l :⎩⎨⎧+-=+= t351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离.7、 直线⎩⎨⎧+-=+=t21y t x (t 为参数)与椭圆8222=+y x 交于A 、B 两点,则|AB|等于( ) 8、直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)与二次曲线A 、B 两点,则|AB|等于( )A |t 1+t 2|B |t 1|+|t 2|C |t 1-t 2| D221t t +9、 直线⎪⎩⎪⎨⎧+-=-=t211212y t x (t 为参数)与圆122=+y x 有两个交点A 、B ,若P 点的坐标为(2,-1),则|PA|·|PB|=10、过点P(6, 27)的直线⎪⎩⎪⎨⎧+=+=t 2726y t x 与抛物线y 2=2x 相交于A 、B 两点,则点P 到A,B 距离之积为 11.直线⎩⎨⎧-=+=20cos 420sin 3t y t x (t 为参数)的倾斜角 .。
直线的参数方程的应用

直线的参数方程的应用一、几何学应用1.直线的参数方程的可视化表示直线参数方程可以帮助我们直观地理解直线的特点和性质,例如直线在平面上的位置、方向、长度等。
通过改变参数的取值,可以观察到直线的移动、旋转、延长等变化,进而更直观地了解几何图形的特征。
2.直线的交点设有两条直线的参数方程分别为:L1:x=x1+a1t,y=y1+b1t,z=z1+c1tL2:x=x2+a2s,y=y2+b2s,z=z2+c2s我们可以通过求解参数方程的参数,找到这两条直线的交点。
通过求解方程组,可以得到唯一的交点坐标。
3.直线的方位角和倾斜角直线参数方程中的参数可以用来表示直线的方位角和倾斜角。
方位角是指直线与坐标轴的夹角,可以通过直线的参数方程中的系数进行计算。
倾斜角是指直线与xy平面的夹角,可以通过直线的参数方程中的系数进行计算。
二、物理学应用1.运动学中的直线运动在物理学中,直线运动是指质点或物体在直线上的运动轨迹。
直线的参数方程可以用来描述其中一时刻的位置。
例如,设有直线运动的质点在t时刻的位置为(x(t),y(t),z(t)),则可以表示成参数方程形式:x(t) = x0 + vxty(t) = y0 + vytz(t) = z0 + vzt其中,(x0, y0, z0)表示质点的初始位置,(vx, vy, vz)表示质点在x、y、z方向上的速度分量。
2.力学中的直线运动在力学中,直线运动还涉及质点或物体在直线上的加速度、力和运动的规律。
通过直线的参数方程,可以计算质点或物体在不同时刻的速度和加速度,并进一步得出运动的规律。
例如,设有质点在t时刻的位置为(x(t),y(t),z(t)),则可以通过参数方程求导得到速度和加速度:vx(t) = dx/dtvy(t) = dy/dtvz(t) = dz/dt3.光学中的直线传播在光学中,直线传播是指光线沿着直线路径传播的现象。
直线的参数方程可以用于描述光线在空间中的传播路径。
直线参数方程的应用

由题意得,离心率为 e 2 , 焦参数为 p 2
1050
Fx Q
建立如图所示的极坐标系,则双曲线的极坐标方程为
2
1 2 cos
故 | FP | | FQ |
2
2
1 2 cos1050 1 2 cos1050
4
1 2 cos2 1050
4 cos 2100
8 3 3
(7)(2007年重庆)过双曲线 x2 y 2 4的右焦点F作倾斜角
M始(x0 , y0 )
M 0 (x0 , y0 )
M终 (x, y) M (x, y)
x
二、直线参数方程的应用:
(t为参数)
1.求直线上某一个点的坐标:
2.求直线上某线段中点的坐标:
3.求直线上两点间的距离:
4.求直线的方程:
注:若l 上两点M1,M2对应的参数分别为t1,t2.则
① | M1 M2 || t1 t2 |
y x
求极坐标方程常用的方法
公式法 方程法
直接法 间接法
1.公式法:知型巧用公式法 建系设式求系数 2.方程法: 未知型状方程法 建系设需列方程 ①直接法:一般地,与正余弦定理有关 ②间接法:先求出普通方程,再转成为极坐标方程
特殊直线的极坐标方程
图
l
θ0
O
x
像
l
(a,0)
Ox
l
(a, )
Ox
l
(a, )
A.
30 3
B.6
C.12
法3:参数方程+设而不求
D.7 3
由题意得AB:x
3 4
y
t 2
3t 2 (t为参数)
F B
A
直线参数方程的应用

