1.3逻辑联结词与命题

合集下载

1.3 简单的逻辑联结词

1.3  简单的逻辑联结词
(1)p:π是无理数,q:e不是无理数;
(2)p:方程x2+2x+1=0有两个相等的实数根,q:方程x2+2x+1=0的两根的绝对值相等;
(3)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任何一个内角.
【例2】指出下列命题的真假.
(1)不等式|x+2|≤0没有实数解;
年级
高二
学科
数学
课题
1.3简单的逻辑联结词
编制人
谭金国
审定人
高二数学备课组
知识目标
教学活动
基础知识—重点知
识—重难点知识
自学质疑—讨论领悟—展示分享—检测巩固—评价提升
1.了解联结词“且”“或”“非”的含义.
2.会用联结词“且”“或”“非”联结或改写某些数学命题,并判断新命题的真假.
自学质疑
定义:
真值表
(1)若abc=0,则a、b、c中至少有一个为零;
(2)若x2+y2=0,则x、y全为零;
(3)等腰三角形有两个内角相等.
检测巩固
1、在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()
A.(非p)∨(非q)B.p∨(非q) C.(非p)∧(非q)D.p∨q
2、分别写出下列含有逻辑联结词的命题的形式,并判断其真假.
(1)等腰三角形顶角的平分线平分且垂直于底边;
(2)1或-1是方程x2+3x+2=0的根;
(3)A⊈(A∪B).
3、已知命题p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根.若命题“p∧q”与命题“非q”都是假命题,求实数m的取值范围.

1.3简单逻辑联结词

1.3简单逻辑联结词

探讨问题 2.如何利用集合的观点理解“或”?
对“或”的理解,可联想集合中“并集”的 概念,“x∈A∪B ”是指“x∈A ”,“x∈B ” 其中至少有一个是成立的,即可以“x∈A且 x∉B”,也可以“x∉A且x∈B”,也可以 “x∈A且x∈B ”.逻辑联结词中的“或”的 含义与“并集”中的“或”的含义是一致的.
“p且q”形式命题的真假判断
p 真 q 真 p且q 真

假 假

真 假

假 假
一 假 则 假
练 习
以下判断正确的是( )
A.若p是真命题,则“p且q”一定是真命题 B.命题“p且q”是真命题,则命题p一定是真命题 C.命题“p且q”是假命题时,命题p一定是假命题 D.命题p是假命题时,命题“p且q”不一定是假命题
假 假
命题p∧q 函数y=x3是偶函数且在R上是减函数 假
命题p:三角形三条中线相等 假 命题q: 三角形三条中线相交于一点 真 命题p∧q 三角形三条中线相等且相交与一点 假
问题探究
p
q
p(q)闭合 p(q)是真命题
p(q)断开 p(q)是假命题 整个电路的接通 p ∧ q是真命题
整个电路的断开 p ∧ q是假命题
p:2=2 q:2<2,由联结词“或”联结 p是真命题,q是假命题,则p或q是真命题。
方法总结 判断“ p 或 q”“p 且 q” 形式命题的真假, 主要利用真值表来判断,其步骤是:
练习
判断下列命题的真假: (1)集合A是A∩B的子集或是A∪B的子集; 真 (2)周长相等的两个三角形全等或面积相 等的两个三角形全等; 假
2.若 x 1 ,则 x 不等于 1.
2
课外练习:

高中数学选修1课件:1.3简单的逻辑联结词

高中数学选修1课件:1.3简单的逻辑联结词
(1)10可以被2或5整除. (2)菱形的对角线互相垂直且平分. (3)0.5非整数.
“或”,“且”, “非”称为逻辑联结词.含有逻 辑联结词的命题称为复合命题,不含逻辑联结 词的命题称为简单命题.
复合命题有以下三种形式: (1)P且q. (2)P或q. (3)非p.
1.3.1 且(and)
思考?
正面
=>