直线参数方程的应用直线是平面几何中最基本的图形之一,具有广泛的应用。
直线参数方程是表示直线的一种常用方法,它通过参数化的方式,将直线上的每一个点表示为一个参数关于坐标的函数。
直线参数方程的应用范围广泛,涉及到建模、计算、曲线运动等多个领域。
下面将介绍一些直线参数方程的应用。
1.绘制直线图形直线参数方程可以用于绘制各种直线图形,如图形学中的线段、射线等。
通过给定直线的起点和终点,可以根据参数方程计算出每一个点的坐标,然后将这些点连起来,就可以得到一条直线。
绘制直线图形在计算机图形学、几何学等领域有广泛的应用,如绘制曲线、图形变换等。
2.直线的交点计算3.直线的切线计算直线参数方程可以用于计算曲线在其中一点的切线。
给定曲线的参数方程,通过对参数进行微分,求解导数,可以得到曲线在其中一点的切线的斜率,然后根据切线方程的形式,可以计算出切线的方程。
直线的切线计算在微积分、物理学、工程学等领域有广泛的应用,如计算物体运动轨迹、求解函数的导数等。
4.直线的方向向量计算直线参数方程可以表示直线的方向向量。
给定直线的参数方程,可以通过计算参数的变化量,得到直线上两个点的连线向量,从而得到直线的方向向量。
直线的方向向量计算在几何学、物理学、机器学习等领域有广泛的应用,如计算导航路径、计算梯度向量等。
5.表示平面内直线的垂线、平行线直线参数方程可以用于表示平面内直线的垂线、平行线。
给定直线的参数方程,可以通过求解两条直线的参数之间的关系,判断它们是否垂直或平行。
垂线、平行线的计算在几何学、物理学、工程学等领域有广泛的应用,如计算平行导线的电阻、计算直线的交点等。
6.参数方程与一般方程的转化直线的参数方程与一般方程之间可以相互转化。
给定直线的参数方程,可以通过计算参数表达式,得到直线的一般方程。
同样地,给定直线的一般方程,可以通过求解参数方程的参数,得到直线的参数方程。
参数方程与一般方程的转化在几何学、代数学等领域有广泛的应用,如计算函数的参数表示、计算曲线的方程等。
直线的参数方程及应用

直线的参数方程及应用x = x0 + aty = y0 + bt其中(x0,y0)是直线上的一个固定点,a和b是表示直线方向的参数。
参数t的取值范围根据实际问题的情况来确定,可以是实数、整数或者其他范围。
1.直线与平面的交点在三维空间中,直线与平面的交点可以通过参数方程求解。
假设平面的方程为Ax+By+Cz+D=0,直线的参数方程为:x = x0 + aty = y0 + btz = z0 + ct将直线的参数方程代入平面的方程,可以得到一个关于参数t的二次方程:A(x0+at) + B(y0+bt) + C(z0+ct) + D = 0通过求解这个二次方程,可以得到直线与平面的交点坐标。
2.直线的斜率直线的斜率是表示直线的倾斜程度的一个重要指标,可以通过直线的参数方程求得。
考虑直线上两个点P(x1,y1)和Q(x2,y2),它们对应的参数分别为t1和t2、直线的斜率可以表示为:m=(y2-y1)/(x2-x1)=(y0+b*t2-y0-b*t1)/(x0+a*t2-x0-a*t1)=b/a因此,直线的斜率可以通过参数a和b的比值得到。
当a=0时,直线是垂直于x轴的;当b=0时,直线是垂直于y轴的。
3.直线的长度直线的长度可以通过参数方程和积分来求解。
考虑直线上两个点P(x1,y1)和Q(x2,y2),它们对应的参数分别为t1和t2、直线的长度可以表示为:L = ∫√((dx/dt)²+(dy/dt)²) dt (t=t1到t2)其中 dx/dt 和 dy/dt 分别是直线参数方程关于 t 的导数。
将直线的参数方程代入到上式中,化简可得:L = ∫√(a²+b²) dt (t=t1到t2)=√(a²+b²)*(t2-t1)因此,直线的长度可以通过直线参数方程中的参数a和b计算得到。
4.直线的切线和法线y = y0 + (dy/dt) * (t-t0)其中 dy/dt 是直线参数方程关于 t 的导数。
直线的参数方程的应用