都是
至多有一个 至少有一个 任意的 所有的
否定


不是
不都是
至少有两个 没有一个 某个 某些
例4 已知命题p,q,写出“P或q”,“P且q”,“非p”形
式的复合命题. (1)p:π是无理数,q:π是实数. (2)p:3>5,q:3+5=8. (3)p:等腰三角形的两个底角相等,q:等腰三 角形底边上的高和底边上的中线重合.
例2 分别写出由命题“p:平行四边形的对角 线相等”,“q:平行四边形的对角线互相平分” 构成的“P或q”,“P且q”,“非p”形式的命题。
例3 分别指出下列命题的形式及构成它的 简单命题。 (1)24既是8的倍数,又是6的倍数. (2)李强是篮球运动员或跳水运动员. (3)平行线不相交.
本节须注意的几个方面: (1)“≥”的意义是“>或=”. (2)“非”命题对常见的几个正面词语的否定.
是假命题时, p q是假命题.
p
q
全真为真,有假即假.
一般地,用逻辑联结词”或”把 命题p和命题q联结起来.就得到一个
p q 新命题,记作
规定:当p,q两个命题中有一个是真命题
时, p q 是真命题;当p,q两个命题中都是
假命题时, p q 是假命题.
当p,q两个命题中有一个是真命

1.3简单的逻辑联结词1

1.3简单的逻辑联结词1
(2)¬ p:3≥2

(3)¬ p:空集不是集合A的子集. 假
命题p:若x是6的倍数,则x是2的倍数
非p:若x是6的倍数,则x不是2的倍数 否命题:若x是不6的倍数,则x不是2的倍数 命题的否定:只否定结论 否命题:同时否定条件和结论
例1 分别指出由下列各组命题构成的“p或q” “p且q” “非p”形式的复合命题的真假
例2、用逻辑联结词“且”改写下列命 题,并判断它们的真假: (1)1既是奇数,又是素数; (2)2和3都是素数.
(1)1是奇数且1是素数; 假命题
(2)2是素数且3是素数.
真命题
思 考
下列三个命题间有什么关系: (1)27是7的倍数; (2) 27是9的倍数; (3) 27是7的倍数或 27是9的倍数. 一般地,用连接词“或”把命题p和命题q连 接起来,就得到一个新命题,记作
C U A {x | x A 且 x U}
p
P
U
注: ( p ) p 命题“非p”的真假: 若p是真命题,则 p必是假命题; 若p是假命题,则 p 必是真命题.
p
p 真

假 真
p与¬ p必是 一真一假
逻辑联结词:或、且、非
简单命题:不含逻辑联结词的命题
(常用小写字母p,q,r,s,……表示)
判断复合命题真假的步骤: (1)写出构成复合命题的简单命题p与q (2)判断p 、q的真假
(3) 由p 、q的真假得出复合命题的真假
练习1:某足球队队员的全体构成集合A , 写出下列命题的否定:
(1)p: (2)p: (3)p: (4)p:
A中的队员至少有一个是重庆人; A中的队员都是重庆人; A中的队员都不是重庆人; A中的队员不都是重庆人.

1.3简单的逻辑连接词

1.3简单的逻辑连接词
符号“∨”与“∪”开口都是向上
我们可以从并联电路理解联结词“或”的 含义。若开关p,q的闭合与断开分别对应命 题p,q的真与假,则整个电路的接通与断开 分别对应命题p∨q的真与假。
p
q
同假为假,一真必真.
s
总结思考
如果p∧q为真命题,那么p∨q一定是真 命题吗?反之,如果p∨q为真命题,那么 p∧q一定是真命题吗?

(2)p:3 < 2
解: p : 3≥2.

(3) p:空集是集合A的子集
解: p : 空集不是集合A的子集。 假
课堂小结
1、逻辑联结词 “或”、“且”、“非”的含义 2、判断含有逻辑连接词的命题真假的步骤
(1)把命题写成两个简单命题,并确定命题的构成 形式;
(2)判断简单命题的真假; (3)根据真值表判断命题的真假.
2.在下列命题中
(1)命题“不等式 | x 2 | 0 没有实数解”;
(2)命题“-1是偶数或奇数”;
(3)命题“ 2 既属于集合Q ,也属于集合R”;
(4)命题“A A U B ”
其中,真命题为_(__2__)__(__4_)___.
3.
命题p:“不等式
x
x 1
0
的解集为
{x | x 0或x 1}”;命题q:“不等式 x2 4
1.3简单的逻辑联结词
★★ 1.3.1 且 (and)
思考 下面三个命题间有什么关系? (1)12能被3整除; (2)12能被4整除;
命题(3)是由命 题(1)(2)使用联 结词“且”联 结得到的新命 题.
(3)12能被3整除且能被4整除。
一般的,用逻辑联结词“ ”把命题p和q连接起来, 就得到一个新命题, 记作p∧q,读作“p且q”.

第一章1.3简单逻辑连接词

第一章1.3简单逻辑连接词

C )
【例2(P6)】 (2012·杭州学军中学模拟)已知 命题p:∃x∈R,使tan x=1,命题q:x2-3x +2<0的解集是{x|1<x<2},给出下列结论: ①命题“p∧q”是真命题; ②命题“p∧┐q”是假命题; ③命题“┐p∨q”是真命题; ④命题“┐p∨┐q”是假命题. 其中正确的是( D ) A.②③ B.①②④ C.①③④ D.①②③④
题型一
含有逻辑联结词的命题的真假
【例 1(P6) 】已知命题 p1:函数 y=2x-2-x 在 R 上为增函数,p2:函数 y=2x+2-x 在 R 上为减 函数,则在命题 q1:p1∨p2,q2:p1∧p2,q3: (¬ p1)∨p2 和 q4:p1∧(¬ p2)中,真命题是( A.q1,q3 C.q1,q4 B.q2,q3 D.q2,q4
m>1
(P6)变式训练 2(1)命题 p:a +b <0 (a,b∈R); 正确的是 ( ) B.“p∧q”为真 D.“┐ q”为真
2
2
命题 q:(a-2)2+|b-3|≥0 (a,b∈R),下列结论
A
A.“p∨q”为真 C.“┐ p”为假
变式训练 2(2)已知命题 p:抛物线 y=2x2 1 的准线方程为 y=- ;命题 q:若函数 f(x+ 2 1)为偶函数, 则 f(x)关于 x=1 对称. 则下列命 题是真命题的是 A.p∧q C.(┐p)∧(┐q) (
(P7)变式训练 3 (1) 已知 a>0,设命题 p:函 数 y=a 在 R 上单调递增;命题 q:不等式 ax “p∨q”为真,求 a 的取值范围.
x 2
-ax+1>0 对∀x∈R 恒成立. 若“p∧q”为假,
(0,1]∪[4,+∞)

1.3 简单的逻辑联结词、全称命题、特称命题

1.3 简单的逻辑联结词、全称命题、特称命题


3.含有存在量词的命题,叫做特称命题.“存在 M 中元 素 x0,使 p(x0)成立”用符号简记为: ∃x0∈M,p(x0) .
第1章 第3节
第5页
名师伴你行 ·高考一轮总复习 ·数学(理)

告 一
考点 2 含有一个量词的命题的否定


命题
命题的否定


∀x∈M,p(x) ∃x0∈M,¬ p(x0)
为假命题,“(¬ p)∧(¬ q)”为假命题.
故选 B.
第1章 第3节
第14页
名师伴你行 ·高考一轮总复习 ·数学(理)

2.[2019 陕西渭南一模]已知命题 p:∃a,b∈R,使得 a>b


且1a>1b;命题 q:∀x∈R,sin
x+cos
x<32.下列命题是真命题的
课 时

是( A )




(1)两次都击中目标;________


(2)两次都没有击中目标.________
答案:(1)p∧q (2)(¬p)∧(¬q)或¬(p∨q)
第1章 第3节
第9页
名师伴你行 ·高考一轮总复习 ·数学(理)
通性通法