(1) 写 出l1 的 参 数 方 程 ;
(2) 化 l2 的方程为参数方程;
(3) 求 | PQ | .
6
例2、已知直线
l
:
x
y
1 3t(t为参数) 2 4t
与椭圆(x 1)2 ( y 2)2 1交于A、B
9
16
求 | AB | 和点P(1 , 2) 到A、B的距离之和。
分析:P(-1 ,2) 在直线上,为M0
经过点 M0(x0 , y0), 倾斜角为
直线的参数方程的标准形式为
x x0 t cos
y
y0
t sin
(t为 参 数)
t 的几何意义:M0M 的数量。 ① M0 对应 t0 ,M 对应t
② 注意 t 的正负号
③ | M0 M || t |
1
t 的几何意义:M0M 的数量。
①若M1、M2是直线上的两点,对应 t1、 t2 ,
| PA| a2 b2 | tA |
7
练
习
、 已 知l1过 点P(4
,
3)
,
倾
斜
角
的
正 切 为2 3
,
l2 的 方 程 为x y 2 0 , 且 l1 与 l2 相 交
于 点Q( x0 , y0 )。
(1) 写 出l1 的 参 数 方 程 ;
(2) 化 l2 的方程为参数方程;
(3) 求 | PQ | .
才是标准形式,t才具有上述意义
② 标准形式为 x x0
y
y0
|a| t
a2 b2 |b| t
a2 b2
③若 A , B是直线上两点,则
(ab 0 取正号 ab 0取负号)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 化 l2 的方程为参数方程;
(3) 求| PQ| .
2020/6/10
例2、已知直线l
:
x y
Hale Waihona Puke 1 3t(t为参数) 2 4t
与椭圆(x 1)2 (y 2)2 1交于A、B
9
16
求| AB| 和点P(1, 2) 到A、B的距离之和。
分析:P(-1 ,2) 在直线上,为M0
|PA | a2b2|tA|
(t是参数 ) 和x y2 30
y 5
3t 2
的交点与1点, ( 5)间的距离_是 __._
2、直 x 线 2 2t (t是参 )上 数与点 2,3)( 间 y3 2t
的距离 2的是 点的_坐 __.标 __是
2020/6/10
②若M0为M1,M2的中点,则 t1 + t2= t0 =0
③若M为M1,M2的中点, 则 M0M= tM = t 1 t 2 2
2020/6/10
经过点 M0(x0 , y0), 倾斜角为 直线的参数方
程的一般形式为
xx0at yy0bt
(t为 参 ) k数 b a
注意:
① 当且仅当a2 + b2 =1 且 b≥0
经过点 M0(x0 , y0), 倾斜角为
直线的参数方程的标准形式为
xy xy00
tcos tsin
(t为 参)数
t 的几何意义:M 0 M 的数量。 ① M0 对应 t0 ,M 对应t
② 注意 t 的正负号
③ |M0M||t|
2020/6/10
t 的几何意义:M 0 M 的数量。
①若M1、M2是直线上的两点,对应 t1、 t2 , 则 |M1M2|=|t1-t2|
y
3t 2
将其化为普通方程。
2、 已 知 直 线为 的 x参 1t数 方 (t为 程 参 ) y5 3t
将其化为标准形式。
2020/6/10
例1、已知l1过点P(5
,
0)
,
倾斜
角
的正切
为3 4
,
l2 的方程为2x y 5 0 , 且 l1 与 l2 相交
于点Q(x0 , y0 )。
(1) 写出l1 的参数方程;
才是标准形式,t才具有上述意义
② 标准形式为x x0
y
y0
| a| t
a2 b2 | b| t
a2 b2
③若 A , B是直线上两点,则
(ab0取 正 号 ab0取 负 号 )
|AB|=
2020/6/10
a2b2|tAtB|
复习巩固
1、 已 知
直
线
的
参 数为方 x程 1
1t 2
(t为 参 数)
2020/6/10
练
习
、
已
知l1过
点P(4
,
3)
,
倾
斜
角
的
正
切
为2 3
,
l2 的方程为x y 2 0 , 且 l1 与 l2 相交
于点Q( x0 , y0 )。
(1) 写出l1 的参数方程;
(2) 化 l2 的方程为参数方程;
(3) 求 | PQ| .
2020/6/10
练习:
1、 直 线 x 1 12t