告 一
1.已知命题 p:log2x<1 的解集为{x|x<2},命题 q:ln
1 2<sin

所以实数 m 的取值范围为[2,+∞).
第1章 第3节
第22页
名师伴你行 ·高考一轮总复习 ·数学(理)
小提示
根据命题的真假求参数取值范围的策略

告 一
(1)全称命题:可转化为恒成立问题,特称命题转化为存在

高中数学 第1章 常用逻辑用语 1

高中数学 第1章 常用逻辑用语 1

§1.3简单的逻辑联结词知识点一由简单命题写出复合命题分别写出由下列各组命题构成的“p或q”、“p且q”、“非p”形式的复合命题:(1)p:2是无理数,q:2大于1;(2)p:N⊆Z,q:0∈N;(3)p:x2+1>x-4,q:x2+1<x-4.解(1)p∨q:2是无理数或大于1;p∧q:2是无理数且大于1;綈p:2不是无理数.(2)p∨q:N⊆Z或0∈N;p∧q:N⊆Z且0∈N;綈p:N⃘Z.(3)p∨q:x2+1≠x-4;p∧q:x2+1>x-4且x2+1<x-4;綈p:x2+1≤x-4.知识点二从复合命题中找出简单命题指出下列复合命题的形式及构成它的简单命题.(1)96是48与16的倍数;(2)方程x2-3=0没有有理数解;(3)不等式x2-x-2>0的解集是{x|x<-1或x>2};(4)他是运动员兼教练员.解(1)“p且q”形式,其中p:96是48的倍数,q:96是16的倍数.(2)“非p”形式,其中p:方程x2-3=0有有理数解.(3)“p或q”形式,其中p:不等式x2-x-2>0的解集是{x|x<-1},q:不等式x2-x-2>0的解集是{x|x>2}.(4)“p且q”形式,其中p:他是运动员,q:他是教练员.知识点三判断含有逻辑联结词的命题的真假分别指出由下列各组命题构成的“p或q”“p且q”“非p”形式的命题的真假.(1)p:3>3,q:3=3;(2)p:∅{0},q:0∈∅;(3)p:A⊆A,q:A∩A=A;(4)p:函数y=x2+3x+4的图象与x轴有交点,q:方程x2+3x-4=0没有实根.解(1)因为p假q真,所以“p∨q”为真,“p∧q”为假,“綈p”为真.(2)因为p真q假,所以“p∨q”为真,“p∧q”为假,“綈p”为假.(3)因为p真q真,所以“p∨q”为真,“p∧q”为真,“綈p”为假.(4)因为p假q假,所以“p∨q”为假,“p∧q”为假,“綈p”为真.知识点四非命题与否命题写出下列命题的否定及命题的否命题:(1)菱形的对角线互相垂直;(2)面积相等的三角形是全等三角形.解(1)命题的否定:存在一个菱形,其对角线不互相垂直.否命题:不是菱形的四边形,其对角线不互相垂直.(2)命题的否定:存在面积相等的三角形不是全等三角形.否命题:面积不相等的三角形不是全等三角形.考题赏析1.(广东高考)已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(綈p)∨q B.p∧qC.(綈p)∧(綈q) D.(綈p)∨(綈q)解析不难判断命题p为真命题,命题q为假命题,从而上述叙述中只有(綈p)∨(綈q)为真命题.答案 D2.(如皋联考)已知命题:p:若实数x,y满足x2+y2=0,则x,y全为0;命题q:若a>b,则1a<1b.给出下列四个复合命题:①p且q;②p或q;③綈p;④綈q.上述命题中为真命题的是________.解析p为真,q为假,故p或q,綈q为真命题.答案②④1.如果命题“非p或非q”是假命题,则在下列各结论中,正确的为()①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;④命题“p或q”是假命题.A.②③B.②④C.①③D.①④答案 C解析因“p且q”的否定为“綈p或綈q”,即綈(p且q)等价于綈p或綈q,所以“綈p或綈q”是假命题等价于“綈(p且q)”是假命题,即p且q为真命题.故选C.2.条件p:x∈A∪B,则綈p是()A.x∉A或x∉B B.x∉A且x∉BC .x ∈A ∩BD .x ∉A 或x ∈B 答案 B解析 因x ∈A ∪B ⇔x ∈A 或x ∈B ,所以綈p 为x ∉A 且x ∉B ,故选B.3.对于命题p 和q ,若p 且q 为真命题,则下列四个命题: ①p 或綈q 是真命题; ②p 或綈q 是假命题; ③綈p 且綈q 是假命题; ④綈p 或q 是假命题, 其中真命题是( )A .①②B .③④C .①③D .②④ 答案 C解析 因为p 且q 为真,所以p 与q 都为真,所以綈p 且綈q 为假.所以只有①③是真命题,所以选C. 4.若命题“p ∧q ”为假,且“綈p ”为假,则( ) A .p ∨q 为假 B .q 假C .q 真D .不能判断q 的真假 答案 B解析 綈p 为假,则p 为真,又p ∧q 为假,所以q 为假.所以选B. 5.“a ≥5且b ≥2”的否定是________. 答案 a <5或b <2解析 本题考查命题的否定,“p 或q ”的否定是“綈p 且綈q ”,“p 且q ”的否定是“綈p 或綈q ”. 6.命题p :{2}∈{2,3},q :{2}⊆{2,3},则下列对复合命题的判断,正确的是________.(填上所有正确的序号)①p 或q 为真;②p 或q 为假;③p 且q 为真;④p 且q 为假;⑤非p 为真;⑥非q 为假. 答案 ①④⑤⑥解析 由题可知p 为假,q 为真,所以p 或q 为真,p 且q 为假,非p 为真,非q 为假.答案为①④⑤⑥.7.已知p :3-x ≤0或3-x >4,q :5x +2<1,求p ∧q .解 由3-x ≤0或3-x >4,解得p :x ≥3或x <-1; 由5x +2-1<0,即3-x x +2<0, 解得q :x <-2或x >3.所以p ∧q :x <-2或x >3.8.已知a >0,a ≠1,设p :函数y =log a (x +1)在x ∈(0,+∞)内单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.如果p 与q 有且只有一个正确,求a 的取值范围.解 当0<a <1时,函数y =log a (x +1)在(0,+∞)内单调递减;当a >1时,y =log a (x +1)在(0,+∞)内不是单调递减,曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点等价于(2a -3)2-4>0,即a <12或a >52.若p真q 假,则a ∈(0,1)∩⎩⎨⎧⎭⎬⎫⎣⎡⎭⎫12,1∪⎝⎛⎦⎤1,52=⎣⎡⎭⎫12,1. 若p 假q 真,注意到已知a >0,a ≠1,所以有 a ∈(1,+∞)∩⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫0,12∪⎝⎛⎭⎫52,+∞=⎝⎛⎭⎫52,+∞. 综上可知,a 的取值范围为⎣⎡⎭⎫12,1∪⎝⎛⎭⎫52,+∞.讲练学案部分知识点一 含逻辑联结词的命题的构成将下列命题写成“p ∧q ”“p ∨q ”和“綈p ”的形式: (1)p :菱形的对角线互相垂直,q :菱形的对角线互相平分;(2)p :能被5整除的整数的个位数一定为5,q :能被5整除的整数的个位数一定为0. 解 (1)p ∧q :菱形的对角线互相垂直且平分. p ∨q :菱形的对角线互相垂直或平分. 綈p :菱形的对角线不互相垂直.(2)p ∧q :能被5整除的整数的个位数一定为5且一定为0; p ∨q :能被5整除的整数的个位数一定为5或一定为0;綈p :能被5整除的整数的个位数一定不为5.【反思感悟】 简单命题用联结词“或”、“且”、“非”联结得到的新命题是复合命题,联结后可以综合起来叙述,但综合叙述不能叙述成条件复合的简单命题或叙述成结论复合的简单命题.如(2)中的p ∨q 不能叙述成:能被5整除的整数的个位数一定为5或0,因为p 、q 都是假命题,则p ∨q 也为假命题.判断下列命题是否是复合命题并说明理由.(1)2是4和6的约数;(2)不等式x 2-5x +6>0的解为x >3或x <2.解 (1)是“p 且q ”形式的复合命题,其中p :2是4的约数;q :2是6的约数.(2)是简单命题,而不是用“或”联结的复合命题,因不等式x 2-5x +6>0的解为x >3是假命题,不等式x 2-5x +6>0的解为x <2也是假命题,而命题(2)是真命题,这与p 、q 都假,则p ∨q 一定假矛盾.命题“不等式x 2-5x +6>0的解为x >3或解为x <2”是p ∨q 的形式.知识点二 含逻辑联结词的命题的真假判断分别指出下列命题的形式及构成它的命题,并判断真假:(1)相似三角形周长相等或对应角相等; (2)9的算术平方根不是-3;(3)垂直于弦的直径平分这条弦,并且平分弦所对的两段弧.解 (1)这个命题是p ∨q 的形式,其中p :相似三角形周长相等,q :相似三角形对应角相等,因为p 假q 真,所以p ∨q 为真.(2)这个命题是綈p 的形式,其中p :9的算术平方根是-3,因为p 假,所以綈p 为真.(3)这个命题是p ∧q 的形式,其中p :垂直于弦的直径平分这条弦,q :垂直于弦的直径平分这条弦所对的两段弧,因为p 真q 真,所以p ∧q 为真.【反思感悟】 判断含逻辑联结词的命题的真假,关键是对应p 、q 的真假及“p ∧q ”“p ∨q ”为真时的判定依据,至于“綈p ”的真假,可就p 的真假判断,也可就“綈p ”直接判断.判断下列命题的真假:(1)-1是偶数或奇数;(2)2属于集合Q ,也属于集合R ; (3)A ⃘(A ∪B ).解 (1)此命题为“p ∨q ”的形式,其中p :-1是偶数,q :-1是奇数,因为p 为假命题,q 为真命题,所以“p ∨q ”为真命题,故原命题为真命题.(2)此命题为“p ∧q ”的形式,其中p :2属于Q ,q :2属于R ,因为p 为假命题,q 为真命题,所以“p ∧q ”为假命题,故原命题为假命题.(3)此命题为“綈p ”的形式,其中p :A ⊆(A ∪B ).因为p 为真命题,所以“綈p ”为假命题,故原命题为假命题.知识点三 简单的逻辑联结词的综合应用已知p :函数y =x 2+mx +1在(-1,+∞)上单调递增,q :函数y =4x 2+4(m -2)x +1大于零恒成立.若p 或q 为真,p 且q 为假,求m 的取值范围.解 若函数y =x 2+mx +1在(-1,+∞)上单调递增,则-m2≤-1,∴m ≥2,即p :m ≥2;若函数y =4x 2+4(m -2)x +1恒大于零, 则Δ=16(m -2)2-16<0, 解得1<m <3,即q :1<m <3.因为p 或q 为真,p 且q 为假,所以p 、q 一真一假,当p 真q 假时,由⎩⎨⎧m ≥2m ≥3或m ≤1,得m ≥3,当p 假q 真时,由⎩⎨⎧m <21<m <3,得1<m <2.综上,m 的取值范围是{m |m ≥3或1<m <2}.【反思感悟】 由p 、q 的真假,可以判断“p ∨q ”“p ∧q ”“綈p ”的真假.反之,由“p ∧q ”“p ∨q ”“綈p ”的真假,也能推断p 、q 的真假,如“p ∧q ”为假,则包括“p 真q 假”“p 假q 真”“p 假q 假”三种情况.已知p :方程x 2+mx +1=0有两个不等负根.q :方程4x 2+4(m -2)x +1=0无实根.(1)当m 为何值时,p 或q 为真? (2)当m 为何值时,p 且q 为真?解 由已知可知:p 真时m >2,q 真时1<m <3, (1)若p 或q 为真,只需m ∈{m |m >2}∪{m |1<m <3} ={m |m >1}.(2)若p 且q 为真,只需m ∈{m |m >2}∩{m |1<m <3} ={m |2<m <3}.课堂小结:1. 从集合的角度理解“且”“或”“非”. 设命题p :x ∈A.命题q :x ∈B. 则p ∧qx ∈A 且x ∈Bx ∈A ∩B ;p ∨q x ∈A 或x ∈B x ∈A ∪B ;2.对有逻辑联结词的命题真假性的判断 当p 、q 都为真,p ∧q 才为真;⌝p 与p 的真假性相反且一定有一个为真.当p 、q 有一个为真,p ∨q 即为真; 3.含有逻辑联结词的命题否定(1)“x=0或x=1”的否定是“x ≠0且x ≠1”而不是“x ≠0或x ≠1”; (2)“x 、y 全为0”的否定是“x 、y 不全为0”,而不是“x 、y 全不为0”;(3)“全等三角形一定是相似三角形”的否定是“全等三角形一定不是相似三角形”而不是“全等三角形不一定是相似三角形”.一、选择题1.p :点P 在直线y =2x -3上,q :点P 在抛物线y =-x 2上,则使“p ∧q ”为真命题的一个点P (x ,y )是( )A .(0,-3)B .(1,2)C .(1,-1)D .(-1,1) 答案 C解析 点P (x ,y )满足⎩⎪⎨⎪⎧y =2x -3,y =-x 2.可验证各选项中,只有C 正确.2.如果原命题的结论是“p 且q ”的形式,那么否命题的结论形式为( ) A .綈p 且綈q B .綈p 或綈q C .綈p 或q D .綈q 或p 答案 B解析 注意逻辑联结词的否定,“或”的否定是“且”,“且”的否定为“或”,所以p 且q 的否定为綈p 或綈q .所以选B.3.命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图象必过定点(-1,1);命题q :如果函数y =f (x )的图象关于(3,0)对称,那么函数y =f (x -3)的图象关于原点对称,则有( )A .“p 且q ”为真B .“p 或q ”为假C .p 真q 假D .p 假q 真 答案 C解析 由于将点(-1,1)代入y =log a (ax +2a )成立,故p 真;由y =f (x )的图象关于(3,0)对称,知y =f (x -3)的图象关于(6,0)对称,故q 假.4.若p 、q 是两个简单命题,p 或q 的否定是真命题,则必有( ) A .p 真q 真 B .p 假q 假 C .p 真q 假 D .p 假q 真答案 B解析 因为p 或q 的否定綈p 且綈q 为真命题,所以綈p 与綈q 都是真命题,所以p 与q 都为假命题.所以选B.5.下列命题中既是p ∧q 形式的命题,又是真命题的是( ) A .10或15是5的倍数B .方程x 2-3x -4=0的两根是-4和1C .方程x 2+1=0没有实数根D .有两个角为45°的三角形是等腰直角三角形 答案 D解析 A 中的命题是条件复合的简单命题,B 中的命题是结论复合的简单命题,C 中的命题是綈p 的形式,D 中的命题为p ∧q 型. 二、填空题6.由命题p :6是12的约数,命题q :6是24的约数.构成的“p ∨q ”形式的命题是______________________________,“p ∧q ”形式的命题是______________________________,“綈p ”形式的命题是________________________________.答案 6是12或24的约数 6是12和24的约数 6不是12的约数7.若“x ∈[2,5]或x ∈{x |x <1或x >4}”是假命题,则x 的范围是________. 答案 [1,2)解析 x ∈[2,5]或x ∈(-∞,1)∪(4,+∞), 即x ∈(-∞,1)∪[2,+∞),由于命题是假命题,所以1≤x <2,即x ∈[1,2).8.已知a 、b ∈R ,设p :|a |+|b |>|a +b |,q :函数y =x 2-x +1在(0,+∞)上是增函数,那么命题:p ∨q 、p ∧q 、綈p 中的真命题是________.答案 綈p 解析 对于p 当a >0,b >0时,|a |+|b |=|a +b |,故p 假,綈p 为真;对于q ,抛物线y =x 2-x +1的对称轴为x =12,故q 假,所以p ∨q 假,p ∧q 假.这里綈p 应理解成|a |+|b |>|a +b |不恒成立,而不是|a |+|b |≤|a +b |.三、解答题9.判断下列复合命题的真假:(1)等腰三角形顶角的平分线平分底边并且垂直于底边; (2)x =±1是方程x 2+3x +2=0的根; (3)A ⃘(A ∪B ).解 (1)这个命题是“p 且q ”的形式,其中p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边,因为p 真q 真,则“p 且q ”真,所以该命题是真命题.(2)这个命题是“p 或q ”的形式,其中p :1是方程x 2+3x +2=0的根,q :-1是方程x 2+3x +2=0的根,因为p 假q 真,则“p 或q ”真,所以该命题是真命题.(3)这个命题是“非p ”的形式,其中p :A ⊆(A ∪B ),因为p 真,则“非p ”假,所以该命题是假命题. 10.已知p :x 2+4mx +1=0有两个不等的负数根,q :函数f (x )=-(m 2-m +1)x 在(-∞,+∞)上是增函数.若p 或q 为真,p 且q 为假,求实数m 的取值范围.解 p :x 2+4mx +1=0有两个不等的负根⇔⎩⎪⎨⎪⎧Δ=16m 2-4>0-4m <0⇔m >12.q :函数f (x )=-(m 2-m +1)x 在(-∞,+∞)上是增函数 ⇔0<m 2-m +1<1⇔0<m <1.(1)若p 真,q 假,则⎩⎪⎨⎪⎧m >12,m ≤0或m ≥1.⇒m ≥1.(2)若p 假,q 真,则⎩⎪⎨⎪⎧m ≤120<m <1⇒0<m ≤12综上,得m ≥1或0<m ≤12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用文档
【§1.3逻辑联结词与命题】 班级 姓名 学号
知识点:命题、命题的分类、判断;逻辑联结词“或”、“且”、“非”;真值表;四种命题的关系及真假判断;反证法;注意:否命题与命题的否定的区别。

例1.判断下列命题的真假:(1)命题“在△ABC 中,若AB>AC ,则∠C>∠B ”的逆命题;
(2)命题“若ab=0,则a ≠0且b=0”的否命题; (3)若题“若a ≠0且b ≠0,则ab ≠0”的逆否命题; (4)命题“若a ≠0或b ≠0,则a 2+b 2>0”的逆命题。

例2.在下列关于直线m l 、与平面βα、的命题中,真命题的是 ( )
A .若αβαβ⊥⊥⊂l l ,则且
B .若αβαβ⊥⊥l l ,则且//
C .若αβαβ//l l ,则且⊥⊥
D .若αβα////l m l m ,则且=⋂ (04上海高考)
例3.写出下列命题的否定及否命题:
(1)两组对边平行的四边形是平行四边形; (2)正整数1即不是质数也不是合数。

实用文档
例4.命题p :若1||1||||,>+>+∈b a b a R b a 是则、的充分不必要条件;命题q :函数2|1|--=x y 的定义域是(][)+∞-∞-,31, ,则 ( )
A .“p 或q ”为假
B .“p 且q ”为真
C .p 真q 假
D .p 假q 真 (04福建)
例5.已知函数()∞+∞-,在)(x f 上是增函数,R b a ∈、,对命题:“若,0≥+b a 则
)()()()(b f a f b f a f -+-≥+”。

(1)写出逆命题,判断真假,并证明你的结论。

(2)写出逆否命题,判断真假,并证明你的结论。

【备用题】
证明:若“a 2+2ab+b 2+a+b -2≠0则a+b ≠1”为真命题.
【基础训练】
1.分别用“p 或q ”“p 且q ”“非p ”填空: ①“b 是自然数且为偶数”是__________形式;
②“-1不是方程x 2+3x+1=0的根”是_____________形式; ③“负数没有平方根”是 形式;④“方程x 2+3x+2=0的根是-2或-1”是___________形式;
2.如果原命题是“若⌝P则q”,写出它的逆命题,否命题与逆否命题
3.与命题“若a∉M则b∉M”等价的命题是()
A.若b∈M则a∉M B.若b∉M则a∈M C.若b∈M则a∈M D.若a∉M则b ∈M
【拓展练习】
1.设p:大于90°的角叫钝角,q:三角形三边的垂直平分线交于一点,则p、q的复合命题的
真假是
()
A.“p或q”假B.“p且q”真C.“非q”真D.“p或q”真2.“xy≠0”是指
()
A.x≠0且y≠0 B.x≠0或y≠0 C.x,y至少一个为0 D.不都是0
实用文档
3.判断下列命题的真假:(真“√”、假“ ”)
①3≥3 ;②100或50是10的倍数;
③有二个锐角的三角形是锐角三角形____ ;④等腰三角形至少有二个内角相等_______。

4.分别用“p或q”,“p且q”,“非p”填空:
①“12是60和84的公因数”是________形式;②△ABC是等腰直角三角形是__________形式;
③“方程x2+3x+2=0”的解集不是{1,2}是__________形式;④“△≥0”是_________形式。

5.在空间,(1)若四点不共面,则这四点中任何三点都不共线;(2)若两条直线没有公共点,则这两条直线是异面直线。

以上两个命题中,逆命题为真命题的是
(把符合要求的命题序号都填上)(01天津高考)
6.如果否命题为:若x+y≤0,则x≤0或y≤0。

写出相应的原命题,逆命题与逆否命题,并分别指出四种命题的真假,一般地,如果原命题的条件或结论是“p或q”,它的否定形式是什么?“p且q”的否定形式又是什么?
实用文档
实用文档
7.数集A 满足条件;若a ∈A ,则有
A a
a ∈-+11, (1)当2∈A 时,求集合A ;(2)若a ∈R ,
求证:A 不可能是单元素集合.
8.分别指出下列各组命题构成“p 或q ”,“p 且q ”,“非p ”形式的复合命题的真假, ①p:5+10≠15,q:3>2 ②p:x 2+1<0,q:x 2>-x 2
③p:无理数与有理数的积必为无理数
q:无理数与有理数的和必为无理数 ④p:若α,β都是锐角,且α>β,则sin α>sin β
q:若α,β都是锐角,且α>β,则cos α>cos β
9.已知下列三个方程022,0)1(,03442222=-+=+-+=+-+a ax x a x a x a ax x 至少
实用文档 有一个方程有实根,求实数a 的取值范围。

10.若a,b,c 均为实数,且a=x 2-2y+62,32,222πππ+-=+-=x z c z y b ,求证:a,b,c 中至少有一
个大于0.。

相关文档
最新文档